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Abstract: To develop cost-effective heavy metal adsorbents, we employed water-soluble lignin
from black liquor to modify activated attapulgite, resulting in the creation of a novel adsorbent
called Lignin-modified attapulgite (LATP). In this study, scanning electron microscopy and Fourier
transform infrared spectrometer techniques were utilized to characterize the structural details of
LATP. The results revealed that lignin occupies the micropores of attapulgite, while additional
functional groups are present on the attapulgite surface. We conducted adsorption tests using LATP
to remove five types of heavy metal ions (Cd2+, Pb2+, Zn2+, Mn2+, Cu2+), and it was found that
LATP exhibited greater removal mass and binding strength for Pb(II) compared to the other ions.
For further investigation, batch experiments were performed to evaluate the adsorptive kinetics,
isotherms, and thermodynamics of Pb2+ removal from aqueous solutions using LATP. The results
indicated that the adsorption capacity of Pb(II) on LATP decreased with decreasing pH, while
the presence of Na+ had no effect on adsorption. The adsorption process reached equilibrium
rapidly, and the Langmuir adsorption capacities increased with temperature, measuring 286.40 mg/g,
315.51 mg/g, and 349.70 mg/g at 298 K, 308 K, and 318 K, respectively. Thermodynamic analysis
revealed positive values for ∆H0 and ∆S0, indicating an endothermic and spontaneous adsorption
process. Furthermore, ∆G0 exhibited negative values, confirming the spontaneous nature of the
adsorption. Consequently, LATP demonstrates great potential as an effective adsorbent for the
removal of Pb(II). Therefore, LATP shows great potential as an effective adsorbent for the removal
of Pb(II) from natural water environments, contributing to the sustainable development of man
and nature.

Keywords: lignin; attapulgite; Pb(II); adsorption; selective adsorption; isotherms; thermodynamic

1. Introduction

Metals and metalloids with a density greater than 4.0 g cm−3 are defined as heavy
metals such as Cd2+ and Pb2+ [1]. Non-essential heavy metals and essential heavy metals
above a certain concentration are toxic to living organisms [2]. Heavy metals are natural
elements, but heavy metal pollution has both natural and anthropogenic sources. Along
with the tremendous progress and industrial development of human society, heavy metal
pollution has become a global environmental issue. Scientists all over the world are
looking for ways to solve heavy metal pollution and reduce their risk of pollution in order
to protect the environment and human health, including various physical, chemical or
biological techniques [3]. However, these methods are not completely able to solve the
heavy metal pollution problem, most of which are still in the laboratory research stage,
and the technology that is really used for large-scale engineering applications is lacking.
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Therefore, there is an urgent need to research and develop a green, efficient, low-cost, and
general-purpose scavenger for the removal of heavy metal contamination.

Heavy metal-contained wastewater is one of the most important and widespread
sources of heavy metal pollution in soil. Many methods have been used to remove heavy
metal ions from wastewater, such as chemical precipitation, adsorption, membrane fil-
tration, coagulation and flocculation, flotation, and electrochemical treatment [4]. How-
ever, most of the methods are uneconomical and produce large quantities of chemical
by-products that cause secondary pollution [5]. Adsorption is a cost-effective method for
the removal of heavy metals from wastewater, and in recent years it has been shown to
be cost-effective, green and applied at scale for production [6,7]. In contrast to advanced
materials like graphene [8–10], biochar, and metal-organic frameworks (MOFs), nanoclays
distinguish themselves with their natural sourcing, cost-effectiveness, environmental sus-
tainability, and the ability to be tailored for specific pollutant adsorption through organic
functionalization. They also exhibit robust thermal and chemical stabilities, allowing for
their application in rigorous industrial environments. When it comes to evaluating costs,
environmental considerations, or the need for chemical specificity, nanoclays often emerge
as a more economical and pragmatic alternative. For the focus of this research, we have
chosen attapulgite, a clay material that is not only cost-efficient but also renowned for its
porous structure and expansive surface area, which lends itself well to adsorption applica-
tions. Attapulgite is a low-cost clay material with a porous structure and a large specific
surface area that is commonly used for adsorption. The adsorption mechanism of atta-
pulgite is dominated by physical adsorption, but physical adsorption is often not as stable
as chemical adsorption. Chemisorption is usually much more efficient than physisorp-
tion [11,12], and the materials can be more effective in desorption and regeneration [13].
Therefore, Deng et al. and Qin et al. realized a chemisorption-dominated adsorption
process for organically modified attapulgite [11,14]. Their organically modified attapulgite
has excellent adsorption properties, but its source material cost and production cost are
difficult to control.

