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Abstract: This paper introduces a mixed-integer convex model for optimizing the scheduling of
soft open points (SOPs) integrated with energy storage (ES) in active distribution networks (ADNs)
with high proportions of photovoltaic sources, designed to ensure zero risk of constraint violations.
A stochastic optimization model for ADNs is proposed to maximize the benefits of SOPs while
simultaneously minimizing system power losses, SOP power losses, voltage deviations, PV power
curtailment, battery energy storage system (BESS) operation cost, and utility power purchase. Uncer-
tainties in PV generation and load demand are considered by Monte Carlo simulation and k-means
technologies. Finally, simulation cases from a 21-bus distribution network show that the curtailment
of PV sources is minimized and the power fluctuations of the BESS are reduced in comparison to the
case without SOP. Constraints in the nodal voltages, power outputs, energy balance, and power flow
are all satisfied.

Keywords: active distribution networks; scenario generation and reduction; uncertainty; soft open
point; economic power dispatch

1. Introduction

To decrease the use of fossil fuels and CO2 emissions, the past decade has seen a
rapid increase in the deployment of renewable distributed generation (DG). This growth,
however, introduces difficulties for managing active distribution networks (ADN). On one
hand, the mismatch between DG distribution and demand can cause reverse power flow
and worsen voltage issues, potentially leading to the simultaneous need for DG curtailment
and load shedding within a system. On the other hand, the unpredictable and variable
nature of renewable energy means that errors in forecasting DG outputs are unavoidable,
compounding the challenges of maintaining real-time power balance in ADNs [1].

Accommodating the growing demand and generation of power will necessitate signif-
icant investment in reinforcing networks and replacing aging assets, a process that is both
expensive and time-intensive. As an alternative, leveraging the flexibility of DG, demand
response, and network devices offers a strategy to manage network constraints in real-time,
presenting a potentially more efficient and cost-effective approach [2,3].

Soft open points (SOPs) power electronic devices typically installed at the normally open
junctions of electrical distribution networks and offer precise and flexible control over the
power and voltage within these systems. With their superior real-time power management
capabilities, SOPs have proven to be effective in addressing the various challenges associated
with distribution networks [4]. These devices, integral to distribution-level power electronics,
were developed and named the Siemens multifunctional power link (SIPLINK) by Siemens
AG in Germany in 2001 [5]. However, the name SOP was first mentioned in reference [6],
highlighting their role in replacing normally open points within distribution networks.
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The core component of an SOP consists of two voltage source converters (VSCs) con-
nected back-to-back [7,8]. By substituting the mechanical switch at a normally open point
with an SOP, it becomes possible to maintain continuous power transfer between two bus-
bars. Consequently, SOPs are valued for their ability to facilitate flexible interconnections,
making them the optimal choice for addressing imbalances between generation and power
demand, thereby enhancing the energy efficiency of ADNs [6,9].

The SOP device has been utilized to reduce losses and balance loads, with strategies
developed for local voltage control to address distribution system fluctuations and opti-
mization methods incorporating SOPs and energy storage to minimize losses and voltage
deviations [10,11]. Robust optimization techniques have been proposed to manage PV out-
put uncertainties and exploit SOPs’ benefits fully, including strategies to lower operational
losses, correct three-phase imbalances, and a dual-time-scale optimization approach for
multi-terminal SOPs to simultaneously reduce system loss and voltage imbalance [12–14].
Reference [15] found that SOPs supported the economical operation of ADN, with network
performance enhancements achieved by integrating SOP usage and network reconfigura-
tion strategies. Moreover, reference [16] introduced a coordinated scheduling method for
ADNs, leveraging SOP and Plug-in Electric Vehicles (PEVs) across multiple timescales. It
optimizes operational efficiency and handles uncertainties through advanced programming
techniques, demonstrated an effective performance on modified IEEE and real distribution
systems and showcased significant operational improvements.

