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Abstract: Due to the recent abnormalities in global temperature and increasing carbon emissions, the
world is working to reduce carbon emissions. In particular, the construction sector accounts for about
37% of all carbon emissions, so it is one of the areas where sustainable reduction efforts must be made.
Therefore, in this paper, an optimal design process was performed by evaluating carbon emissions as
the objective function, a choice which differed from the objective function of the existing research
used in the optimal design of truss structures. The metaheuristics algorithm used for the process was
the advanced crow search algorithm. The levels of carbon emissions generated when the material
of a truss structure consisted of a customary material (steel) were compared to scenarios in which
timber was used, and a construction scenario centered on the Republic of Korea was established for
comparison. The structures used as examples were 10-, 17-, 22-, and 120-bar truss structures. As a
result, it was confirmed that truss structures using timber had fewer carbon emissions than structures
using steel. In addition, it was confirmed that, even in the same timber structures, domestic timber
had fewer carbon emissions than imported timber. These results confirmed that in order to achieve
carbon neutrality in the construction field, carbon emissions must be considered in advance, in the
design stage.

Keywords: carbon emission; glue-laminated timber; truss structure; optimal design; advanced crow
search algorithm

1. Introduction

The world has the advantage of enjoying a convenient life due to the development
of many technologies subsequent to the era of industrialization, but this also has the
consequence of causing climate change abnormalities due to the steady increase in carbon
emissions. According to an IPCC report, greenhouse gas emissions began to increase rapidly
in the mid-1950s, and during a similar period, global temperatures also increased [1]. In
response, the international community recognized the seriousness of climate change and
called for 196 parties to make efforts to limit temperature increases to 1.5 ◦C above pre-
industrial levels at the COP21 (UN climate change conference) on 12 December 2015 [2,3].

As described in Figure 1, construction-related industries account for 36% of global
energy consumption and 37% of carbon emissions [4]. This means that carbon emissions
from the construction industry are significantly higher than those from other industries.
Therefore, in efforts to cope with climate change, the construction industry is one of
the key industries which can curb the rise in global temperature. In the construction
industry, efforts are being made to reduce the energy generated during the operation
of buildings, such as with zero-energy buildings and passive houses [5–7]. However,
the importance of evaluating carbon emissions over the entire life-cycles of buildings,
including the carbon generated from material production, transportation, construction,
and reuse, has grown [8,9]. In particular, measures to reduce carbon emissions generated
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during the development and production of new materials that can replace cement and
steel, which are widely used as construction materials, are insufficient [10]. However,
demand for construction cement and steel is expected to continue to increase until 2030 [11].
Therefore, according to a technical report published by UNEP and Yale CEA, traditional
construction materials such as concrete and iron are recommended for use only when
necessary, as a significant pathway to decarbonization, and the use of renewable low-
carbon bio-based construction materials is urged [10]. To solve this problem, the global
construction market is using something other than conventional concrete and steel frames
as a construction material; instead, eco-friendly timber with low embodied energy is
emerging as an alternative.
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Since timber is lightweight, it can reduce the burden of the load and has the advantages
of excellent fire resistance and earthquake resistance [12,13]. Starting with advanced timber
construction technology in countries such as Canada, Japan, and the United States, the
technology is moving from low-rise buildings to large high-rise buildings [14]. This
change was made possible by the development of engineered timber, such as CLT (cross-
laminated timber), GLT (glue-laminated timber), and LVL (laminated veneer lumber),
which have performance indices similar to materials used in existing steel and concrete
structures [15,16]. In addition, since timber can store carbon dioxide that was absorbed
before logging, it is considered an essential material for efforts to reduce carbon emissions
in the construction industry.

The Republic of Korea, the target of the construction scenarios in this paper, is represen-
tative of countries that have achieved rapid economic growth with rapid industrialization.
Since its growth has mainly occurred in the construction and manufacturing industries,
carbon emissions have inevitably increased. Table 1 presents the emissions by country in
2022 [17], according to CO2 emissions and territorial size, and the numbers in parentheses
indicate rankings. The Republic of Korea had the ninth-highest level of carbon emissions
in the world, emitting 597 million tons of CO2. However, in proportion to its territory, it
was the country with the highest level of carbon emissions. In other words, as a country
that emits a significant amount of CO2 compared to its territory, the Republic of Korea
is a country that must make great efforts to assist in the reduction of carbon emissions
around the world and the stabilization of abnormal climates. However, the Republic of
Korea needs more relevant awareness and design and construction technology related to
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timber structures which can reduce carbon in the construction field, and the market for
timber structures is very small.