The wide distribution, low toxicity, chemical stability and biodegradability of the
biological matrices have gotten more research attention as carrier materials in recent
years [15]. Lignin is a natural organic material commonly found in waste products from the
paper industry. According to statistics, 130 million tons of kraft pulp and approximately
70 million tons of lignin are produced worldwide [16]. Only 5% of the available lignin has
been exploited [17], indicating that there is enough low-cost lignin available for mining
and utilization. Lignin is widely studied as a biosorbent for heavy metal ions [18,19]. The
surface of lignin contains many functional groups, such as carboxylic and phenolic acids,
which adsorb heavy metal ions by deprotonation [20], and it has a large adsorption capacity
for heavy metal. However, it is difficult and expensive to separate lignin from black liquor
by the conventional method [21]. In order to simplify the separation process of lignin
and use it in wastewater treatment, this study isolated black liquor lignin by adsorbing
acid-modified attapulgite.

In this study, a certain concentration of sulfuric acid was used to activate the natural
attapulgite to obtain a larger pore size and specific surface area, which helped the atta-
pulgite to have the ability to adsorb and fix lignin. Novel acid-modified lignin–attapulgite
adsorbents can be simply prepared by adding acid-activated attapulgite to a lignin solution.
The physical, chemical and structural properties of the adsorbents were characterized using
characterization techniques such as scanning electron microscopy (SEM), Fourier transform
infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and thermogravimetric analysis
(TGA). Systematic in-batch experiments were conducted to evaluate the effects of various
influencing factors on the adsorption performance of the adsorbent.
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2. Methods
2.1. Preparation of Lignin-Modified Attapulgite

Rice straw was crushed by using a high-speed crusher and through 20-mesh sieve and
the straw powder was added to the boiling NaOH solution with the concentration of 4%,
boiled for 10 min and then filtered through 5 layers of gauze and the filtrate (simulated
black liquor) was taken and stored.

Attapulgite was added to H2SO4 solution (room temperature), and it should be stirred
immediately to make the reactants evenly mixed and accelerate the release of gas. It was
filtered with filter paper when there were no bubbles on the surface of the solution, and the
filter residue (Activated attapulgite, AATP) was cleaned with deionized water for several
times until neutral, grinded after drying and through 60 mesh sieve for later use.

The activated attapulgite was added to the lignin solution as the adding amount of
10%. When the surface of the solution was free of air bubbles, it was filtered with a vacuum
extractor, and the filter residue (Lignin-modified attapulgite, LATP) was washed with
deionized water for several times until neutral, and then it was dried at 60 ◦C for 24 h in a
vacuum drying oven and ground, and then passed through a 60-mesh sieve for spare use.

2.2. Characterization of the Attapulgite Materials

The microscopic surface morphology of AATP and LATP samples was observed by
SEM (ZEISS MERLIN Compact, Jena, Germany) to characterize structural details of the
before and after immobilization. The functional groups of AATP and LATP samples were
determined by FTIR (Nicolet iS5, Thermo Fisher Scientific, USA) in the range of 400–4000
cm−1 to explore the effect of immobilization on functional groups of materials. The material
was tested for thermal gravity analysis by NETZSCH TG 209F3 (NETZSCH-Gerätebau
GmbH, Germany). Zeta potentials were tested using a from Malvern Panalytical, UK.
Brunauer, Emmett, and Teller (BET) were tested using a ASAP 2420 from Micromerit-
ics, USA.

