Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Methodology
3.1. Carbon Density Correction and Carbon Stock Measurement
3.1.1. Carbon Density Correction
3.1.2. Carbon Stock Measurement
3.2. GMMOP-Based Development Scenario Simulation
3.2.1. Land-Use Value Coefficient
3.2.2. Scenario Setting and Objective Function Construction
3.3. Land-Use Prediction Based on the PLUS Model
3.3.1. Land-Use Drivers
3.3.2. Conversion Cost Matrix
3.4. Model Accuracy Verification
3.5. Local Spatial Autocorrelation Analysis
4. Results and Analysis
4.1. Land-Use Changes in the Tibetan Plateau from 2000 to 2020
4.2. Changes in Carbon Stocks in the Tibetan Plateau from 2000 to 2020
4.3. Land-Use Change in the Tibetan Plateau under the Different Development Scenarios
4.4. Carbon Stock Changes in the Tibetan Plateau under the Different Development Scenarios
4.5. Spatial Autocorrelation Analysis of the Carbon Stocks in the Tibetan Plateau
5. Discussion
6. Conclusions
- (1)
- Between 2000 and 2020, the Tibetan Plateau witnessed a decrease in grassland area, whereas cultivated land, forest land, water bodies, construction land, and unused land areas all expanded. Notably, under the inherent progression scenario, the grassland area experienced a considerable decline. Conversely, in the economic growth scenario, cultivated land, grassland, and construction land areas exhibited significant increases. In the environmental preservation scenario, there were notable increments in forest land and water areas, alongside reductions in grassland and unused land areas. Finally, the holistic progression scenario saw substantial expansions in cultivated land, forest land, and construction land areas.
- (2)
- Between 2000 and 2020, the total carbon stock decreased from 44.249 to 42.355 billion t. The grassland carbon stock decreased by 2.210 billion t, while the cultivated land, forest land, watershed, construction land, and unused land carbon stocks increased by 0.066 billion t, 0.92 billion t, 2.674 million t, 15.850 million t, and 156 million t, respectively. The average carbon stock of the soil organic carbon pool was the highest, recorded at 19.563 billion t, whereas the average carbon stock of the organic carbon pool of litterfall matter was the lowest, amounting to 1.507 billion t.
- (3)
- In 2020, the total carbon stock witnessed a decrease of 866 Mt and 529 Mt under the inherent progression and economic growth scenarios, respectively. Conversely, it experienced an increase of 1187 Mt and 1621 Mt under the environmental preservation and integrated development scenarios, respectively. Notably, the soil organic carbon pool reached its peak under the integrated development scenario, totaling 19,435 Mt. In contrast, the litterfall organic carbon pool was at its lowest under the inherent progression scenario, registering at 1415 Mt. Additionally, the belowground biomass organic carbon pool exhibited the most significant growth under the integrated development scenario, with an increase of 5.59%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.R.; McBratney, A.B.; de Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef]
- Sun, B.; Du, J.; Chong, F.; Li, L.; Zhu, X.; Zhai, G.; Song, Z.; Mao, J. Spatio-temporal variation and prediction of carbon storage in terrestrial ecosystems in the yellow river basin. Remote Sens. 2023, 15, 3866. [Google Scholar] [CrossRef]
