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Abstract: Wind farms utilizing doubly fed induction generators (DFIGs) can have a significant
impact on the stability of power networks as both the stator and rotor of the DFIG are linked to
the grid, which can result in excessive overcurrent and overvoltage in the event of a grid fault
and can activate the protective mechanism, leading to the disconnection of the WF and generating
instability in the system. One term that is often mentioned in the literature is low-voltage ride-
through (LVRT) capability, which is crucial to the stability of microgrids (MGs). To handle LVRT,
advanced protection schemes or supporting devices are required. In addition, MGs must comply
with the operational limits imposed by different countries for LVRT. Therefore, numerous solutions
for improving LVRT have been proposed, including external approaches that are expensive to adopt
and internal procedures that provide economic gains but are more difficult to apply. Consequently,
to help lower the cost of installing WFs, the study investigates how fault characteristics affect MGs’
ability to meet grid LVRT code requirements or even choose the right code to be used. It also aims
to give a clear understanding of how fault characteristics affect the grid’s behavior during different
types of faults, which will be helpful in choosing the best LVRT-enhancing method or device and
for determining the optimal ratings for these devices, and thus reduce the cost of installation. The
study offers case studies and simulations using Matlab 2024/Simulink, which could help engineers
to ensure reliable grid integration of renewable energy sources in a cost-effective manner.

Keywords: doubly fed induction generators; fault detection; low-voltage ride-through; microgrids;
wind farms

1. Introduction

The largest energy company in North Carolina (NC), Duke Energy, recently released a
report indicating that numerous significant changes to the energy landscape will have an im-
pact on its future expansion plan over the next ten years [1,2]. These include the following:

• An anticipated large increase in demand and reserve capacity;
• Cleaner energy sources than coal power plants have to be used due to the policy of

regulatory environment;
• The incentives offered by the Inflation Reduction Act (IRA) of 2022 and the Infras-

tructure Investment and Jobs Act (IIJA) for customers to use solar energy and electric
vehicles, which require more energy to be generated and follow a different load curve
behavior than the traditional ones;

• The challenges posed by the risen inflation and supply chain issues;
• The technological innovations and consumer preferences that shape resource choices

and timing.

It is worth mentioning that approximately 85 GW of the USA’s coal-fired plants
were retired between 2012 and 2021, and about 25% of the remaining plants are projected
to retire by 2029 [3]. Further, NC is undergoing rapid expansion as they are attracting
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not only residential consumers but also major industrial and commercial enterprises,
which necessitate a more environmentally friendly generation mix for them to relocate
or remain in NC. Therefore, the retiring coal capacity must be substituted with equally
reliable resources to preserve or improve reliability before that baseload generation ceases
operation [2]. Among these resources are renewable energy resources (RESs), which are
mostly solar, wind, and hydro, which will help reduce the dependence on fossil fuels,
lower the carbon footprint, and diversify the energy mix. Among the various renewable
energy resources (RESs) that Duke Energy is planning to use extensively in the next 10
years is wind energy [3], which can also be integrated with other RESs, such as solar,
hydro, and battery storage, to create hybrid systems that can provide reliable and flexible
power [4–6]. Further, the concept of MGs, which supply electricity to nearby consumers
and strengthen the reliability and safety of the power grid, was also introduced due to
the growing usage of RESs and DGs. Power quality and efficiency can be optimized,
transmission and distribution losses can be minimized, and MGs can keep the power on in
the event of an emergency or grid outage [7–10]. However, MGs also pose some technical
challenges, especially with respect to protection and coordination, as MGs need to have
proper protection devices and schemes to prevent faults and damages and to coordinate
with the main grid. However, MGs’ protection and coordination are complicated due
to the bidirectional power flows, variable generation, and different operating modes of
MGs [7–10]. Moreover, the greater deployment of wind turbines and large distributed
generators might result in elevated fault current levels, as well as reduced voltage levels
at the terminals of wind turbines during a failure. The consequences of these impacts
can result in the complete interruption of wind turbines, leading to grid instability. To
address this issue, sophisticated protection methods, control circuits or external devices,
such as, but not limited to, adaptive relays, smart circuit breakers, fault current limiters,
and STATCOM, are necessary to be employed [11–13].