2.3. Batch Adsorption Experiments

The most suitable ions for adsorption by LATP were identified by testing the adsorp-
tion capacity of LATP on five heavy metals (Cd2+, Pb2+, Zn2+, Mn2+, Cu2+). The contam-
inant solution is prepared by Cd(NO3)2, Pb(NO3)2 Zn(NO3)2, Mn(NO3)2 and Cu(NO3)2.
Batch experiments were carried out for the adsorption process of the selected ions under
different competitive ion concentrations, solution pH, contact time, initial concentration
and temperature conditions. The pH of solutions was adjusted by 0.1 M HNO3 or NaOH in
the above tests. In this study, 0.1 g attapulgite materials were added to 250 mL conical flask
containing 50 mL solution and shaken at a constant speed (160 r/min) in desirable times.

The mixtures were separated by centrifugation at 4000 r/min for 10 min and the
concentrations of ion in the supernatant were measured by inductively coupled plasma
atomic emission spectroscopy (ICP) (Perkinelmer Optima 8300, perkinelmer, USA) after
shaking. The experiments were repeated three times and averaged.

The adsorption capacities of ions on LATP at any time (qt; mg/g) and equilibrium (qe;
mg/g) were calculated by the following equations:

qt =
(c 0 − ct)V

m
(1)

qe =
(c 0 − ce)V

m
(2)

where c0, ct, and ce are the ion concentration (mg/L) at beginning, any time t, and equilib-
rium, respectively;

V is the used volume (L) of solution; and m is the mass (g) of the adsorbent.
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3. Results and Discussions
3.1. Adsorbent Properties
3.1.1. Exploration of Surface Morphology of Materials

Scanning electron microscope (SEM) images of AATP and LATP show the morpho-
logical changes of the samples before and after lignin immobilization (Figure 1). The
microstructure of ATP and AATP is characterized by agglomerated aggregates. Obviously,
LATP after lignin loading had a more dispersed structure and did not agglomerate as much
as ATP and AATP. This suggests that LATP may have a larger specific surface area. In
addition, an abundant fiber structure appeared on the surface of LATP, suggesting that
lignin successfully modified the surface of LATP and made it better dispersed.
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Figure 1. SEM images of ATP (a), AATP(b) and LATP (c) samples.

3.1.2. Characterization of Potential Reactive Groups on Material Surfaces

The FTIR spectrum of AATP and LATP is shown in Figure 2. The absorption bands
at 3400–3610 cm−1 of the FTIR spectrum are assigned to the O-H stretching vibrations.
The peaks in AATP at 3407, 3550, 3610 cm−1 were assigned to O-H stretching vibrations
of structural water and other water molecules. The peaks in AATP became a wide band
in LATP at 3436 cm−1 and the peak intensity increased significantly. The peak in LATP
at 3436 cm−1 was assigned to hydroxy stretching in phenolic and aliphatic structures,
which originated from lignin. It is similarly that the peaks in LATP at 1640 and 1466 cm−1

were assigned to aromatic conjugated C=O and benzene ring vibration, respectively, and
the peak in LATP at 1032 cm−1 was assigned to the aromatic rings in the plane C-H
bending. Moreover, there was a new peak in LATP at 1321 cm−1, which was assigned to
the aromatic ring breathing [22–25]. The above results indicate that lignin was immobilized
on AATP and added a lot of functional groups to it, which is beneficial to its adsorption of
heavy metal.
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3.1.3. Pore Structure, Specific Surface Area and Elemental Analysis before and after
ATP Modification

The Brunauer-Emmett-Teller (BET) parameter of ATP, AATP and LATP are listed in
Table 1. LATP had the largest specific surface area, pore volume and average pore size of
168.872 cm3/g, 0.220 cm3/g and 8.138 nm, respectively. The results of the BET data indicate
that H2SO4−mediated acid activation and lignin loading processes can both optimize the
specific surface area and pore structure of ATP, increase the contact area of modified ATP
with target pollutants, and potentially enhance the adsorption capacity of ATP.3.1.4 Zeta
potential analysis for exploring the charge of materials. The increase in the porosity of
LATP may be due to the release of volatile substances during the pyrolysis process, as well
as the removal of soluble ash and soluble substances from the surface of attapulgite during
the acidification process.