Table 1. CO2 emissions and territorial size, by country, in 2022.

Country CO2 Emissions
(M ton CO2)

Territorial Size and Relative Emissions

Territory (km2) CO2 per Territory (ton CO2/km2)

China 10,504 (1) 9,596,960 109.45 (8)
USA 4735 (2) 9,833,517 481.52 (5)
India 2481 (3) 3,287,263 754.73 (4)

Russia 1798 (4) 17,098,246 105.16 (9)
Japan 1001 (5) 377,976 2648.32 (2)

Indonesia 739 (6) 1,904,569 388.01 (6)
Germany 636 (7) 357,114 1780.94 (3)

Iran 634 (8) 1,648,195 384.66 (7)
Republic of Korea 597 (9) 100,210 5957.49 (1)

The optimal design process of a truss structure mainly uses metaheuristic algorithms,
and the weight of a truss structure is an objective function. In addition, research is being
conducted continuously to reduce construction costs by finding the minimal cross-sectional
area or the optimal topology of a truss element [18–21]. Steel is the material mainly used in
the fabrication of truss structures. The previous study of timber structures evaluates and
compares carbon emissions by changing the nature of a material in an existing structure
rather than evaluating carbon emissions in the optimal design stage [22–25]. However, the
schematic-design stage of a building is an essential time for calculating carbon emissions, a
process which is necessary to utilize in order to reduce such emissions quickly [26].

Therefore, in this paper, the carbon emissions of a truss structure were the objective
function of optimal design, a process which was performed based on a construction
scenario centered in the Republic of Korea. In addition, the carbon emissions of timber
truss structures using domestic or imported timber and a truss structure using steel were
compared. For the optimal design, the ACSA (advanced crow search algorithm) proposed
by Lee et al. was selected from among the among metaheuristics algorithms [27]. This was
performed using MATLAB R2023a. Section 2 describes the carbon emission evaluation
method, and Section 3 describes the ACSA used to perform the optimal design. Section 4
analyzes the problem definition and the results, and Section 5 presents the conclusions of
this paper.

2. Embodied-Carbon Emissions

Figure 2 presents the environmental impact of a building’s life cycle (A–C), which
is divided into product, construction, use and maintenance, and end-of-life stages [28].
Modules B4 and B5 generate carbon during the operation of a building, while all other
modules represent embodied carbon. Although many studies have tried to reduce the
carbon emissions generated when using buildings [29–31], the need to evaluate all relevant
carbon emissions, including those generated during the material production, construction,
and disposal processes, is constantly being raised [32,33]. In particular, it is essential to
calculate carbon emissions in advance, in the schematic-design stage (A1–A3), because
the carbon emissions generated in the material production stage account for the most
significant portion, at about 50%. In this paper, only steps A1–A4 are considered, due to
the difficulty of determining the construction costs, waste-related treatment methods, and
operating carbon, which depend on the method of use.

ECnet (carbon emissions), considering steps A1–A4 in a building’s life cycle, can be
calculated using Equation (1). Here, ECA1−A3 refers to the carbon emissions generated in
steps A1–A3, while ECA4 refers to the carbon emissions generated in step A4.

ECnet = ECA1−A3 + ECA4 (1)
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The ECA1−A3 and ECA4 included in the ECnet formula may be calculated using
Equations (2) and (3). Here, n denotes the number of elements, Wi denotes the weight (kg)
of the i-element, Lmat,i denotes the moving distance of the i-element material, and Lele,i
denotes the moving distance of the i-element. Furthermore, ECCi denotes the embedded
carbon coefficient of the i-element material, and TCi denotes the transport coefficient of the
i-element. The ECCi of ECA1−A2 has a positive or negative value. If ECCi has a negative
value, the objective function becomes negative, making it challenging to find the minimum
value. Therefore, the optimal design uses a positive value, and the final ECnet is calculated
by multiplying the result by −1. Finally, the loss in manufacturing engineered timber using
materials (wood) is considered.