- Zafar, Z.; Zubair, M.; Zha, Y.; Mehmood, M.S.; Rehman, A.; Fahd, S.; Nadeem, A.A. Predictive modeling of regional carbon storage dynamics in response to land use/land cover changes: An InVEST-based analysis. Ecol. Inform. 2024, 82, 102701. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Heimann, M.; Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 2008, 451, 289–292. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in changchun city based on FLUS and InVEST model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.Y.; Wang, G.G.; Liu, G.H.; Xu, S.L. Forest biomass of China: An estimate based on the biomass–volume relationship. Ecol. Appl. 1998, 8, 1084–1091. [Google Scholar]
- Wu, Q.; Wu, F.; Tan, B.; Yang, W.; Ni, X.; Yang, Y. Carbon, nitrogen and phosphorus stocks in soil organic layer as affected by forest gaps in the alpine forest of the eastern Tibet Plateau. Russ. J. Ecol. 2015, 46, 246–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Shi, X.; Lu, X.; Yu, D.; Wang, H.; Sun, W.; Darilek, J. Variation of soil organic carbon estimates in mountain regions: A case study from Southwest China. Geoderma 2008, 146, 449–456. [Google Scholar] [CrossRef]
- Williams, D.R.; Alvarado, F.; Green, R.E.; Manica, A.; Phalan, B.; Balmford, A. Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Glob. Chang. Biol. 2017, 23, 5260–5272. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Hörmann, G.; Huang, J.; Fohrer, N. A random forest-based CA-Markov model to examine the dynamics of land use/cover change aided with remote sensing and GIS. Remote Sens. 2023, 15, 2128. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Wang, H. Land-use simulation and decision-support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecol. Modell. 2020, 417, 108924. [Google Scholar] [CrossRef]
- Bütikofer, L.; Adde, A.; Urbach, D.; Tobias, S.; Huss, M.; Guisan, A.; Randin, C. High-resolution land use/cover forecasts for Switzerland in the 21st century. Sci. Data 2024, 11, 231. [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, C.; Chen, J.; Wu, Z.; Wang, F.; Li, S. Multi-scenario simulation of land-use change and delineation of urban growth boundaries in county area: A case study of Xinxing County, Guangdong Province. Land 2022, 11, 1598. [Google Scholar] [CrossRef]
- Li, Q.; Gao, M.; Li, J. Carbon emissions inventory of farm size pig husbandry combining Manure-DNDC model and IPCC coefficient methodology. J. Cleaner Prod. 2021, 320, 128854. [Google Scholar]
- Bagstad, K.; Villa, F.; Johnson, G.; Voigt, B. ARIES–Artificial Intelligence for Ecosystem Services: A Guide to Models and Data, Version 1.0; ARIES report series 1; 2011; Available online: https://www.bioecon-network.org/pages/11th_2009/Villa.pdf (accessed on 3 July 2024).
- Duan, H.; Xu, N. Assessing social values for ecosystem services in rural areas based on the SolVES model: A case study from Nanjing, China. Forests 2022, 13, 1877. [Google Scholar] [CrossRef]
- Gao, F.; Xin, X.; Song, J.; Li, X.; Zhang, L.; Zhang, Y.; Liu, J. Simulation of LUCC dynamics and estimation of carbon stock under different SSP-RCP scenarios in Heilongjiang Province. Land 2023, 12, 1665. [Google Scholar] [CrossRef]
- Jia, X.; Zhu, J.; Li, Y.; Wu, W.; Hu, X. Analysis of the driving role and impact of road construction on carbon stock. Environ. Sci. Pollut. Res. 2023, 30, 67131–67149. [Google Scholar] [CrossRef]
- Nyamari, N.; Cabral, P. Impact of land cover changes on carbon stock trends in Kenya for spatial implementation of REDD+ policy. Appl. Geog. 2021, 133, 102479. [Google Scholar] [CrossRef]