One of the most essential concepts in maintaining power system stability is the low-
voltage ride-through (LVRT) capabilities during transitory system transients or failures.
LVRT is the ability of electric generators, such as wind turbines and photovoltaic systems, to
remain connected and stable during short periods of low voltage in the grid. LVRT is essen-
tial for preventing cascading failures and blackouts and supporting grid recovery [14–20].
For example, a code was presented, in [14], which keeps the DG connected if the system
nominal voltage drop stays above 30% of nominal voltage drop (Vg) for 0.5 s, and then
recovers to at least 90% of Vg in 1.5 s or less, as shown in Figure 1. The DG could disconnect
if the voltage drops below the proposed curve. Further, the voltage control circuit of the
WT has to react within 20 ms from fault detection to provide enough reactive power to keep
the grid voltage within the permissible limits [17]. Nevertheless, as shown in Figure 2, MGs
that utilize wind generators are needed to adhere to the various operational constraints
that various countries have put in place for LVRT [21,22]. This is due to various factors,
including the extent of renewable energy penetration, local utility policies, and the unique
technical requirements of respective power systems. Furthermore, the grid code for LVRT
differs in each country, depending on the requirements of transmission system operators
(TSOs). These operators are in charge of preserving the power system’s stability, and they
establish LVRT regulations to ensure that wind turbines and other renewable energy sources
can tolerate voltage drops without disconnecting from the grid [23,24]. Further, different
countries may have varying degrees of infrastructure strength, technology innovation, and
regulatory frameworks, resulting in different LVRT requirements. For example, a country
with a strong wind energy penetration may have stricter LVRT regulations to address the
greater impact of voltage dips on its grid system. Furthermore, environmental factors such
as lightning strike frequency and grid faults might have an impact on LVRT requirements.
Countries with more frequent disturbances may need more resilient LVRT capabilities to
keep the grid stable. In conclusion, the differences in LVRT codes between countries reflect
their distinct electrical system characteristics, regulatory contexts, and the unique issues
they confront when incorporating renewable energy sources into their networks.
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As a result, there is a significant need for research and focus into the effect of various
fault types and characteristics on the detection of LVRT events to effectively select the
appropriate code that assures system stability as this subject has not received sufficient
research attention in the existing literature. Furthermore, the current study focuses on how
the DFIG-WT, shown in Figure 3, responds to power system faults, as this type of generator
is commonly used to generate electricity from wind energy.

Two voltage source converters—the rotor-side converter (RSC) and the grid-side
converter (GSC)—connect the DFIG’s rotor to the grid.

The electrical grid is directly connected to its stator of the DFIG. While the GSC controls
the power delivered and the DC link voltage, the RSC optimizes the quantity of power
output to the grid. DFIG is hence highly vulnerable to utility grid disturbances because
the stator and GSC are directly connected to the grid bus voltage. Therefore, an excessive
rotor overcurrent could develop from a loss of grid power, raising the DC link voltage and
tripping the generator. As a result, numerous control and protection solutions have been
proposed in the literature to maintain LVRT running in the event of a system fault [25–27],
which include the following:



Sustainability 2024, 16, 5812 4 of 19

• Exterior LVRT techniques, including protection-based techniques, FACTS-based tech-
niques, and hybrid approaches.

• Interior LVRT techniques, including tactics based on control strategies.
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The utilization of interior LVRT techniques offers improved control capabilities without
the need for supplementary external circuits. Consequently, they provide more economic
benefits but are more complex to execute [17–29]. This classification encompasses several
control techniques, such as hysteresis control, modified vector control, fuzzy and sliding
mode control, and model predictive control [30,31].

Nevertheless, the LVRT capability of the DFIG is significantly influenced by the appro-
priate calibration of the controller to adjust for sudden changes. The LVRT can be improved
by modifying the control of the DFIG converter, which involves adjusting the control refer-
ence values. Conversely, external LVRT approaches are frequently employed because of
their straightforwardness. Nevertheless, the financial aspect continues to pose a substantial
barrier to the extensive use of these technologies. This classification encompasses utilizing
crowbar in the rotor windings which is a prevalent method to decrease rotor currents and
protect the DFIG from disturbances [32–34]. However, it is incapable of supplying the
necessary reactive power to meet the grid’s demands [35,36]. A chopper-based approach to
control the DFIG DC-link was suggested to address the crowbar problems [37,38], but it
resulted in excessive current in the RSC during faults. Shunt capacitors and STATCOMs
are classified within this category; however, they lack efficacy in mitigating unsymmetrical
faults [21,39]. In [40,41], a DVR-based LVRT technique was suggested; however, it exhibits
significant control complexity and computational requirements. Ultimately, the choice of
LVRT techniques for wind turbines is determined by the equilibrium between simplicity,
cost, and effectiveness.