Research has underscored SOPs’ pivotal role in enhancing ADN operations. The
coordination of SOPs with Volt–Ampere Reactive (VAR) regulation methods has success-
fully mitigated voltage violations through a convex programming strategy detailed in [17].
These strategies predominantly depend on predictive data, neglecting the uncertainties
of PV outputs. Given these uncertainties, relying solely on deterministic SOP operation
strategies might exacerbate voltage instability issues. To refine SOP control strategies for
optimal effectiveness, reference [18] integrated a chance-constrained optimization model to
ideally allocate SOPs, DG, and capacitor banks. Reference [19] introduced a data-driven
stochastic optimization to devise optimal SOP strategies for the least favorable probabilities.
Moreover, a two-stage stochastic optimization model for a hybrid wind farm with hydrogen
and energy storage systems is introduced in [20], demonstrating better performance when
compared to Monte Carlo and deterministic approaches in handling uncertainties. For
the optimal operation of integrated energy systems, a distributionally robust approach is
proposed in [21] to address uncertainties arising from renewable energy resources, load
demand, and energy prices. Despite the indeterminacy of scenario probabilities, the fore-
casted outcomes within these scenarios are fixed, making scenario selection crucial to the
method’s success. The necessity to analyze a broad array of scenarios also significantly
increases the computational workload.

The strategies in the above-mentioned documents have had great contributions to
the optimal operation of ADNs with the existence of SOPs. However, the majority of
works have focused on a single objective such as power losses, power curtailments, social
welfare, and voltage deviations. Therefore, this paper considers multiple optimization
objectives including power transmission losses, voltage deviations, operation costs of
distributed battery energy storage systems (BESSs) and SOPs, as well as utility power
purchase objective.

The rest of the document is structured in the following way: Section 2 explains the
models, distribution networks, BESS operation model, PV curtailment model, as well as loss
model of SOPs with energy storage system. Section 3 lays out the main problem that this
paper addresses, starting with a clear-cut, certain scenario before moving on to a sturdier,
uncertainty-ready model. After that, Section 4 provides simulation case study to show how
this all works in a real-world example, with discussion of the results of simulations based
on this case study. The paper ends with the conclusions in Section 5.
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2. System Optimization Model

This section introduces the model of an ADN with PV sources, BESS, and SOP with
BESS. The operational model of the ADN includes the power flow model, the SOP model
with power losses, BESS operational constraints in the SOP, the power loss model as part of
the ADN operation model, and the active and reactive operation objectives and constraints
for PV sources and BESS.

2.1. Linearized Power Flow Model

The power flow model of an ADN is linearized as a DistFlow model [22]:
∑k∈F (i) Pki(t) = ∑j∈C(i) Pij(t)− pi(t) + rki

P2
ij(t)+Q2

ij

V2
i (t)

,

∑k∈F (i) Qki(t) = ∑j∈C(i) Qij(t)− qi(t) + xki
P2

ij(t)+Q2
ij

V2
i (t)

,

∀i ∈ I/{0}, ∀(i, j) ∈ B, ∀t ∈ T ,

(1)

where F (i) is the index set that contains all father nodes of node i, and set C(i) is the
set that contains all children nodes of node i. rki and xki are the resistance and reactance
parameters of cable (k, i), and Pk,i, Qk,i represent the active and reactive power of cable
(k, i), meanwhile pi(t), qi(t) are the active and reactive power injection/absorption at
node i at time instant t. Additionally, expression Vi(t) is the nodal voltage amplitude at
node i. I is the set of all buses except the slack bus.

The nodal voltages at time instant t are presented as

V2
j (t) = V2

i (t)− 2
(
rijPij(t) + xijQij(t)

)
+

(
r2

ij + x2
ij

)(P2
ij(t) + Q2

ij(t)
)

V2
i (t)︸ ︷︷ ︸

lij(t)

, ∀(i, j) ∈ B, ∀t ∈ T (2)

where Vj(t) is the nodal voltage amplitude of node j. It can be seen that nodal voltages
are related to the active and reactive power flows Pk,i(t), Qki(t), inherent parameters rki
and xki, as well as neighboring nodal voltage amplitudes Vi(t), and transmission power
loss lij(t). Expression (1) and (2) represent the power flow model of a three-phase balanced
power system. In this paper, only the three-phase balanced system is investigated.