Table 1. Surface and structural characterizations of samples.

Sample Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Radius (nm)

ATP 94.828 0.047 2.000
AATP 122.296 0.114 3.740
LATP 168.872 0.220 8.138

From the results of elemental analysis in Table 2, it can be seen that LATP has a higher
content of elemental C/N/H compared to ATP, which indicates the successful loading of
organic matter such as polycyclic aromatic hydrocarbons (PAHs) on lignin. The decrease in
Al/Si/S/O content, on the other hand, may be attributed to the fact that some of the Si-Al
structural layers of the concave lignite were eroded during the acidification process.

Table 2. XRF measurement of ATP and LATP.

Element
Conc.%

ATP LATP

O 10.654 8.632
N 0.000 1.320
C 1.460 10.870
H 0.868 0.959
Si 50.677 46.190
Al 35.301 31.009
Others 1.04 1.02

3.1.4. Thermal Stability Analysis of Materials

The thermal weight-loss process of ATP is divided into four typical phases(Figure 3) [26]:
(I) 0–200 ◦C, the first mass loss is very rapid and corresponds to the removal of bound
water. (II) 200–300 ◦C, the second phase is also considered to be a slow removal phase of
bound water, but this phase is reversible, which is attributed to the super-hydrophobicity of
the clay. (III) 300–400 ◦C, with further increase in temperature, the water of crystallization
between the aluminum-oxygen octahedra starts to be removed, and the structure of ATP
starts to evolve into a rafter structure. (IV) When the temperature exceeds 500 ◦C, the fourth
thermal weight loss is thought to be caused by the dehydroxylation of the Mg-OH structure
of ATP, at which point the structure of ATP starts to collapse gradually [27]. It should
also not be overlooked that the unstable carbonates in ATP may also lead to weight loss
under thermal decomposition. ATP lost about 15.72% of its weight during the temperature
increase from 0 to 800 ◦C.
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LATP only lost about 11.43% of its weight during the same warming process as ATP.
At 0–200 ◦C, LATP exhibited bound water removal consistent with ATP. And at 200–500 ◦C,
LATP showed a more uniform weight loss. At temperatures above 500 ◦C, LATP also did
not show the same high rate of weight loss as ATP; this may be due to the elimination
of carbonates during acidification. This suggests that Lignin-modified ATP has better
thermal stability.

3.2. Adsorption Performance
3.2.1. Adsorption of Heavy Metal Ions

The adsorption capacity of LATP to five kinds of heavy metal ions (Cd2+, Pb2+, Zn2+,
Mn2+, Cu2+), ATP and AATP for Pb2+ were tested separately. The accurately weighed
0.100 g LATP were added to solutions of heavy metal ions, respectively. In each experimen-
tal group that was set up, pH, ion concentration and solution volume were kept consistent.
The mixtures were separated by centrifugation after shaking for 4 h, and the concentrations
of ions in the supernatant were measured.