- Cao, L.; Huo, X.; Xiang, J.; Lu, L.; Liu, X.; Song, X.; Jia, C.; Liu, Q. Interactions and marginal effects of meteorological factors on haemorrhagic fever with renal syndrome in different climate zones: Evidence from 254 cities of China. Sci. Total Environ. 2020, 721, 137564. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Wang, Q.; Zhang, Y. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 2014, 23, 323–333. [Google Scholar] [CrossRef]
- Wei, Y.; Yi, M.; Yu, Y.; You, Y.; Zhang, W.; Li, R.; Yu, C.; Wang, S. Global drivers of timber carbon stock from income-based perspective. Front. Environ. Sci. 2023, 11, 1149492. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, P.; Bai, N.; Zhao, L. Land use scenario simulation in Qinglong Manchu Autonomous County based on CLUE-S and GMOP model. Chin. J. Agric. Resour. Reg. Plan 2020, 41, 173–182. [Google Scholar]
- Bacani, V.M.; da Silva, B.H.M.; Sato, A.A.d.S.A.; Sampaio, B.D.S.; da Cunha, E.R.; Vick, E.P.; de Oliveira, V.F.R.; Decco, H.F. Carbon storage and sequestration in a eucalyptus productive zone in the Brazilian Cerrado, using the Ca-Markov/Random Forest and InVEST models. J. Clean. Prod. 2024, 444, 141291. [Google Scholar] [CrossRef]
- Xie, L.; Bai, Z.; Yang, B.; Fu, S. Simulation analysis of land-use pattern evolution and valuation of terrestrial ecosystem carbon storage of Changzhi City, China. Land 2022, 11, 1270. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; He, X.; Li, X.; Yang, G.; Li, D.; Xu, W.; Qiao, X.; Li, C.; Sui, L. Multi-scenario simulation and trade-off analysis of ecological service value in the Manas River Basin based on land use optimization in China. Int. J. Environ. Res. Public Health 2022, 19, 6216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lü, Y.; Lü, D.; Wang, C.; Wu, X.; Yin, L.; Wang, X. Carbon and water relationships change nonlinearly along elevation gradient in the Qinghai Tibet Plateau. J. Hydrol. 2024, 628, 130529. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Zhu, X.; Jiang, Y.; Hu, G.; Hao, J.; Ni, J.; Li, R.; Qiao, Y.; Yang, C. Improving the Noah-MP model for simulating hydrothermal regime of the active layer in the permafrost regions of the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2020, 125, e2020JD032588. [Google Scholar] [CrossRef]
- Piao, S.; Zhang, X.; Wang, T.; Liang, E.; Wang, S.; Zhu, J.; Niu, B. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, L.; Xie, C.; Zou, D.; Wu, T.; Du, E.; Wang, L.; Sheng, Y.; Zhao, Y.; Xiao, Y. The zonation of mountain frozen ground under aspect adjustment revealed by ground-penetrating radar survey—A case study of a small catchment in the upper reaches of the Yellow River, Northeastern Qinghai-Tibet Plateau. Remote Sens. 2022, 14, 2450. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, G.; Liu, G.; Zou, D.; Wang, Y.; Xiao, Y.; Du, E.; Wang, C.; Xing, Z.; Sun, Z. Investigation, monitoring, and simulation of permafrost on the Qinghai-Tibet Plateau: A review. Permafr. Periglac. Process. 2024. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.2227 (accessed on 3 July 2024). [CrossRef]
- Ma, Y.J.; Li, X.Y.; Liu, L.; Huang, Y.M.; Li, Z.; Hu, X.; Wu, X.C.; Yang, X.F.; Wang, P.; Zhao, S.J. Measurements and modeling of the water budget in semiarid high-altitude Qinghai Lake Basin, Northeast Qinghai-Tibet plateau. J. Geophys. Res. Atmos. 2018, 123, 10,857–10,871. [Google Scholar] [CrossRef]