2.2. Modeling of SOP

Soft open points (SOPs) in this paper are considered as the back-to-back voltage source
converters (VSCs), as shown in Figure 1. As shown in Figure 1, SOPs are composed of two
AC/DC converters, one capacitor, and a DC/DC converter, as well as a battery BESS [11].
In the distribution system, feeders are typically interconnected via normally open points
(NOP) for basic operational connectivity. However, to enhance the flexibility in managing
both active and reactive power flows, an advanced power electronic device known as the
SOP has been introduced [6], replacing the traditional NOP setup, as illustrated in Figure 1.
This advanced SOP device integrates two voltage source converters (VSCs) linked by a
shared direct current (DC) connection. One VSC is designated for active–reactive power
(PQ) control, regulating the SOP’s active power transmission and the converter’s reactive
power output. The second VSC is tasked with voltage and reactive power (Vdc-Q) control,
ensuring stable DC bus voltage while also contributing to reactive power management.
The advanced VSC controller within the SOP device boasts the ability to independently
adjust active and reactive power levels, showcasing a significant leap in power distribution
control technology.
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Figure 1. Active distribution network with SOP.

The power constraints of an SOP are formulated as

PSOP
i (t) + PSOP

j (t) + PSOP, loss
i (t)

+PSOP, loss
j (t) = 0,

PSOP, loss
i (t) = ASOP

i

√(
PSOP

i (t)
)2

+
(
QSOP

i (t)
)2,

PSOP, loss
j (t) = ASOP

j

√(
PSOP

j (t)
)2

+
(

QSOP
j (t)

)2
,

(3)

where PSOP
i (t), PSOP

j (t) are the active power of nodes i and j, and PSOP, loss
i (t) and PSOP, loss

j (t)

are the power losses of AC/DC converters, respectively. ASOP
i is the loss coefficient, and

QSOP
i (t), QSOP

j (t) are the reactive power outputs of the SOP.
Additionally, the reactive power constraints and capacity constraints are formulated

as 

PSOP,min
i ≤ PSOP

i (t) ≤ PSOP,max
i ,

QSOP,min
j ≤ QSOP

j (t) ≤ QSOP,max
j ,√(

PSOP
i (t)

)2
+

(
QSOP

i (t)
)2 ≤ SSOP

ij ,√(
PSOP

j (t)
)2

+
(
QSOP

i (t)
)2 ≤ SSOP

ij ,

(4)

where QSOP,min
i , QSOP,max

i are the minimal and maximal reactive power of the SOP, and
SSOP

ij is the capacity of the SOP connected between node i and node j.
The constraints of BESS integrated into the SOP are listed as

SOCESS,min
i ≤ SOCESS

i (t) ≤ SOCESS,max
i , (5)

SOCESS
i (t) = SOCESS

i (t − 1) + PESS
i (t)× ∆t, (6)

PESS
i (t) = ηchPch

i (t)− Pdch
i (t)/ηdch, (7)

where SOCESS,min
i , SOCESS,max

i are the minimal and maximal values of state of charge
(SOC) of the BESS in the SOP, SOCESS

i (t) is the SOC of the BESS, and PESS
i (t) is the BESS

power associated with the charging power Pch
i (t) and discharging power Pdch

i (t) with an
individual charging efficiency of ηch and a discharging efficiency of ηdch. ∆t is the power
dispatching time unit.

For a given operation period, the SOC of the BESS should remain the same, which is
formulated as

SOCESS
i (Tend) = SOCESS

i (Tstart), (8)

where Tend and Tstart are the ending and starting time instants.
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The optimization objective of SOPs is

FSOP(t) = PSOP, loss
i (t) + PSOP, loss

j (t) + asop
(

PESS
i (t)

)2, (9)

where asop is the economic parameter of the BESS in the SOP, which is the coefficient of the
BESS operation cost.

2.3. Modeling of BESS

The operational constraints of a battery energy storage system (BESS) encompass
several key factors: the mutual exclusion of charging and discharging states, limitations on
energy capacity, and bounds on charging/discharging power outputs, as detailed in the
following expressions: {

0 ≤ Pch
i (t) ≤ αch

i (t)Pmax
B,i

0 ≤ Pdch
i (t) ≤ αdch

i (t)Pmax
B,i

(10)

where i = 1, · · · , NB, Pmax
Bi , Pmin

Bi are the maximal and minimal power outputs of ith BESS in
ADN, NB is the maximal number of distributed BESSs in ADN without the BESS integrated
in the SOP. The binary variables αch

i (t) and αdis
i (t) are used to control BESS charging and

discharging behavior in a sequence. Therefore, it has

αch
i,t + αdis

i,t ≤ 1 (11)

The SOC constraints of distributed BESS are listed as
SOCBESS

i (t) = SOCBESS
i (t − 1)+(

ηchPch
i (t)− 1

ηdch Pdch
i (t)

)
∆t

SOCBESS,min
i ≤ SOCBESS

i (t) ≤ SOCBESS,max
i ,

SOCBESS
i (Tend) = SOCBESS

i (Tstart).