ECA1−3 = ECA1−A2 + ECA3
= ∑n

i=1(Wi × ECCi × Loss)
+ ∑n

i=1(Wi × Lmat,i × TCi × Loss)
(2)

ECA4 = ∑n
i=1(Wi × Lele, i × TCi) (3)

ECCi is determined using Table 2 [34]. In general, 1.37 kgCO2e is discharged per kg of
steel, which is widely used as a structural material, and 0.159 kgCO2e is discharged per
kg of concrete. Wood varies depending on the type, but has excellent flexural strength.
GLT, which is widely used as a bending member, emits 0.512 kgCO2e per kg. However,
considering carbon storage, a value of −0.896 kgCO2e/kg can be used.

Table 2. Embodied-carbon values of materials.

Material
Carbon (kgCO2e/kg)

No Carbon Storage Including Carbon Storage

Concrete (structure) 0.159 -
Steel (general, pipe) 1.370 -

Steel (section) 1.420 -
CLT 0.437 −1.204
MDF 0.857 −0.644
GLT 0.512 −0.896

Aluminum (general) 8.240 -
Glass 0.850 -

Iron (general) 1.910 -

TCi is determined using Table 3 [35]. The value of TCi varies depending on trans-
portation method, whether road, rail, or ocean, and it has the most significant value, at
10.7 kgCO2e/t per 100 km, when using road transportation. Since TCi calculates car-
bon emissions by multiplying them by the moving distance, even when buildings are
constructed using the same material, differences in carbon emissions may be significant
depending on the moving distances of materials or elements.
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Table 3. Embodied-carbon values of transportation methods.

Transportation Carbon (kgCO2e/kg/km)

By sea 0.000017
By rail 0.000027

By road 0.000107

3. Advanced Crow Search Algorithm

The CSA (crow search algorithm) was proposed by Askarzadeh, A. in 2016 [36],
and Lee, D. et al. proposed the ACSA (advanced crow search algorithm) in 2023, which
supplemented the convergence performance and shortcomings of the CSA [27]. Lee, D.
et al. confirmed that the exploitation and exploration performance was improved using
23 benchmark functions and five engineering problems.

Like the CSA, the ACSA consists of five steps, which are performed as follows:
Step 1: Define the problem and set the parameters.
Step 1 defines an optimization problem and the parameters required to perform the

optimization. The defined parameters are D (dimension of problem), N (flock size), tmax
(maximum generation), fl (flight length), APmax (maximum awareness probability), APmin
(minimum awareness probability), FAR (flight awareness ratio), lb (lower boundary), and
ub (upper boundary).

Step 2: Initialize the positions of the crows and evaluate.
A crow’s position is randomly adopted in the lb and ub ranges and initialized, as

shown in Equation (4). Here, x means each crow’s position, which is stored as shown
in Equation (5). In addition, the flock of each crow is evaluated using the initially set
objective function.

Crows =

 x1
1 · · · xD

1
...

. . .
...

x1
N · · · xD

N

 (4)

Crows memory =

m1
1 · · · mD

1
...

. . .
...

m1
N · · · mD

N

 (5)

Step 3: Generate and evaluate the new positions for the crows.
The ACSA is classified as a method of generating crow positions according to the

size of the dynamic AP, which is defined using Equation (6) and has smaller values as the
number of generations increases. Here, t denotes the current number of generations. The
reason for using a dynamic AP is to make the ACSA mainly use exploitation performance
rather than exploration as the number of generations increases.

Dynamic APt = APmin +
APmax − APmin

ln(t) + 1
(6)

If a random number from 0 to 1 is greater than or equal to the dynamic AP, the crow
position is generated using Equation (7). Here, r is a random variable between 0 and 1, mj,t
is a randomly adopted crow position, and gbj,t is the best crow position. That is, a crow
follows a crow randomly adopted by the FAR or a crow in the best position. Conversely, if
a random number is smaller than the dynamic AP, the crow position is generated using
Equation (8). If r is 0.5 or more, it randomly moves to a new position in a smaller boundary
according to the number of generations. If r is less than 0.5, it randomly moves to a
new position within the boundary of the entirety. The location of the generated crow is
reevaluated using the objective function.

xt+1 =

{
xt + r × f l ×

(
mj,t − xt

)
xt + r × f l ×

(
gbj,t − xt

) i f r ≥ FAR
else

(7)
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xt+1 =

{
2xt + (lb + r × (lb − ub))/t

random position
i f r ≥ 0.5

else
(8)

Step 4: Update the memory.
The evaluation of the initial crow position is remembered and compared to the evalua-

tion of the crow position generated in step 3, and the better crow position is updated in the
crow’s memory.