- Li, D.S.; Cui, B.L.; Wang, Y.; Wang, Y.X.; Jiang, B.F. Source and quality of groundwater surrounding the Qinghai Lake, NE Qinghai-Tibet Plateau. Groundwater 2021, 59, 245–255. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid. Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.P.; Zhang, D.G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Cao, S.; Jin, X.B.; Yang, X.H.; Sun, R.; Liu, J.; Han, B.; Xu, W.Y.; Zhou, Y.K. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan district. J. Nat. Resour. 2019, 34, 1171–1185. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Zheng, W.; Ke, X.; Xiao, B.; Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits-A case study in Wuhan, China. J. Environ. Manag. 2019, 248, 109306. [Google Scholar] [CrossRef]
- Yanfang, L.; Dongping, M.; Jianyu, Y. Optimization of land use structure based on ecological GREEN equivalent. Geo-Spat. Inf. Sci. 2002, 5, 60–67. [Google Scholar] [CrossRef]
- Pal, S.; Bauch, C.T.; Anand, M. Coupled social and land use dynamics affect dietary choice and agricultural land-use extent. Commun. Earth Environ. 2021, 2, 204. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting urban land use change based on cellular automata and the PLUS model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Meimei, W.; Zizhen, J.; Tengbiao, L.; Yongchun, Y.; Zhuo, J. Analysis on absolute conflict and relative conflict of land use in Xining metropolitan area under different scenarios in 2030 by PLUS and PFCI. Cities 2023, 137, 104314. [Google Scholar] [CrossRef]
- Wang, H.; Jin, H.; Li, X.; Zhou, L.; Qi, Y.; Huang, C.; He, R.; Zhang, J.; Yang, R.; Luo, D. Changes in carbon stock in the Xing’an permafrost regions in Northeast China from the late 1980s to 2020. GISci. Remote Sens. 2023, 60, 2217578. [Google Scholar] [CrossRef]
- Xu, R.; Shi, P.; Gao, M.; Wang, Y.; Wang, G.; Su, B.; Huang, J.; Lin, Q.; Jiang, T. Projected land use changes in the Qinghai-Tibet Plateau at the carbon peak and carbon neutrality targets. Sci. China Earth Sci. 2023, 66, 1383–1398. [Google Scholar] [CrossRef]
- Li, R.W.; Ye, C.C.; Wang, Y.; Han, G.D.; Sun, J. Carbon storage estimation and its drivering force analysis based on InVEST model in the Tibetan Plateau. Acta Agrestia Sin. 2021, 29, 43. [Google Scholar]
- Hao, J.Y.; Zhi, L.; Li, X.; Dong, S.K.; Li, W. Temporal and spatial variations and the relationships of land use pattern and ecosystem services in Qinghai-Tibet Plateau, China. J. Appl. Ecol. 2023, 34, 3053–3063. [Google Scholar]
- Wang, L.; Zeng, H.; Zhang, Y.J.; Zhao, G.; Chen, N.; Li, J.X. A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau. Chin. J. Ecol. 2019, 38, 3506. [Google Scholar]
- Shen, X.; Liu, Y.; Zhang, J.; Wang, Y.; Ma, R.; Liu, B.; Lu, X.; Jiang, M. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycles 2022, 36, e2022GB007396. [Google Scholar] [CrossRef]
- Ding, J.; Wang, T.; Piao, S.; Smith, P.; Zhang, G.; Yan, Z.; Ren, S.; Liu, D.; Wang, S.; Chen, S. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun. 2019, 10, 4195. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Liu, D.; Lv, G.; Ren, S.; Ding, J.; Chen, B.; Qu, J.; Wang, Y.; Piao, S.; et al. The current and future of terrestrial carbon balance over the Tibetan Plateau. Sci. China Earth Sci. 2023, 66, 1493–1503. [Google Scholar] [CrossRef]
- Hao, W.; Cao, Z.; Ou, S.; Qin, Y.; Wang, Z.; Yang, S.; Tiando, D.S.; Fan, X. A simulation analysis of land use changes in the Yarlung Zangbo River and its two tributaries of Tibet using the Markov–PLUS model. Sustainability 2023, 15, 1376. [Google Scholar] [CrossRef]