(12)

Thus, the operation objective of BESS is formulated as

FBESS(t) = ∑NB
i=1 ai

(
PBESS

i (t)
)2, (13)

where PBESS
i (t) = αch

i (t)Pch
i (t) + αdch

i (t)Pdch
i (t) is the BESS power, and ai > 0 is the

economic cost of ith BESS.

2.4. Modeling of PV Sources

The operation constraints of distributed PV sources in ADNs are formulated as
Pmin

PVi ≤ Ppv
i (t) ≤ Pmax

PVi ,

Qmin
PVi ≤ Qpv

i (t) ≤ Qmax
PVi ,√

(Ppv
i (t))2 + (Qpv

i (t))2 ≤ Spv
i ,

(14)

where Pmin
PVi , Pmax

PVi are the minimal and maximal power outputs of PV sources. Usually,
the minimal PV power outputs would be zero. PV sources work in maximal power point
tracking (MPPT) control mode, therefore, the maximal PV power outputs depend on the
solar radiation and surrounding environmental temperature. Aided by the PV power
forecasting techniques, PV generation power could be curtailed. Thus, the operation model
of PV sources is

FPV(t) = ∑NPV
i=1 av,i

(
Ppv

i (t)− Ppv,pref
i

)2
, (15)

where Ppv,pref
i is the forecasted power of PV sources, av,i is the economic cost, and NPV is

the number of PV sources.
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2.5. Modeling of ADN

The operation constraints of ADN contain nodal voltage constraints and cable power
flow constraints, which are presented as{

Vmin ≤ Vi(t) ≤ Vmax,

Pmin
i,j ≤ Pij(t) ≤ Pmax

i,j , ∈ B, ∀t ∈ T ,
(16)

where Vmin, Vmax are the minimal and maximal nodal voltages, and Pmin
i,j , Pmax

i,j are the
minimal and maximal power flow of branch (i, j). To reduce the power transmission loss,
the operation objective of ADN will be

FADN(t) = ∑
(i,j)∈|B|

(
r2

ij + x2
ij

)(P2
ij(t) + Q2

ij(t)
)

V2
i (t)

+
T

∑
t=1

ρPg(t),

(17)

where ∀(i, j) ∈ B, ∀t ∈ T , and |B| is the cardinality of set B.
In addition, the cost of purchasing power from the utility is designed as

Futility(t) =
T

∑
t=1

ρPg(t), (18)

where ρ is the utility price and Pg(t) is the power purchased from utility.

3. Optimization Model and Convexation

This section concludes the optimization objectives of the proposed models for ADN, which
include SOP operation costs, PV operation costs (power curtailment costs), BESS operation
costs, power losses of the ADN, and utility power purchase cost. To convexify the optimization
model, a second-order cone program (SOCP) is adopted to relax the power losses.

3.1. Reformulation of Objectives

As discussed in Section 2.2, the optimization problem of ADN can be concluded as the
minimization of power transmission losses, PV curtailments, BESS operation costs, and
SOP operation costs, subjected to the various power inequality and equality constraints.
Thus, the formulation of optimization problem of ADN with SOP will be

min F =
T

∑
t=1

(
FSOP(t) + FPV(t) + FBESS(t) (19)

+ FADN(t) + Futility(t)
)

, (20)

s.t.

{
(1), (2), (3), (4), (5), (6), (7),

(8), (10), (11), (12), (14), (16),
(21)

where T is the time instant. For one-day optimization, T will be 24 × 4 = 96, if the
dispatching period is chosen as 15 min.

The use of the DistFlow model (1) introduces quadratic formulas through equality
constraints, including the SOP’s power constraints (3) and voltage constraints considering
power loss (2). Consequently, this complexity turns the optimization problem into a
non-convex one, complicating its resolution. Therefore, the proper approximation needs
to be included. For the power flow model (1), the second-order cone program (SOCP)
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model is adopted for the approximation. In the nonlinear term of power losses lij =(
r2

ij + x2
ij

) (
P2

ij(t)+Q2
ij(t)

)
V2

i (t)
, reformulate

(
P2

ij(t)+Q2
ij(t)

)
V2

i (t)
as I2

ij(t); then, the relaxation will be

P2
ij(t) + Q2

ij(t) ≤ I2
ij(t) · V2

i (t). (22)

For SOP, the inequality constraint (3) should be relaxed. The proper approximation of
power loss will be 

ASOP
i

√(
PSOP

i (t)
)2

+
(
QSOP

i (t)
)2 ≤ PSOP, loss

i (t),

ASOP
j

√(
PSOP

j (t)
)2

+
(

QSOP
j (t)

)2
≤ PSOP, loss

j (t).
(23)

With these two relaxations, original equality constraints (2) and (3) will turn into
inequalities, which will guarantee the feasibility of the optimization problem.