Step 5: Terminate the repetition.
If t is less than tmax, steps 3–4 are repeated. The algorithm terminates if t is equal to

tmax. The terminated ACSA derives an optimization result.

4. Numerical Examples
4.1. Problem Definition

In this paper, the goal was to minimize the carbon emissions generated in steps A1–A4
during a building’s life cycle. The objective function was expressed using Equation (9), and
the constraint could be expressed using Equation (10). If g1 and g2 were not met, a penalty
of 104 was imposed.

To minimize ECnet × fpenalty

{
i f satis f ied

else
f penalty = 104

fpenalty = 1
(9)

Subject to g1(x) : σT or C
y ≥ σig2(x) : δmax ≥ δ (10)

First, 10-bar, 17-bar, and 22-bar truss structures and a 120-bar truss dome structure
were selected as numerical examples. Table 4 shows the scenarios of the structures, which
were assumed to have been built at KOREATECH in the Republic of Korea. In Table 4, L
indicates the location and D indicates the moving distance.

Table 4. Material transportation scenarios.

Material Raw Material
(A1)

Manufacturing Products
(A3)

Construction
(A5)

Steel (imported) L: Osaka (Japan) L: Pohang (Korea)
D: 761 km (by sea)

KOREATECH (Korea)
D: 249 km (by road)

GLT (imported) L: Vancouver (Canada) L: Incheon (Korea)
D: 9351 km (by sea)

KOREATECH (Korea)
D: 128 km (by road)

GLT (domestic) L: Ganneung (Korea) L: Incheon (Korea)
D: 237 km (by road)

KOREATECH (Korea)
D: 128 km (by road)

• In the case of using steel as the material for the structure, it was assumed that the
Republic of Korea imports most of its iron scrap from Japan. Imported iron scrap was
processed into Pohang’s structural steel and transported to KOREATECH.

• In the case of using GLT (imported) as the material for the structure, it was assumed
that it was imported by sea from Canada, which has the highest timber production
in the world. Imported timber was brought into Incheon, processed into GLT at a
sawmill, and transported to KOREATECH.

• In the case of using GLT (domestic) as the material for the structure, it was assumed
that logging was performed in Gangneung, where wood production is the highest in
Korea. The wood was brought into Incheon, processed into GLT at a sawmill, and
transported to KOREATECH.

• The loss rate during the production of the construction materials was 10%.

All materials had their own ECC, and in the case of wood, the ECC differed depending
on whether carbon storage was considered. Therefore, carbon emissions were compared
and analyzed by classifying them into five cases, as shown in Table 5 and Figure 3. In cases
2–5, truss structures in the same state were used to compare carbon emissions according to
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whether the materials were imported or considered for carbon storage. The parameters of
the ACSA used for the optimal design of the carbon emissions of the truss structures are
shown in Table 6. Each analysis was repeated 10 times.

Table 5. Analysis cases and properties of materials.

Case Material Carbon Storage Elastic Modulus
(ksi)

Yield Strength
(ksi)

Density
(lb/in3)

ECC
(kgCO2e/kg)

1 Steel (general) - 30,458
(210,000 MPa)

40
(275 MPa)

0.2836
(7850 kg/m3) 1.37

2 GLT (imported) No

1595
(11,000 MPa)

1.105
(7 MPa)

0.0206
(570 kg/m3)

0.512

3 GLT (imported) Yes −0.896

4 GLT (domestic) No 0.512

5 GLT (domestic) Yes −0.896

Note: 1 MPa = 0.14504 ksi; 1 kg/m3 = 0.000036127 lbs/in3; 1 lb = 0.4536 kg.
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Table 6. Parameters of CSA.

D N tmax fl APmax APmin FAR ub lb

Depends on
problem 10

1000 (10 bar)
2000 (17 bar)
1000 (22 bar)

2 0.4 0.01 0.4 1000 0.1

4.2. The 10-Bar Truss Structure

Figure 4 shows the shape and the coordinates of the 10-bar truss structure [37]. It
consisted of 6 nodes and 10 elements, and the design variable was 10. A load of −100 kips
was applied to nodes 4 and 5 along the Y-axis, and the maximum displacement generated
at each node was set to 3.6 in.