- Fayiah, M.; Dong, S.; Khomera, S.W.; Ur Rehman, S.A.; Yang, M.; Xiao, J. Status and challenges of Qinghai-Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward. Sustainability 2020, 12, 1099. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Dou, H.; Li, M.; Liu, S.; Cao, W. Optimizing the land use and land cover pattern to increase its contribution to carbon neutrality. Remote Sens. 2022, 14, 4751. [Google Scholar] [CrossRef]
Land Type | Ca | Cb | Cs | Cd |
Cultivated land | 17.0 | 80.7 | 108.4 | 9.8 |
Forest land | 42.4 | 115.9 | 158.8 | 14.1 |
Grassland | 35.3 | 86.5 | 99.9 | 7.3 |
Water | 0.3 | 0 | 0 | 0 |
Construction land | 2.5 | 27.5 | 0 | 0 |
Unused land | 1.3 | 0 | 21.6 | 0 |
Land Type | Gansu | Qinghai | Sichuan | |||||||||
Ca | Cb | Cs | Cd | Ca | Cb | Cs | Cd | Ca | Cb | Cs | Cd | |
Cultivated land | 229.78 | 1090.76 | 8796.74 | 982.36 | 226.67 | 1076.03 | 9230.25 | 982.36 | 7353.66 | 34,908.24 | 12,508.90 | 982.36 |
Forest land | 573.09 | 1566.53 | 12,886.74 | 1411.17 | 565.35 | 1545.38 | 13,521.80 | 1411.17 | 18,340.88 | 50,134.63 | 18,324.85 | 1411.17 |
Grassland | 477.12 | 1169.16 | 8106.96 | 727.59 | 470.68 | 1153.37 | 8506.48 | 727.59 | 15,269.65 | 37,417.13 | 11,528.04 | 727.59 |
Water | 4.05 | 0.00 | 0.00 | 0.00 | 4.00 | 0.00 | 0.00 | 0.00 | 129.77 | 0.00 | 0.00 | 0.00 |
Construction land | 33.79 | 371.70 | 0.00 | 0.00 | 33.33 | 366.68 | 0.00 | 0.00 | 1081.42 | 11,895.62 | 0.00 | 0.00 |
Unused land | 17.57 | 0.00 | 1752.86 | 0.00 | 17.33 | 0.00 | 1839.24 | 0.00 | 562.34 | 0.00 | 2492.55 | 0.00 |
Land Type | Xinjiang | Tibet | Yunnan | |||||||||
Ca | Cb | Cs | Cd | Ca | Cb | Cs | Cd | Ca | Cb | Cs | Cd | |
Cultivated land | 134.91 | 640.43 | 8211.27 | 982.36 | 439.28 | 2085.29 | 9886.22 | 982.36 | 14,041.24 | 66,654.60 | 13,039.20 | 982.36 |
Forest land | 336.49 | 919.78 | 12,029.06 | 1411.17 | 1095.62 | 2994.85 | 14,482.76 | 1411.17 | 35,020.51 | 95,728.22 | 19,101.71 | 1411.17 |
Grassland | 280.14 | 686.46 | 7567.40 | 727.59 | 912.15 | 2235.16 | 9111.01 | 727.59 | 29,156.22 | 71,445.14 | 12,016.75 | 727.59 |
Water | 2.38 | 0.00 | 0.00 | 0.00 | 7.75 | 0.00 | 0.00 | 0.00 | 247.79 | 0.00 | 0.00 | 0.00 |
Construction land | 19.84 | 218.24 | 0.00 | 0.00 | 64.60 | 710.60 | 0.00 | 0.00 | 2064.89 | 22,713.77 | 0.00 | 0.00 |
Unused land | 10.32 | 0.00 | 1636.19 | 0.00 | 33.59 | 0.00 | 1969.95 | 0.00 | 1073.74 | 0.00 | 2598.22 | 0.00 |
Value Coefficient (104 Yuan·km−2) | Cultivated Land | Forest land | Grassland | Water | Construction Land | Unused Land |
---|---|---|---|---|---|---|
Ecological value | 77.37 | 488.78 | 327.38 | 2085.50 | 0 | 15.59 |
Economic value | 291.83 | 21.31 | 35.69 | 12.55 | 15,024.70 | 0 |
Constraint Type | Constraint Factor | Constraint Expression |
---|---|---|
Total | Land area | |
Economic value | Land area | |
Economic value | Land area | |
Ecological value | Land area | |
Ecological value | Land area | |
Total carbon storage | Land area | |
Cultivated land | Cultivated land area | |
Unused land | Unused land area | |
Land diversity | Area of forest land, grassland and water bodies | |
Model accuracy | Land area |
Inherent Progression | Economic Growth | Environmental Preservation | Holistic Progression | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
e | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
Land Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Area/104 km2 | Proportion/% | Area/104 km2 | Proportion/% | Area/104 km2 | Proportion/% | |
Cultivated land | 2.35 | 0.90 | 2.34 | 0.89 | 2.75 | 1.05 |
Forest land | 24.88 | 9.50 | 24.50 | 9.36 | 25.04 | 9.56 |