Hence, in order to choose, develop, and execute appropriate LVRT methods for wind
turbines, such as external devices, advanced controllers, or hybrid approaches, it is impera-
tive to understand the impact of fault characteristics on the wind energy system during a
fault. These characteristics include fault resistance, type, location, duration, and severity,
all of which influence the voltage and frequency profiles of the grid, as the ground fault
currents may be reduced substantially when fault resistance is included in the fault cir-
cuit. Most faults that occur on a power system involve the ground and occur between the
conductor and tower. When a fault occurs to a steel tower or grounded wood pole on a
grounded system, the footing resistance is included automatically in the fault circuit and
the resulting ground current may be materially less than that calculated when neglecting
the fault resistance.

Therefore, the primary objective of this study is to perform a qualitative analysis of
the impact of fault characteristics on the system’s performance during voltage dips, as this
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subject has not been extensively studied in the literature. The efficacy of a power system
model is evaluated through the examination of various fault types and scenarios. The
analysis has the potential to offer valuable insights and recommendations for enhancing
the LVRT of the power system in a cost-effective manner.

The subsequent sections of the article are structured in the following manner: Section 2
presents a concise summary of the power system employed in the research. Section 3
presents an analysis of the dynamic behavior of both the stator and rotor of the DFIG
during a grid fault. Section 4 discusses the influence of different fault characteristics on
DFIG during LVRT events, offers suggestions for selecting LVRT methods or approaches,
gives case studies, and presents the findings of the system evaluation. This paper is
concluded in Section 5 which also provides suggestions for future directions.

2. Overview of the Power System Utilized in the Research

Figure 4 depicts a diagram of the power system employed in this investigation. The
grid has a 25 kV, 60 Hz generating station. It is connected to the MG via a 132 kV trans-
mission line. Furthermore, the MG has a local 20 MVA wind farm (WF) that transmits its
power through a 0.575/13.8 kV step-up transformer. Three 10 MVA loads are positioned at
13.8 kV and supplied by both the WF and the utility generator. The loads being studied are
described as follows:

Load-1 is a linear inductive load with 0.75 power factor.
Load-2 is a non-linear load (3-phase rectifier bridge with RL load) that has 15% THD.
Load-3 is an induction motor.
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The block diagram for generating the tripping signal of the LVRT circuit breaker is
shown in Figure 5. The tripping signal for the anti-islanding circuit breaker is created using
the following procedure:

1. The rms value of the pre-fault voltage, Vpre-fault, is measured and locked during the
fault time.

2. The LVRT code is generated using the Vpre-fault.
3. Finally, Vpre-fault is compared with the LVRT code and processed through the logic

circuit to generate the tripping signal for the circuit breaker.

It is important to note that the time frame for measuring the rms value of Vpre-fault
should be kept as short as possible to avoid causing delays or interruptions in the operation
of the LVRT code generator. However, it should still be sufficient to accurately capture the
voltage value.
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3. Introduction to Dynamic Behavior of DFIG under Grid Fault
3.1. Dynamic Behavior of DFIG Stator

Regions with ample wind energy are typically located at a considerable distance from
power hubs. Consequently, the establishment of large WFs facilitates the transmission
of wind power to the power system across considerable distances. The transformer that
connects the DFIG to the grid often has a ∆/Y connection. Consequently, when faults occur,
it is necessary to simply evaluate the positive- and negative-sequence components of the
DFIG. In normal operation, the stator voltage space phasor is a rotating vector of constant
amplitude, Vs, that rotates at synchronous speed ωs:

→
v s= Vs ej(ωst) (1)

The expression for the post-fault stator voltage of the DFIG after accounting for
transmission losses is as follows [42,43]:

→
v spost− f ault =

→
v s1 +

→
v s2 = (1 − A)Vpre− f ault ej(ωst+θ+) + Vpost− f ault ej(−ωst+θ−) (2)

where
→
v s1 and

→
v s2 are the positive- and negative-sequence voltages, A is the sag ratio

in the stator voltage. Vpre-fault is the amplitude of the pre-fault stator voltage; Vpost-fault
is the amplitude of the post-fault stator voltage; and θ+ and θ− are the phase angles of
→
v s1 and

→
v s2 at the starting of the fault, e.g., time t = 0.