The adsorption capacity of LATP to five kinds of heavy metal ions is shown in Figure 4,
Figure 4a,b show the adsorption capacities, which were calculated by mass and molar mass,
respectively. Adsorption capacities calculated by mass were the removal mass of heavy
metals, and adsorption capacities calculated by molar mass were the numbers of adsorbed
ions, which reflect the binding strength of ions. As seen from Figure 4, the adsorption
capacities calculated by mass decreased in order Pb(II) > Cd(II) > Cu(II) > Mn(II) > Zn(II),
the adsorption capacities calculated by molar mass decreased in order Pb(II) > Cu(II) >
Cd(II) > Mn(II) > Zn(II). From the above results, it can be seen that LATP has a certain
removal ability for a variety of cationic heavy metal pollutants, among which the removal
quality and binding strength of Pb(II) are the strongest, which suggests that LATP has
selective adsorption ability for Pb(II). This could be due to the fact that the hydration
radius (4.01 Å) and the negative logarithm of the hydrolysis constant (7.71) of Pb(II) are
smaller than those of several other heavy metals. These specific properties of the metal
may facilitate the adsorption of Pb(II) onto LATP more readily through both inner surface
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complexation and adsorption reactions [28,29]. Therefore, we chose lead (II) as the target
pollutant and further investigated its adsorption mechanism in the following and studied
the effect of multiple reaction parameters on it. We then explored the adsorption capacity
of ATP and AATP for Pb2+. LATP exhibited significantly higher adsorption capacity for
Pb2+ compared to ATP and AATP.
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3.2.2. Competitive Adsorption Effects of Alkali Metal Ions

The removal efficiency of heavy metal ions is greatly influenced by competitive ad-
sorption on the adsorbent surface, which is due to the presence of coexisting ions in
solution [30]. Alkali metal ions such as Na+ and K+ are highly chemically active and
are representative ions in competitive adsorption studies. It was reported that the Na+

concentration increased from 0.001 mol/L to 0.1 mol/L making the adsorption rate of Pb(II)
on palygorskite decrease by about 80% [31]. The effect of coexisting Na+ on the adsorption
of Pb(II) onto LATP was tested, and the results are shown in Figure 5. The results showed
that no apparent effect was observed in the adsorption capacities of Pb(II) onto LATP when
the concentrations of Na+ increased from 0.005 mol/L to 0.025 mol/L.
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3.2.3. Effect of pH on the Adsorption Behavior of LATP

The surface charge properties of the adsorbent and the form of the adsorbate change
with the solution pH, which can promote or inhibit the adsorption of heavy metals [32].
The pH of Pb(II) solutions was set at 1.0 to 7.0 to investigate the adsorption capacities of
LATP for Pb(II) at different pHs, and the results were shown in Figure 6. The adsorption
capacities increased with the increase in pH of solutions, which shows the low pH inhibited
(pH = 1~2) absorption. It is due to the large amounts of H+ and H3O+ in the solution will
compete with the adsorption sites on the surface of the adsorbent, leading to protonation
of the adsorbent surface, which will lose most of the adsorption capacity for Pb(II) [33].
Functional groups such as hydroxyl, carboxyl and amino groups in the adsorbent will
be difficult to dissociate due to the large number of protons in the solution, thus failing
to exert their adsorption capacity. In addition, the high concentration of protons in the
solution will also bind to the groups on the surface of the adsorbent, thus presenting a
positively charged surface of the adsorbent and making it difficult for Pb2+ to bind to the
adsorbent [34]. Therefore, a slight decrease in adsorption capacity was observed when the
pH was decreased from 7.0 to 3.0, indicating that LATP has a buffering capacity for acids
and can be used in weak acid conditions. And when the pH value was further decreased,
the adsorption capacity of LATP on Pb(II) decreased significantly, which may be due to the
protonation on the surface of LATP under strong acid conditions.
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The zeta potential can also be used to explain the effect of solution pH on adsorption
(Figure 7). Lignin, ATP and LATP were all observed to have maximum zeta potential values
at pH 5 (all negative). The reason for lignin exhibiting a negative zeta potential is mainly
attributed to the free phenolic hydroxyl groups it carries [35]. The reason for the negative
zeta potential of attapulgite may be due to its crystal structure, as the aluminum-oxygen
octahedra in its structure are mainly surrounded by silica-oxygen tetrahedra, and excessive
exposure of the silica-oxygen tetrahedra would cause the outer surface of attapulgite to
be negatively charged, similar to the structure of halloysite [36]. The ATP-modified LATP
possesses lower zeta potential than ATP, which is also probably due to the fact that lignans
with abundant free phenolic hydroxyl groups resulted from the successful modification of
lignin. As the pH increased to 9, a decrease in zeta potential values occurred to varying
degrees for all three materials, with the lowest (−15.0 mV) for LATP. The results indicate
that solution pH affects the charge value of the adsorbent surface, and as pH increases, the
electronegativity of the adsorbent surface increases, possessing a stronger ability to remove
Pb(II), which is consistent with the results demonstrated by the pH experiments.
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3.2.4. Adsorption Kinetics of Pb(II)