Grassland | 160.92 | 61.46 | 157.56 | 60.17 | 148.21 | 56.60 |
Water | 12.48 | 4.77 | 13.86 | 5.29 | 15.82 | 6.04 |
Construction land | 0.1 | 0.04 | 0.12 | 0.05 | 0.34 | 0.13 |
Unused land | 61.12 | 23.34 | 63.47 | 24.24 | 69.69 | 26.61 |
Land Type | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|
Carbon Storage/108 t | Proportion/% | Carbon Storage/108 t | Proportion/% | Carbon Storage/108 t | Proportion/% | |
Cultivated land | 3.86 | 0.87 | 3.85 | 0.89 | 4.53 | 1.07 |
Forest land | 147.62 | 33.36 | 145.35 | 33.43 | 148.54 | 35.07 |
Grassland | 279.86 | 63.25 | 274.02 | 63.02 | 257.76 | 60.86 |
Water | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 |
Construction land | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 |
Unused land | 11.14 | 2.52 | 11.56 | 2.66 | 12.70 | 3.00 |
Carbon Pool Type | 2000 (108 t) | 2010 (108 t) | 2020 (108 t) |
---|---|---|---|
Aboveground biomass organic carbon | 63.52 | 62.36 | 60.96 |
Belowground biomass organic carbon | 163.68 | 160.70 | 157.52 |
Litterfall organic carbon | 15.46 | 15.16 | 14.59 |
Soil organic carbon | 199.83 | 196.57 | 190.48 |
Land Type | Inherent Progression (104 km2) | Economic Growth (104 km2) | Environmental Preservation (104 km2) | Holistic Progression (104 km2) |
---|---|---|---|---|
Cultivated land | 0.36 | 0.67 | 0.05 | 0.67 |
Forest land | 0.48 | −2.06 | 3.03 | 3.03 |
Grassland | −7.50 | 3.61 | −3.32 | −1.41 |
Water | 1.46 | 0.00 | 2.56 | 0.00 |
Construction land | 0.19 | 0.24 | 0.14 | 0.17 |
Unused land | 5.01 | −2.46 | −2.46 | −2.46 |
Land Type | Inherent Progression | Economic Growth | Environmental Preservation | Holistic Progression | ||||
---|---|---|---|---|---|---|---|---|
Carbon Storage/108 t | Proportion/% | Carbon Storage/108 t | Proportion/% | Carbon Storage/108 t | Proportion/% | Carbon Storage/108 t | Proportion/% | |
Cultivated land | 5.12 | 1.23 | 5.64 | 1.35 | 4.61 | 1.06 | 5.64 | 1.28 |
Forest land | 151.38 | 36.49 | 136.29 | 32.58 | 166.52 | 38.24 | 166.52 | 37.87 |
Grassland | 244.72 | 58.99 | 264.04 | 63.13 | 251.99 | 57.87 | 255.31 | 58.06 |
Water | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 |
Construction land | 0.04 | 0.01 | 0.04 | 0.01 | 0.03 | 0.01 | 0.03 | 0.01 |
Unused land | 13.61 | 3.28 | 12.25 | 2.93 | 12.25 | 2.81 | 12.25 | 2.79 |
Total | 414.89 | 100.00 | 418.26 | 100.00 | 435.42 | 100.00 | 439.76 | 100.00 |
Carbon Pool Type | Inherent Progression (108 t) | Economic Growth (108 t) | Environmental Preservation (108 t) | Holistic Progression (108 t) |
---|---|---|---|---|
Aboveground biomass organic carbon | 59.90 | 59.52 | 63.61 | 64.10 |
Belowground biomass organic carbon | 155.13 | 153.53 | 164.99 | 166.33 |
Litterfall organic carbon | 14.15 | 14.63 | 14.78 | 14.98 |
Soil organic carbon | 185.71 | 190.58 | 192.02 | 194.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Xu, J.; Feng, B. Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models. Sustainability 2024, 16, 5776. https://doi.org/10.3390/su16135776
Yuan L, Xu J, Feng B. Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models. Sustainability. 2024; 16(13):5776. https://doi.org/10.3390/su16135776
Chicago/Turabian StyleYuan, Li, Jing Xu, and Binrui Feng. 2024. "Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models" Sustainability 16, no. 13: 5776. https://doi.org/10.3390/su16135776
APA StyleYuan, L., Xu, J., & Feng, B. (2024). Evaluation and Prediction of Carbon Storage in the Qinghai-Tibet Plateau by Coupling the GMMOP and PLUS Models. Sustainability, 16(13), 5776. https://doi.org/10.3390/su16135776