Although the representation and symbols of the DFIG-equivalent circuits differ de-
pending on the regions, they all share the same principle and provide equal results. There-
fore, the stator positive- and negative-sequence short circuit currents can be determined us-
ing those circuits shown in Figure 6, within a synchronous rotating reference frame [42–44].

→
i s1 = − AVpre− f ault

jωs L′
s

e
(−t

T′s
+jθ+)

+ Lm
L′

s Lr

[
→
φr0 − f1(s)

(1−A)Vpre− f ault
jωs

ejθ+
]

e
−t
T′r

+jωrt

+
[

Lm
Lr

f1(s)− 1
]
(1−A)Vpre− f ault

jωs L′
s

ej(ωst+jθ+)

→
i s2 = −Vpost− f ault

jωs L′
s

e
(−t

T′s
+jθ−)

+ f2(s) Lm
L′

s Lr
× Vpost− f ault

jωs
e
−t
T′r

+j(ωrt+θ−)

−
[

Lm
Lr

f2(s)− 1
]Vpost− f ault

jωs L′
s

ej(−ωst+jθ−)
(3)
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where
ωs = Synchronous frequency, ωr = Rotor frequency

L′
s= Ls −

L2
m

Lr
, L′

r= Lr −
L2

m
Ls

, f 1(s) =
Rr Lm

Ls

Rr + j(ωs + ωr)L′
r
, f 2(s) =

Rr Lm
Ls

Rr − j(2 − s)ωsL′
r
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T′
s =

L′
s

Rs
, T′

r =
L′

r
Rr

, s = slip = ωr
ωs

,
→
φr0 = The pre-fault rotor flux linkage.

When examining the actual values of the wind-based DFIG [43], it is observed that
the stator and rotor resistances are significantly smaller than the stator, rotor, and mutual
inductances. Consequently, it is reasonable to assume that the values of f1(s) and f2(s) are
insignificant. Therefore, the currents in Equation (3) can be simplified as follows:

→
i s1 = −

AVpre− f ault

jωsL′
s

e
(−t

T′s
+jθ+)

+
Lm

L′
sLr

→
φr0 e

−t
T′r

+jωrt −
(1 − A)Vpre− f ault

jωsL′
s

ej(ωst+jθ+)

→
i s2 = −

Vpost− f ault

jωsL′
s

e
(−t

T′s
+jθ−)

+
Vpost− f ault

jωsL′
s

ej(−ωst+jθ−) (4)

As can be revealed by Equation (4), the stator short circuit current consists of three
components: a decaying direct current (DC) component, a decaying AC component at
the rotor speed frequency, and a forced AC component at the synchronous frequency.
Typically, the magnitude of the forced AC component is negligible, especially in cases
where the voltage drop is substantial, which signifies a considerable value of A. The
decaying DC and AC components are the principal components of the short circuit current
in such circumstances. The assessment of defect attributes in a transmission line-connected
DFIG-WF is accomplished through the examination of the DFIG’s short circuit current.



Sustainability 2024, 16, 5812 8 of 19

3.2. Dynamic Behavior of DFIG Rotor

Under normal conditions, and considering the DFIG’s equivalent circuit shown in
Figure 7, the voltage required to be produced by the converter at the rotor terminals can be
mathematically represented as [45]:

→
v r =

Lm

Ls
(

d
dt

− jω)
→
φ s +

[
Rr + L′

r(
d
dt

− jω)

]→
i r (5)
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If the stator resistance is neglected, Equation (5) can be simplified as

→
v r =

→
v s

Lm

Ls
s +

[
Rr + L′

r(
d
dt

− jω)

]→
i r (6)

where ω = slip f requency = ωs − ωr.
The rotor resistance and the transient inductance are often very small. In addition,

rotor currents also have a small frequency ( ωr < 10 Hz). Consequently, the voltage at rotor
terminals can be expressed as

→
v r =

→
v s

Lm
Ls

s
Vr = Vs

Lm
Ls

s
(7)

However, during fault condition, the evolution of the stator flux obtained from (1) at
t0 = 0 is as follows:

→
φ s (t < t0) =

→
φ s f orced = Vs

jω s
ej(ωst)

→
φ s (t ≥ t0) =

→
φ s f orced = 0

→
φ s (t ≥ t0) =

→
φ snatural =

→
φ0e(

−t
Ts )

(8)

where
→
φ0 = stator flux just before the voltage dip.