The adsorption capacity of Pb(II) on LATP at different contact time were tested and
the results are shown in Figure 8. The adsorption process occurred very rapidly at the
initial contact time, Pb2+ in the solution were removed approximately 50% within 5 min
and the adsorption equilibrium was reached at 120 min of contact.
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The Lagrange pseudo-first-order kinetic model and Lagrange pseudo-second -order
kinetic model were selected for modeling the adsorption data to analyze the kinetic charac-
teristics of adsorption [37].

The models can be written as follows:
Lagrange pseudo-first order kinetic model:

qt = qe

(
1−e−k1t

)
(3)

Lagrange pseudo-second order kinetic model:

qt =
q2

e k2t
1 + qek2t

(4)

where qe and qt are the adsorption capacities at adsorption equilibrium and at time of t
respectively (mg/g), t is the adsorption time (min), k1 is the first-order adsorption rate
constant (min−1), k2 is the second-order adsorption rate constant, (g/mg min).

The kinetic parameters of Pb(II) adsorption on LATP (obtained from the nonlinear
method) are summarized in Table 3. According to the high determination coefficient
(R2 = 0.9462), the pseudo-second-order kinetic model can well describe the experimental
data of adsorption kinetics. It indicated that the adsorption was a chemical adsorption
process [38].

Table 3. Kinetic parameters of Pb(II) adsorption on LATP.

Pseudo First-Order Model Pseudo Second-Order Model

qe (mg/g) k1 (min−1) R2 qe (mg/g) k2 (g/mg min) R2

258.22 0.1278 0.8690 279.76 6.6392 × 10−4 0.9462

3.2.5. Adsorption Isotherms of Pb(II)

The effects of different initial Pb2+ concentrations on adsorption were tested at different
temperatures. The experimental data were fitted by Langmuir isotherm and Freundlich
isotherm models [39].

The models can be written as follows:
Langmuir isotherm equation:

qe =
bceqm

1+bce
(5)

Freundlich isotherm equation:
qe= kc1/n

e (6)

where qe is the adsorbing capacity at adsorption equilibrium (mg/g), ce is the concen-
tration of Pb2+ in the solution at adsorption equilibrium (mg/L), qm is the saturation
adsorption capacity of the adsorbent (mg/g), b is the Langmuir adsorption constant, k is a
constant related to the adsorption capacity and n is an empirical parameter related to the
adsorption intensity.

Adsorption isotherms of Pb(II) on LATP are shown in Figure 9, and the simulated
adsorption parameters obtained from the isotherms are shown in Table 4. The results
show that the Langmuir equation fitted the adsorption isotherm data of Pb(II) onto LATP
well, and the Langmuir model was more suitable to describe the adsorption behavior of
Pb(II) on LATP. It was supported by the higher correlation coefficients (R298k

2 = 0.9359,
R308k

2 = 0.9405 and R318k
2 = 0.9840) at different temperatures derived from the Langmuir

model. It suggests that the adsorption of Pb(II) on LATP is a monolayer adsorption
process [40]. The Langmuir model assumes that adsorption mainly takes place on a
homogeneous surface [41], which indicates that the lignin homogeneous distributed on the
surface of attapulgite and the microporous structures were filled. The fitting results also
show that LATP has a high adsorption capacity, which increases with temperature.
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Table 4. Isotherm parameters of Pb(II) adsorption on LATP.