Table 7 shows the cross-sectional areas and constraints derived from the optimal
design results. When the structure’s material was made of steel, the cross-sectional area of
element 3 was the largest, at 8.261 mm2, and the cross-sectional areas of elements 2, 5, 6, and
10 were the smallest, at 0.100 mm2. When GLT was used, the cross-sectional area of element
1 was the largest, at 291.313 mm2, and the cross-sectional areas of elements 2 and 10 were
the smallest, at 0.100 mm2. In addition, it was confirmed that steel and GLT satisfied the
allowable stress and allowable displacement, and the structure’s weights were 4759.435 kg
and 8692.408 kg, respectively, in these scenarios. Figure 5 shows a convergence graph of the
10-bar truss structure, and it can be seen that both steel and GLT converged to one value.
Steel converged to a minimum carbon emission of 2441.905 kgCO2e in 746 generations, and
GLT converged to a minimum carbon emission of 2964.095 kgCO2e in 952 generations.
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Table 7. Area and constraint results of 10-bar truss structure (unit: mm2).

Variables Steel GLT

A1 6.228 291.313
A2 0.100 0.100
A3 8.261 180.205
A4 2.429 90.765
A5 0.100 3.597
A6 0.100 4.057
A7 4.571 151.850
A8 3.259 145.896
A9 3.510 127.887
A10 0.100 0.100

σmax (MPa) 40.000 −1.105
δmax (mm) −3.168 −1.750

Weight (kg) 4759.435 8692.408
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Figure 6 shows the carbon emissions of steps A1–A4 according to the case. In steps A1
and A3, case 1 had the most significant emissions, with 2377.423 kgCO2e of carbon emitted,
and cases 3 and 5 had the lowest carbon emissions, with −3886.099 kgCO2e. In step A2,
cases 2 and 3 had the most significant emissions, with 689.466 kgCO2e of carbon emitted,
and case 1 had the lowest carbon emissions, with 22.450 kgCO2e. In step A4, cases 2–5 had
the most significant carbon emissions at 54.002 kgCO2e, and case 1 had the lowest carbon
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emissions, at 42.032 kgCO2e. Considering the total carbon emissions of all steps (A1–A4),
case 2 had the most significant carbon emissions, at 2964.095 kgCO2e, and case 5 had the
lowest carbon emissions, at −3722.111 kgCO2e. When comparing cases 1, 3, and 5, it can be
seen that the carbon emissions were lower when using GLT compared to steel. In addition,
when comparing cases 2 and 4 or cases 3 and 5, it can be noted that the same material (GLT)
was used, but the differences in carbon emissions could be significant depending on the
transport distances of the materials and elements.
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4.3. The 17-Bar Truss Structure

Figure 7 shows the shape and the coordinates of the 17-bar truss structure [37]. It
consisted of 9 nodes and 17 elements, and the design variable was 17. A load of −100 kips
was applied to node 9 along the Y-axis, and the maximum displacement generated at each
node was set to 2.0 in.
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Table 8 shows the cross-sectional areas and constraints derived from the optimal
design results. When the structure’s material was made of steel, the cross-sectional area of
element 1 was the largest, at 33.616 mm2, and the cross-sectional areas of elements 6 and 8
were the smallest, at 0.100 mm2. When GLT was used, the cross-sectional area of element
10 was the largest, at 566.670 mm2, and the cross-sectional areas of elements 15 and 17 were
the smallest, at 0.100 mm2. In addition, it was confirmed that steel and GLT satisfied the
allowable stress and allowable displacement, and the structure’s weights were 4753.058 kg
and 7377.587 kg, respectively, in these scenarios. Figure 8 shows a convergence graph of the
17-bar truss structure, and it can be seen that both steel and GLT converged to one value.
Steel converged to a minimum carbon emission of 3337.196 kgCO2e in 1988 generations,
and GLT converged to a minimum carbon emission of 2515.741 kgCO2e in 1999 generations.
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Table 8. Area and constraint results of 17-bar truss structure (unit: mm2).