Using Equations (8) and (5) and neglecting the term (1/τs) due to its low value, this
rotor voltage amplitude can be obtained as

Vr = Vs
Lm

Ls
(1 − s) (9)

where Vr is proportional to (1 − s) as seen from Equation (9). Conversely, during regular
operation, the steady-state rotor voltage exhibits a direct proportionality to (s), as denoted
by Equation (7). The slip is typically limited to a range of −0.2 to 0.2 [44]. Therefore, it can
be inferred that the magnitude of the voltage generated in the rotor during the initial dip is
comparable to the rated voltage of the stator, rather than the small proportion generated
during regular operation. Thus, during a single-line-to-ground (SLG) fault at phase (a)
at the fifth second for a duration of 150 ms, as shown in Figure 8, there is a significant
increase in the rotor current, regularly from 3 to 4 times the steady-state current, leading
to increased mechanical loads on the rotor and other related components. Further, the
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objective of the rotor-side converter (RSC) is to ensure that the stator voltage remains at the
frequency of the grid. However, the stator voltage deviates in both magnitude and phase
from the grid voltage due to the malfunction, as illustrated in Figure 9. Specifically, there
is a phase shift of approximately 25 degrees. Consequently, the rotor voltage also varies,
which impacts the functioning of the DFIG.
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4. Response of DFIG to Fault Characteristics

The impact of fault resistance on LVRT varies depending on the type of fault and the
specific LVRT technology employed. Due to the possibility of several types of failures in
the power system, such as grid disturbances, voltage sags, and short circuits, the fault
resistance plays a crucial role in determining the speed at which faults are detected and
their impact on system stability. For example, a high level of fault resistance can lead to a
less significant decrease in voltage during a fault. In this situation, the DFIG can continue
supplying reactive power to enhance grid support, allowing for the utilization of the
crowbar approach by using a resistor to shorten the rotor terminals during an overvoltage
and directing extra current away from the RSC, despite its consumption of reactive power
from the grid. Conversely, a reduction in fault resistance results in more significant voltage
dips, requiring the DFIG to respond quickly to maintain stability and supply reactive power
for prompt voltage restoration. Hence, the utilization of the crowbar strategy may not be
suitable in this specific scenario or may require the addition of another technique to ensure
the ability to endure LVRT. Therefore, the efficiency of the LVRT methods employed relies
heavily on the specific characteristics and the resistance of the fault. Three criteria can be
used to categorize fault resistance, ZF:

• Bolted fault, ZF = 0;
• Arcing fault, ZF = arcing resistance;
• Transmission-line insulator flashover, ZF = arc resistance + transmission tower resis-

tance + the tower footing resistance.

It should be emphasized that fault resistance is also affected by various factors, in-
cluding but not limited to, the duration of the fault as longer fault durations can cause
changes in resistance due to heating and material behavior. Other factors include ambient
temperature and pressure, as well as the characteristics of the faulted conductor, such as
its material, diameter, and surface condition. Therefore, engineers must consider fault
characteristics and LVRT technique to ensure reliable grid integration of renewable energy
sources.

When the fault resistance is present in the fault circuit, as shown in Figure 10, the fault
current drawn from the WF, iwf, can be calculated as follows.
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→
i f ault =

→
i w f +

→
i g

→
v w f =

→
v MG +

→
v f ault

→
v w f = ZMG

→
i w f + Z f (

→
i w f +

→
i g)

→
i w f =

→
v w f −Z f

→
i g

ZMG+Z f

(10)

It can be concluded from Equation (10) that the short circuit currents may be signifi-
cantly decreased with the increase in fault resistance. However, since the footing resistances
of each tower connected to the ground wire are parallel, the effective fault resistance is
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significantly decreased when the transmission-line towers are tied together with overhead
ground wires next to the substation.

Therefore, to ensure an adequate footing resistance value in the fault circuit, the
ground wire must be insulated from both the towers and the station ground mat. This
means that only one tower per circuit is recommended to be connected to the ground wire
to dissipate static charge.