Temperature
(K)

Langmuir Equation Freundlich Equation

qm (mg/g) b (L/mg) R2 k ((mg1−(1/n)·L1/n)/g) 1/n R2

298 286.40 0.1493 0.9359 116.88 0.1546 0.8882
308 315.51 0.2200 0.9405 138.15 0.1464 0.8715
318 349.70 0.3758 0.9840 168.32 0.1314 0.8484

3.2.6. Adsorption Thermodynamics

The adsorption thermodynamic parameters such as a change in Gibbs free energy
(∆G0), enthalpy (∆H0) and entropy (∆S0) can predict the physical and chemical mechanisms
of Pb(II) adsorption [42]. The parameters can be essentially estimated by the Van’t Hoff
equations [43].

The equations can be written as follows:

ln KC =
−∆H0

RT
+

∆S0

R
(7)

∆G0= −RTlnKC (8)

where KC is the equilibrium constant (dimensionless); R is the universal gas constant (8.314;
J/mol·K); and T is the absolute temperature in degrees Kelvin (K).

It was reported that the equilibrium constant KC can be derived from the Langmuir
constant, and the Langmuir constant was converted into KC by the method reported by
Tran [44]. ∆H0 and ∆S0 were obtained from the slope and intercept at the line plotted by
lnKC versus 1/T, respectively. The values of ∆G0 were calculated directly from Equation (6).
The thermodynamics parameters of Pb(II) adsorption on LATP were presented in Table 5.

Table 5. Thermodynamics parameters of Pb(II) adsorption on LATP.

T (K) ∆H0 (kJ·mol−1) ∆S0 (J·mol−1·K−1) ∆G0 (kJ·mol−1)

298 K
36.29 220.59

−29.52
308 K −31.50
318 K −33.94

The ∆G0 values for the adsorption of Pb(II) were equal to−29.52, −31.50, −33.94 kJ·mol−1,
respectively. The negative ∆G0 values indicated that the process of Pb(II) adsorption on
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LATP occurred spontaneously. The ∆H0 value was positive which indicated that the
adsorption process was endothermic in nature. It provided theoretical foundation for
the conclusion of adsorption capacity increased with the temperature. The positive ∆S0

indicated that the adsorption process is entropy-driven rather than enthalpy-driven [45].

3.2.7. Reusability of LATP

The adsorption capacities of Pb(II) on LATP decreased with the decrease in pH. This
suggests that the adsorption sites on LATP may be occupied by H+ or that the absorbed
Pb2+ on LATP may be desorbed by acid. In this study, 0.1 mol/L HNO3 solution was used
to desorb Pb2+ on LATP, and it was regenerated by using 0.1 mol/L NaHCO3 solution in
each set cycle experiment. The results of the cycling experiments are shown in Figure 10.
There was a slight decrease in the adsorption capacity of the LATP, but the LATP still
maintained 85% of the adsorption capacity of the fresh LATP after five cycles.
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3.3. Effect of Humic Acid on the Adsorption Capacity of LATP

Considering the prevalence of humic acid (HA) in polluted waters, the effect of HA
on LATP treatment of mono and poly systems was investigated. As shown in Figure 11a,
increasing the concentration of hydroxyapatite (HA) from 10 to 50 mg/L had a minimal
impact on the maximum adsorption capacity and removal rate of Pb(II) by LATP. In the
presence of a multivariate system, the addition of humic acid (HA) resulted in a decrease
in the adsorption capacity of Pb(II) from 250.6 mg/g to 211.56 mg/g due to the competitive
adsorption between Pb and HA. However, it did not affect the primary mechanism of
Pb(II) removal by LATP. On the other hand, the addition of HA had the opposite effect
on the removal of Cu and Cd. The enhancement of Cu removal could be attributed to
the complexation between Cu and HA, forming Cu-HA complexes. At pH = 7, HA may
weakly interact with the negative charges on the surface of LATP, occupying some of the
active sites and leading to reduced Cd removal.