Variables Steel GLT

A1 33.616 344.669
A2 0.100 127.904
A3 11.434 503.673
A4 23.771 51.261
A5 16.831 280.376
A6 0.100 3.236
A7 8.144 182.749
A8 0.100 4.338
A9 4.989 211.631
A10 3.374 566.670
A11 4.881 346.404
A12 15.760 138.544
A13 4.423 137.264
A14 15.017 151.003
A15 7.658 0.100
A16 6.555 131.129
A17 0.168 0.100

σmax (MPa) −40.000 1.105
δmax (mm) −1.870 −1.322

Weight (kg) 4753.058 7377.578
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Figure 9 shows the carbon emissions of steps A1–A4 according to the case. In steps A1
and A3, case 1 had the most significant emissions, with 3249.072 kgCO2e of carbon emitted,
and cases 3 and 5 had the lowest carbon emissions, with −3298.280 kgCO2e. In step A2,
cases 2 and 3 had the most significant emissions, with 585.176 kgCO2e of carbon emitted,
and case 1 had the lowest carbon emissions, with 30.681 kgCO2e. In step A4, cases 2–5 had
the lowest carbon emissions, at 45.833 kgCO2e, and case 1 had the most significant carbon
emissions, at 57.442 kgCO2e. Considering the total carbon emissions of all steps (A1–A4),
case 2 had the most significant carbon emissions, at 3337.196 kgCO2e, and case 5 had the
lowest carbon emissions, at −3159.097 kgCO2e. When comparing cases 1, 3, and 5, it can be
seen that the carbon emissions were lower when using GLT compared to steel. In addition,
when comparing cases 2 and 4 or cases 3 and 5, it can be noted that the same material (GLT)
was used, but the differences in carbon emissions could be significant depending on the
transport distances of the materials and elements.
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4.4. The 22-Bar Truss Structure

Figure 10 shows the shape and the coordinates of the 22-bar truss structure [37]. It
consisted of 8 nodes and 22 elements, and the design variable was seven. A load of −20 kips
was applied to nodes 1, 2, 3, and 4 along the X-axis, and a load of −50 kips was applied to
nodes 2 and 4 along the Y-axis. The maximum displacement generated at each node was
set to 2.0 in.
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Table 9 shows the cross-sectional areas and constraints derived from the optimal
design results. When the structure’s material was made of steel, the group of element 3
was the largest, at 2.355 mm2, and the groups of elements 2, 4, and 5 were the smallest, at
0.100 mm2. When GLT was used, the group of element 6 was the largest, at 68.667 mm2,
and the groups of elements 2, 4, 5, and 7 were the smallest, at 0.100 mm2. In addition, it was
confirmed that steel and GLT satisfied the allowable stress and allowable displacement, and
the structure’s weights were 1235.366 kg and 2703.877 kg, respectively, in these scenarios.
Figure 11 shows a convergence graph of the 22-bar truss structure, and it can be seen that
both steel and GLT converged to one value. Steel converged to a minimum carbon emission
of 867.370 kgCO2e in 996 generations, and GLT converged to a minimum carbon emission
of 922.017 kgCO2e in 851 generations.

Figure 12 shows the carbon emissions of steps A1–A4 according to the case. In steps A1
and A3, case 1 had the most significant emissions, with 844.466 kgCO2e of carbon emitted,
and cases 3 and 5 had the lowest carbon emissions, with −1208.817 kgCO2e. In step A2,
cases 2 and 3 had the most significant emissions, with 214.467 kgCO2e of carbon emitted,
and case 1 had the lowest carbon emissions, with 7.974 kgCO2e. In step A4, cases 2–5 had
the most significant carbon emissions, at 16.798 kgCO2e, and case 1 had the lowest carbon
emissions, at 14.930 kgCO2e. Considering the total carbon emissions of all steps (A1–A4),
case 2 had the most significant carbon emissions, at 922.017 kgCO2e, and case 5 had the
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lowest carbon emissions, at −1157.807 kgCO2e. When comparing cases 1, 3, and 5, it can be
seen that the carbon emissions were lower when using GLT compared to steel. In addition,
when comparing cases 2 and 4 or cases 3 and 5, it can be noted that the same material (GLT)
was used, but the differences in carbon emissions could be significant depending on the
transport distances of the materials and elements.

Table 9. Area and constraint results of 22-bar truss structure (unit: mm2).

Variables Steel GLT

G1 (A1 ∼ A4) 1.553 56.065
G2 (A5 ∼ A6) 0.100 0.100
G3 (A7 ∼ A8) 2.355 14.476
G4 (A9 ∼ A10) 0.100 0.100
G5 (A11 ∼ A14) 0.100 0.100
G6 (A15 ∼ A18) 0.882 68.667
G7 (A19 ∼ A22) 1.046 0.100

σmax (MPa) −39.999 −1.105
δmax (mm) −1.216 −0.673

Weight (kg) 1235.366 2703.877
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4.5. The 120-Bar Truss Dome Structure