4.1. Response of the DFIG to Single-Line-to-Ground Fault

Given that SLG faults account for about 70–80% of all faults in the power system [46–48],
it is critical to begin to understand how DFIG responds to these faults. At the fifth second
of the simulation, a single-phase bolted fault incident, ZF = 0, occurs for 150 ms on the
high voltage side of the WF’s transformer, i.e., more precisely, between phase (a) and the
ground. This indicates that the length of the line is l = 0, and hence, Zmg ≈ 0. As a result,
the positive, negative, and zero sequences of the WF’s fault currents are all equal and may
be calculated as follows using the symmetrical component concept:

∣∣∣∣→i w f 1

∣∣∣∣ = ∣∣∣∣→i w f 2

∣∣∣∣ = ∣∣∣∣→i w f o

∣∣∣∣ =
∣∣∣∣→v w f − Z f

→
i g

∣∣∣∣
pre− f ault

Zmg1 + Zmg2 + Zmgo + 3Z f
(11)

Further, the current drawn from phase (a) of the WF can be determined as

∣∣∣∣→i w f a

∣∣∣∣ = ∣∣∣∣→i w f 1

∣∣∣∣+ ∣∣∣∣→i w f 2

∣∣∣∣+ ∣∣∣∣→i w f o

∣∣∣∣ =
3
∣∣∣∣→v w f − Z f

→
i g

∣∣∣∣
pre− f ault

3Z f
=

∣∣∣∣→v w f − Z f
→
i g

∣∣∣∣
pre− f ault

Z f
(12)

Figure 11 depicts the response of the three-phase RMS voltages of the WF and LVRT
code generated, demonstrating that due to the very low fault resistance and close proximity
to the WF, the fault at phase (a) was strong enough to violate the LVRT’s safety measure,
causing the anti-islanding circuit breaker to trip and shut down and isolate the WF.
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By analyzing Figures 12 and 13, it is evident that the phase (a) current, iwfa, experiences
a sudden very high rise of about six times the rated value prior to the circuit breaker
being triggered. Subsequently, the current persists in flowing towards the transformer’s
grounding system until the fault is cleared. The remaining phases similarly react to this
fault by amplifying their currents until the fault is cleared. Consequently, the stator currents
will be directly affected by these modifications. Further, as a result of the magnetic coupling
that exists between the stator and rotor windings, the rotor currents are also perturbed in
the same direction as the stator currents and an increase in current will be observed in both
the stator and rotor windings, as previously shown in Figure 8.
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However, if there is a considerable impedance in the fault, ZF ≫ 0, caused by fac-
tors such as arcing resistance, transmission tower resistance, or tower footing resistance,
ZF is only 1 Ω in this case, and the short circuit currents will be greatly reduced to only
three times the rated current, as shown in Figure 14. As a result, the fault voltage, according
to Equation (10), will experience a minor decrease in its value and consequently will meet
the requirements of the LVRT code. Therefore, the anti-islanding circuit breaker will not
trip, as depicted in Figure 15, allowing the WF to remain connected to the grid and preserve
its stability. However, in the case of a prolonged fault duration, such as when the fault
persists for several seconds, the phase voltage will fall below the 90% threshold required
for LVRT and thus results in tripping the CB.
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Figure 13. WF voltage, vwf, and WF current, iwf during SLG bolted fault (ZF = 0) at phase (a) at
5th second.
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Thus, to maintain a satisfactory level of resistance in the fault circuit, it is recommended
to insulate the ground wire from both the towers and the station’s ground mat. This is
conducted to prevent a substantial decrease in fault resistance caused by the parallel
connection of the transmission-line ground wires and to connect only one tower per circuit
to the ground wire to dissipate static charges. Further, determining the appropriate LVRT
code for a particular area is also highly dependent on the fault characteristics of that region.

Additionally, a comparable effect to the fault resistance will depend on the fault
location. According to Equation (10), the farther the fault is from the WF, the larger the
transmission-line impedance, ZMG, and consequently, the lower the fault current that is
pulled from the WF. Figure 16 shows the response of the WF for a single phase to ground
voltage at 5 km from the WF, which reveals that a decrease in vwf that will comply with the
LVRT code and hence the anti-islanding circuit breaker will not trip, thereby allowing the
WF to remain connected to the grid. Therefore, it is crucial to consider the impedance of
the MG transmission line or cable while deciding on the suitable equipment or method to
enhance the LVRT.