3.2. Scenario Generation and Reduction

Monte Carlo simulation (MCS) is used to deal with the uncertainties of PV generation
and load demand. MCS is presented as a pivotal numerical method designed to capture
the inherent randomness in various aspects of microgrid operation, such as load demand,
renewable energy generation, and equipment reliability. MCS’s primary role in this context
is to simulate a wide range of possible future states, thus generating scenarios that reflect
the uncertainty in these critical factors. The appeal of MCS lies in its straightforwardness
and the directness of its application, marking it as distinctively less complex than alternative
methodologies. This simplicity makes MCS an ideal choice for the second stage of microgrid
planning. This stage is crucial for handling operational uncertainties following an initial phase
that focuses on deterministic decisions related to infrastructure investments and installations.

A k-means clustering algorithm has been deployed to efficiently condense the gen-
erated scenarios, ensuring the preservation of their inherent characteristics without over-
whelming decision-makers with data. This algorithm operates by grouping scenarios
based on the similarity of their load demands and solar irradiance profiles. Each group, or
cluster, is then represented by its centroid, calculated as the mean value of solar irradiance
and load demands for the scenarios within that cluster. This process not only simplifies
the dataset but also maintains the essential variability and characteristics of the original
scenarios, facilitating a more manageable yet comprehensive analysis. A detailed calculated
of scenarios and probability can be founded in reference [23].

With the generated scenarios, the optimization problem of ADN will be

min F =
Ns

∑
s=1

T

∑
t=1

ωs

(
FSOP(t) + FPV,s(t) (24)

+ FBESS(t) + FADN,s(t) + Futility(t)
)

, (25)

s.t.

{
(1), (2), (3), (4), (5), (6), (7), (8),

(10), (11), (12), (14), (16), (22), (23)
(26)

where Ns is the total scenarios generated, and ωs is the probability of sth scenario. FPV,s(t)
and FADN,s(t) are the objective functions under the sth scenario.

4. Numerical Results

To validate the proposed optimal operation strategy for ADN with an SOP, a 21-
bus distribution system is adopted in a case study, as shown in Figure 2. The 10-kV
distribution network contains six PV plants and a BESS installed at buses 3, 7, 9, 12, 16,
and 20, respectively. Additionally, buses 20 and 14 are connected via an SOP, which is
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integrated with a BESS to provide power support for the system. The system operates at a
rated voltage of 11 kV, with a maximum branch flow capacity of 10 MVA. To ensure stability
and efficiency within the network, the bus voltage levels are regulated to remain within
a permissible range: the upper limit is set at 1.05 per unit (p.u.), and the lower limit is
established at 0.95 p.u. This framework ensures that voltage levels at various buses within
the network are maintained within a narrow window, promoting reliable and efficient
power distribution.

PV sources and BESS units are integrated at designated nodes within the network, specifi-
cally at nodes [3, 7, 9, 13, 16, 20]. An SOP connection is established between nodes 14 and 20,
with the relevant capacities detailed in Table 1. The maximum power outputs for the BESS
units are set to Pmax

B = [1, 0.8, 1.2, 1.4, 1.0, 1.5] MW, and their minimum power outputs are
defined inversely to their maximums, Pmin

B = −Pmax
B MW. The BESS integrated within the

SOP is configured to a maximum and minimum output of 1 MW and −1 MW, respectively.
The system’s power factor is maintained at 0.95. Line characteristics, including resis-

tance and reactance, are specified as z = r + jx = 0.32 + j0.16 (Ω/km). The loss coefficient
of SOP, denoted as Ai/Aj, is set at 0.02. As shown in Figure 3, total PV generation varies
from zero to 5.5 MW, and the peak generation appears from 12 : 00 to 14 : 00. Load demand
varies from 3.8 to 6.5 MW, and its peak demand occurs at 19 : 00 to 20 : 00.