Figure 13 shows the shape and the coordinates of the 120-bar truss structure [38].
It consisted of 49 nodes and 120 elements, and the design variable was seven. Loads of
−15, −10.0, and −5.0 kips were applied to nodes 1, 2–15, and 14–37 along the Z-axis. The
maximum displacement generated at each node was set to 2.0 in.
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Table 10 shows the cross-sectional areas and constraints derived from the optimal
design results. When the structure’s material was made of steel, the group of element 3
was the largest, at 2.057 mm2, and the group of element 6 was the smallest, at 0.148 mm2.
When GLT was used, the group of element 5 was the largest, at 36.551 mm2, and the
group of element 3 was the smallest, at 3.946 mm2. In addition, it was confirmed that steel
and GLT satisfied the allowable stress and allowable displacement, and the structure’s
weights were 5093.025 kg and 8036.328 kg, respectively, in these scenarios. Figure 14 shows
a convergence graph of the 120-bar truss dome structure, and it can be seen that both
steel and GLT converged to one value. Steel converged to a minimum carbon emission of
3575.892 kgCO2e in 942 generations, and GLT converged to a minimum carbon emission of
2740.374 kgCO2e in 890 generations.

Figure 15 shows the carbon emissions of steps A1–A4 according to the case. In steps
A1 and A3, case 1 had the most significant emissions, with 3,481,466 kgCO2e of carbon
emitted, and cases 3 and 5 had the lowest carbon emissions with −3592.786 kgCO2e. In
step A2, cases 2 and 3 had the most significant emissions, with 637.427 kgCO2e of carbon
emitted, and case 1 had the lowest carbon emissions, with 32.876 kgCO2e. In step A4, cases
2–5 had the lowest carbon emissions, at 49.926 kgCO2e, and case 1 had the most significant
carbon emissions, at 61.551 kgCO2e. Considering the total carbon emissions of all steps
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(A1–A4), case 2 had the most significant carbon emissions, at 3575.892 kgCO2e, and case
5 had the lowest carbon emissions, at −3441.176 kgCO2e. When comparing cases 1, 3,
and 5, it can be seen that the carbon emissions were lower when using GLT compared to
steel. In addition, when comparing cases 2 and 4 or cases 3 and 5, it can be noted that the
same material (GLT) was used, but the differences in carbon emissions could be significant
depending on the transport distances of the materials and elements.

Table 10. Area and constraint results of 120-bar truss dome structure (unit: mm2).

Variables Steel GLT

G1 (A1 ∼ A12) 0.267 6.922
G2 (A13 ∼ A24) 1.020 22.505
G3 (A25 ∼ A36) 2.057 3.946
G4 (A37 ∼ A60) 0.415 17.299
G5 (A61 ∼ A84) 0.488 36.551
G6 (A85 ∼ A96) 0.148 5.687
G7 (A97 ∼ A120) 0.906 16.743

σmax (MPa) −40.000 −1.105
δmax (mm) −2.000 −1.932

Weight (kg) 5093.025 8036.328
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5. Conclusions

In this study, the optimal design of truss structures was performed using carbon
emissions, considering the internal energy of the construction materials as an objective
function. The carbon emissions of domestic and imported wood were compared with those
of customary materials sourced from the Republic of Korea.

As a result, it was confirmed that the carbon emissions of steps A1 and A3 were the
largest for all example structures when using customary materials (steel). In other words,
the carbon emissions were more significant when using customary materials than when
using timber, and in particular, the greater the weight of the structure, the greater the
carbon emissions. However, since the travel distance was significant when timber was
imported from Canada (case 2), absent consideration of its carbon storage, the carbon
emissions may be larger than when using customary materials (case 1) or domestic wood
(case 4). In addition, when the carbon storage capacity of the material is considered (cases
3 and 5), the carbon emission reduction can be maximized when using domestic timber.
Therefore, to stabilize the abnormal climate around the world and reduce carbon emissions,
the Republic of Korea should strive to build timber structures and encourage the use of
domestic timber at the national level.

To reduce carbon emissions around the world, it is essential to evaluate carbon emis-
sions in advance in the construction schematic-design stage. If optimal design is performed
using carbon emissions, as performed in this study, in the schematic-design stage, it is
expected to contribute significantly to reducing carbon emissions worldwide and reducing
carbon in the construction field. For a more accurate evaluation in the future, it will be
necessary to perform optimal design within which all steps of carbon emission evaluation
are considered as an objective function.
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