For example, one way to increase ZMG during a fault is by utilizing superconducting
fault current limiters (SCFLs), which offer zero resistance to currents up to a certain thresh-
old value, and once the critical current is surpassed, the resistance of the superconductor
rises, resulting in a decrease in the fault current. Nevertheless, this technology has several
drawbacks, such as a substantial high price and the need for costly cooling components.
In addition, the activation of SFCLs can lead to voltage drops, which can cause a decrease
in voltage levels and impact the flicker factor at the point of common coupling. This is
due to the rapid fluctuations in power from renewable energy sources. Thus, it is essential
to incorporate the fault characteristics, e.g., in this case, in the design or selection of the
protection device to enhance cost-effectiveness.
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4.2. Response of the DFIG to Three-Phase-to-Ground Fault

Given that the three-phase-to-ground fault is the worst-case scenario in power systems
but fortunately account for about 5–10% of all faults in the power system, it is important to
investigate the response of the DFIG to these faults. At the fifth second of the simulation, a
three-phase bolted fault incident, ZF ≈ 0, occurs for 150 ms on the high voltage side of the
WF’s transformer—more precisely, between phase (a) and the ground. This indicates that
the length of the line is l = 0, and hence, Zmg ≈ 0.

During a bolted three-phase fault, the zero- and negative-sequence fault currents are
I0 = I2 = 0, and as a result, the positive sequence of the WF’s fault current may be calculated
as follows using the symmetrical component concept:

∣∣∣∣→i w f 1

∣∣∣∣ =
∣∣∣∣→v w f − Z f

→
i g

∣∣∣∣
pre− f ault

Zmg1 + Z f
(13)

Finally, the currents drawn from the three phases of the WF can be determined as

∣∣∣∣→i w f a

∣∣∣∣ = ∣∣∣∣→i w f b

∣∣∣∣ = ∣∣∣∣→i w f c

∣∣∣∣ = ∣∣∣∣→i w f 1

∣∣∣∣ =
∣∣∣∣→v w f − Z f

→
i g

∣∣∣∣
pre− f ault

Z f
(14)

Figure 17 depicts the response of the three-phase RMS voltages of the WF and LVRT
code generated, demonstrating that due to the very low fault resistance and close proximity
to the WF, the fault at the three phases was strong enough to violate the LVRT’s safety
measure, causing the anti-islanding circuit breaker to trip and shut down and isolate
the WF.

Figure 18 shows that the three-phase currents drawn from the WF rise to approximately
three times the rated value before the circuit breaker is triggered. However, because
the current has no zero-sequence component, it will cease to flow in the transformer’s
grounding system immediately after the CB trips. If the fault has a high impedance (ZF
≫ 0), the voltage will decrease slightly, meeting the LVRT code criteria. As a result, the
anti-islanding circuit breaker will not trip, allowing the WF to remain connected to the grid
while maintaining its stability.
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5. Conclusions

This paper investigates the impact of various fault characteristics on the LVRT ca-
pability of MGs to comply with grid codes during faults. The objective is to provide a
clear picture for the grid response to different fault characteristics to help select the most
suitable LVRT code and LVRT-enhancing technique, whether internal or external, and the
appropriate ratings for these devices, with the aim of reducing the installation costs of WFs.

It is found that these characteristics significantly impact LVRT and the system stability,
and in determining the speed at which faults are detected. For example, it is recommended
to maintain adequate footing resistance and ground wire insulation from both towers
and the station ground mat, which can greatly reduce short circuit currents and meet the
requirements of the LVRT code. In addition, the total fault resistance and, accordingly, the
fault currents, are influenced by various other factors such as fault location, fault duration,
ambient temperature, pressure, and the properties of the faulty conductor. Therefore,
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designers should consider all these factors to ensure the reliable integration of renewable
energy sources into the grid at the lowest possible cost.

In addition, it is essential to consider the impedance of the transmission line between
PCC and the WF when determining the appropriate LVRT code for a certain area. This
impedance has a considerable effect on the impact of fault currents on the WF. It is highly
desirable to increase the impedance during a failure to restrict the flow of fault currents.
However, the devices employed for this purpose are quite expensive. Therefore, to lessen
the financial burden on the system, it is crucial to employ an efficient design or lower
the rating. The study provides case studies, which can be advantageous for engineers in
guaranteeing the reliable integration of renewable energy sources into the power grid in a
cost-efficient manner.
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