Economic parameters for the PV sources and BESS, including those integrated with SOP,
are outlined with cost coefficients a = 1× 10−3[0.11, 0.12, 0.09, 0.105, 0.13, 0.089, 0.11] S/kWh2,
and the utility price is set at 0.5 CNY/kWh. The simulation framework is implemented using
MATLAB 2022b/CVX, and optimization problems are solved with Gurobi 10.0.0.

Grid

110 /10 kV

8

15

2 4

F1

3 5 6 7

9 12

F2

10 11 13 14

16 19

F3

17 18 20

0 1
AC

DC

AC

DC

AC

DC

AC

DC

DC

DC

DC

DC

SOP

BESS

BESS BESS

BESS

BESS

BESS

BESSBESS

FuseFuse

BESS BESSBESS BESS

PVPV

Load

Fuse

BESS BESS

PV

Load

Figure 2. Simplified 21-bus distribution network with SOP, PV sources, and BESS.

Table 1. Capacities of distributed energy resources (DER) in ADN.

Source PV (MW) BESS (MWh) SOP(MW)

1 0.9 5.0 1.0
2 1.1 4.0 /
3 0.7 6.0 /
4 0.8 7.0 /
5 1.2 5.0 /
6 0.9 7.5 /
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Figure 3. Total PV generation and load demand in ADN.

4.1. Simulation Results of ADN without SOP

This section examines the optimal operation of an ADN in the absence of an SOP.
The dynamics of power and energy within the battery energy storage system (BESS) are
depicted in Figure 4. Specifically, Figure 4a illustrates that the power output of the BESS
varies between −0.8 MW and 0.7 MW. This is indicative of the charging phase, occurring
from 8:00 to 17:00, during which the BESS absorbs energy, and the discharging phase,
happening outside these hours, where the BESS releases energy. While charging, the BESS
injects negative reactive power to regulate the nodal voltage within safe range. Conversely,
during discharging, it supplies positive reactive power to the grid, ensuring the nodal
voltage does not dip below acceptable levels. Additionally, Figure 4b demonstrates the state
of charge (SoC) of the BESS over a 24 h cycle, confirming that the SoC remains consistently
within the strategically designed range of 20% to 80%. Furthermore, the output power of each
BESS vary from each other since the operation costs of BESS are different. Meanwhile, the
reactive power outputs of the BESS are from −20 to 120 kVar to support system voltages, and
the reactive power output of BESS at bus 3 is the highest during the peak hours (from 18:00 to
22:00). This is because the load demand of this branch is much higher than other branches and
BESSs at this branch would generate more reactive power to support bus voltages.
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Figure 4. Operation results of BESS.

Figure 5 presents the power outputs of photovoltaic (PV) sources, the power at the
point of common coupling (PCC), and the nodal voltages of the network. As depicted
in Figure 5a, from 6:00 a.m. to 7:00 p.m.—corresponding to daylight hours—PV sources
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contribute active power to the grid, with values ranging from 0 to 1.1 MW, and each PV
generate power according to its capacity from 0.6 MW to 1.2 MW. Notably, peak power
outputs of PV sources occur between 12:00 p.m. and 2:00 p.m. During these daylight hours,
PV sources also produce negative reactive power, thereby aiding in maintaining nodal
voltages within the standard operational range. The reactive power generated by the PV
sources fluctuates between −40 kVar and 0 kVar. However, the outputs of reactive power
are different, which is caused by the power outputs constraints, power flow constraints,
and load demand distribution in the system. Figure 5b illustrates that the active power at
the PCC varies from 3.4 MW to 3.8 MW, while the reactive power remains approximately
constant at 0.3 MVar, as indicated by the blue curve. Furthermore, Figure 5c confirms
that nodal voltages at buses equipped with BESS are consistently within the acceptable
range of 0.95 to 1.05 per unit (p.u.), ensuring stable operation within the network. Voltage
constraints are satisfied because the PV, BESS and upper grid provide reactive power as
well as PV active power curtailments. The curtailed power of PV sources are shown in
Figure 5d, where it can be seen that the maximal curtailed power of PV reaches 85 kW
during the peak time. The minimal curtailed power is still higher than 40 kW.
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Figure 5. Operation results of ADN.