Overall, the experimental findings demonstrate that varying the concentration of HA
does not significantly affect the maximum adsorption capacity and removal rate of Pb(II)
by LATP. However, it does affect the removal of Cu and Cd, with an enhancement observed
for Cu removal due to complexation with HA and a reduction in Cd removal due to the
competitive occupation of active sites by HA.
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3.4. Removing Mechanism

SEM and thermogravimetric analysis showed that the crystal structure and morphol-
ogy of attapulgite are preserved and the carbonates are eliminated when the attapulgite
is treated with low concentrations of acid [46]. It promoted the specific surface area of
attapulgite and made the attapulgite have a larger adsorption capacity. The results of SEM
and FTIR indicated that lignin was immobilized on ATP. The isotherm parameters and SEM
graphs show that the lignin is homogeneous and distributed on the surface of attapulgite
and the microporous structures were filled. The zeta potential test showed that LATP was
negatively charged over the selected pH range. Therefore, LATP obtained the ability to
adsorb metal cations by electrostatic attraction.

The adsorption proceeds of lignin to heavy metal ions were through ion- exchange
mechanism [47]. The carboxyl groups and hydroxyl groups lignin account for the metallic
ion adsorption performance of lignin, and the amount of hydroxyl groups is much greater
than that of carboxyl groups, but their affinity towards different metal ions differs [20].
Surface complexation modeling analysis revealed that the phenolic groups bind the metallic
ions before the carboxylic groups [48]. The binding strength for phenolic groups decreases
in order Pb(II) > Cu(II) > Cd(II) > Zn(II) > Ni(II) and for carboxylic acid functional groups
decreases in order Pb(II) > Cu(II) > Zn(II) > Cd(II) > Ni(II) [16]. The order of binding
strength for phenolic groups is the same as the result of this study.

In conclusion, the adsorption mechanisms of heavy metals on the LATP surface
may include electrostatic, ionic and complex adsorption. The dominant removal of Pb(II)
may be attributed to its unique metal properties (lower hydration radius and negative
logarithm of hydrolysis constant) and the fact that Pb(II) was a hard Lewis acid with a
higher electronegativity (2.33). These properties may lead to Pb(II) possessing a greater
affinity for the functional groups on LATP [28,29].

4. Conclusions

In this study, water-soluble lignin from black liquor was adsorbed and immobilized
by activated attapulgite to make a new adsorbent (LATP). The results of SEM and FTIR
show that lignin was successfully immobilized on attapulgite, and the attapulgite obtained
a lot of function groups through the adsorption and immobilization of lignin, while a larger
specific surface area and abundant pores were obtained during the acidification process.
The possible modes of lignin connected to ATP may include physical adsorption, covalent
bonding, non-covalent interactions, and ion exchange.

LATP showed advantageous adsorption of Pb(II) during the treatment of water pol-
luted with a mixture of five heavy metal ions (Cd2+, Pb2+, Zn2+, Mn2+, Cu2+), which was
characterized by a greater removal mass and binding strength of Pb(II) than the other



Sustainability 2024, 16, 5831 14 of 16

ions. Because of surface protonation and deprotonation, the adsorption of Pb(II) by LATP
was gradually enhanced with increasing pH. The adsorption of Pb(II) by LATP was in
accordance with the pseudo-second-order kinetic model and the Langmuir model. The
saturated adsorption capacity of LATP on Pb(II) reached 286.40 mg/g, 315.51 mg/g, and
349.70 mg/g at 298 K, 308 K, and 318 K, respectively. The adsorption of Pb(II) on LATP
was spontaneous, and the adsorption process was endothermic in nature. LATP is reusable,
and in the fifth cycle, the adsorption capacity of LATP for Pb(II) remained at about 85%.
The mechanism of adsorption should be electrostatic attraction and ion exchange.

Cheap raw materials, a simple preparation process and excellent adsorption properties
make the new adsorbent have a high application potential for removing heavy metal ions
from wastewater.
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