4.2. Simulation Results of ADN with SOP

This section examines the optimal operation of an active distribution network (ADN)
with an SOP. The power outputs of a distributed BESS and SOP are shown in Figure 6.
In Figure 6a, power outputs in the distributed BESS vary from −0.4 MW to 0.3 MW, and
reactive power outputs are from 10 kVar to 110 kVar. With an SOP, the power outputs of
BESS 1, 2, 3, 5 are close to each other; however, the power outputs of BESS 4 and BESS 6
installed at buses 14 and 20 are opposite during peak hours. This is because during the
peak hours, load demand is transferred from bus 14 to bus 20. To conclude, the outputs of
BESS are decided not only by operation costs but also by operation constraints of SOP.
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Specially, the power outputs of the SOP and the BESS in an SOP are shown in Figure 6b,
varying from −0.25 MW to 0.25 MW. Reactive power of the SOP stays close to −0.3 MVar,
and reactive power of the BESS in an SOP is 0.5 MVar. Accordingly, the SoC of the
distributed BESS varies in a small range, from 45% to 58%, since the variation in the
distributed BESS is small, as shown in Figure 6c. The SoC of the SOP BESS is depicted in
Figure 6d, demonstrating a fluctuation range from 45% to 55%. This variation is attributed
to the smooth fluctuations in the power output of the BESS, which directly influences the
SoC of the SOP.
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Figure 6. Operation results of ADN with SOP.

Compared with BESS power outputs without an SOP, shown in Figures 4 and 6, the
fluctuation BESS power output when an SOP is adopted is smaller than that without an
SOP since the SOP transfers power between two different branches efficiently.

Additionally, PV power outputs are shown in Figure 7a, where their outputs vary
from 0 to 1.2 MW; meanwhile, reactive power varies from zero to 30 kVar to support
nodal voltages, and the curtailed power is decreased to about 5 kW, a large amount power
decrease when compared with the power curtailment without an SOP, shown by Figure 6d.
This means that PV power generation with an SOP is higher than PV generation without
an SOP; in other words, the installation of an SOP increases the penetration of PV sources.

As seen in Figure 7c, utility power varies from 0 to 5.5 MW when an SOP is installed,
and reactive power varies from 0.25 to 0 MVar. From 8:00 to 18:00, PV generation is shared
by loads and BESS; therefore, it is indicated that load demand is locally balanced with the
help of an SOP. Moreover, nodal voltages are still in the normal range of 0.98 to 1.01 p.u., as
shown in Figure 7d.
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Figure 7. Operation results of ADN with SOP.

The SOP plays a pivotal role in enhancing the operational flexibility and efficiency
of the distribution network, as validated by the results shown in Figures 4–7. It smooths
BESS power outputs and reduces PV power curtailments. Compared to Figures 5d and 7b,
the reduction in PV power curtailments is over 90% in general while still satisfying the
operational constraints.

5. Conclusions

This paper introduces a sophisticated mixed-integer convex optimization framework
specifically engineered for orchestrating the scheduling of SOPs seamlessly integrated with
energy storage (ES) systems in ADNs that largely incorporate photovoltaic (PV) sources. The
model is designed to eliminate any risk of constraint violations, ensuring a seamless operation.
To further enhance the operational efficiency and sustainability of these networks, a compre-
hensive stochastic optimization strategy is proposed. This strategy is aimed at amplifying the
utility and efficiency of SOPs while simultaneously aiming for a substantial reduction in system
power losses, minimizing SOP-related power losses, curtailing voltage deviations, reducing
the need for PV power curtailment, lowering the operational costs associated with BESS, and
decreasing the necessity for utility power purchases.

To accommodate the inherent uncertainties associated with PV generation and load
demand, the model employs advanced Monte Carlo simulation techniques coupled with
k-means clustering technologies, providing a solution on robust optimization. Detailed
simulation cases conducted on a structured 21-bus distribution network offer compelling
evidence of the model’s superior performance, with an over 90% percent reduction in PV
power curtailment. The connection of SOPs into the network significantly minimizes the
curtailments typically faced by PV sources and effectively dampens the power fluctuations
experienced by BESS, showcasing a marked improvement over scenarios devoid of SOP
integration. Moreover, the model ensures strict adherence to a set of critical operational
constraints, including nodal voltage levels, precise power outputs, stringent energy balance
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requirements, and fluid power flow dynamics, highlighting its comprehensive capability to
enhance the resilience, efficiency, and reliability of ADNs with renewable energy sources.
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