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Abstract: Accurate traffic flow forecasting is vital for intelligent transportation systems, especially
with urbanization worsening traffic congestion, which affects daily life, economic growth, and the
environment. Precise forecasts aid in managing and optimizing transportation systems, reducing
congestion, and improving air quality by cutting emissions. However, predicting outcomes is difficult
due to intricate spatial relationships, nonlinear temporal patterns, and the challenges associated with
long-term forecasting. Current research often uses static graph structures, overlooking dynamic and
long-range dependencies. To tackle these issues, we introduce the spatiotemporal dynamic multi-hop
network (ST-DMN), a Seq2Seq framework. This model incorporates spatiotemporal convolutional
blocks (ST-Blocks) with residual connections in the encoder to condense historical traffic data into
a fixed-dimensional vector. A dynamic graph represents time-varying inter-segment relationships,
and multi-hop operation in the encoder’s spatial convolutional layer and the decoder’s diffusion
multi-hop graph convolutional gated recurrent units (DMGCGRUs) capture long-range dependencies.
Experiments on two real-world datasets METR-LA and PEMS-BAY show that ST-DMN surpasses
existing models in three metrics.

Keywords: intelligent transportation systems; sustainability; traffic flow forecasting; spatiotemporal
dependency learning; graph structure learning

1. Introduction

As urban vehicle populations increase and traffic data proliferate, the advancement of
intelligent transportation systems (ITS) is becoming increasingly crucial [1,2]. Predicting
traffic flow accurately is vital for these systems, as it involves analyzing historical traffic
data to forecast current and future road conditions [3]. Achieving these goals is essential for
improving traffic management, reducing congestion, and enhancing the overall efficiency of
ITS, which directly contributes to the improvement of human well-being [4,5]. Optimized
traffic management reduces commute times and driver stress [6]. Additionally, enhanced
public transportation systems promote a healthier, more sustainable lifestyle for urban
residents by improving efficiency and reliability [7,8].

Traffic flow is influenced by both time and the interconnections of roadways, resulting
in a complex network structure [9,10]. Hence, forecasting real-time and accurate traffic
flow is highly challenging because of the complex spatiotemporal dependencies inherent
in traffic flow. The challenges are twofold: Firstly, sophisticated spatial correlations are
influenced by both nearby and distant nodes. Secondly, historical traffic data exhibit
complex nonlinear relationships, complicating long-term forecasts. Long-term forecasts
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(over 30 min) are crucial for traffic planning and management, helping predict and respond
to events like congestion and accidents, while short-term forecasts (5–30 min) address
immediate conditions.

Advancing industrial technology has enabled the widespread use of sensors and
data collection devices in transportation networks, collecting large amounts of crucial
data for research. Methods such as the historical average (HA), exponential smoothing,
and autoregressive integrated moving average (ARIMA) [11], which are commonly used
in traditional traffic forecasting, rely on the assumption of stationarity. However, this
assumption is not typically applicable to the dynamic nature of traffic data. These methods
frequently fall short of providing accurate traffic forecasts because they cannot capture the
complex dynamic characteristics of traffic data.

Recently, deep learning traffic flow forecasting methods utilize various neural network
architectures to model spatiotemporal features [12,13]. Inspired by sequential learning,
some neural networks simulate the temporal impact of traffic fluctuations [14,15]. Convolu-
tional neural networks (CNNs) are used to capture spatial relationships between adjacent
regions [16], while recurrent neural networks (RNNs) address the temporal aspects [17].
SHARE [18] predicts parking space availability in cities by employing a hierarchical graph
convolutional structure to model spatial autocorrelation between parking lots and an RNN
to capture dynamic temporal dependencies. Additionally, PredRNN [19] is a new recurrent
neural network that forms a unified representation of complex environments with decou-
pled memory units and uses zigzag memory flow to transfer information between layers,
effectively capturing the dynamics of spatiotemporal data.

Graph neural networks (GNNs) are widely employed in research to capture spatiotem-
poral dependencies among variables [20,21]. Early approaches, such as those by [22,23],
utilized predefined graph structures to represent dependencies, but often struggled to
capture complex interconnections, resulting in inaccuracies. Park et al. [24] employed a self-
attention mechanism for dynamic correlation computation between sensor pairs, but scaling
to large-scale graphs is hindered by quadratic computational complexity. Wang et al. [25]
proposed D-TGNM, a dynamic temporal graph neural network designed to predict urban
traffic flow robustly even with incomplete data. This model incorporates Traffic BERT to
capture dynamic spatial relationships in road networks, alongside a temporal graph neural
network (TGNM) that analyzes traffic flow patterns while accounting for missing data.
Despite the progress in GNNs, current methods encounter two primary challenges.

First, current studies often use static graph models to describe spatial correlations in
traffic networks, which limits traditional traffic prediction methods to direct relationships
between adjacent road segments [26–28]. However, actual traffic systems are influenced
by complex spatial interdependencies due to external factors such as weather changes,
incidents, regulations, and temporal dynamics. Even geographically distant road segments
may exhibit similar traffic fluctuation patterns over time. Focusing only on local spatial
interdependencies may overlook information from remote segments, leading to increased
forecast uncertainty. Figure 1 depicts the alterations in relationships among road networks,
nodes, and vehicles influenced by traffic control measures. To better model dynamic
interactions between road segments, it is crucial to incorporate dynamic graph models.
Existing graph neural networks (GNNs) typically propagate information from immediate
neighbors during message passing, thereby constraining their capability to capture long-
range spatial dependencies [29].

Secondly, current neural network architectures face difficulties in modeling multi-step
predictions for non-stationary time series data. Traffic data often show autocorrelation
at adjacent time points and periodic fluctuations due to human activities, which vary
in pattern and intensity across different periods and weekdays [30]. Researchers have
explored various strategies to handle these complex temporal dependencies in multi-step
forecasting. One approach involves temporal convolutional networks (TCNs) [31,32],
which use convolution operations along the temporal dimension to process time series
data efficiently, avoiding issues like gradient vanishing or exploding. While TCNs perform
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well at single-step predictions with parallel processing, they may not be as effective for
multi-step forecasting scenarios. Another method uses sequence-to-sequence models based
on recurrent neural networks (RNN) (Seq2Seq) [22,33], which are adept at capturing the
sequential nature of time series data. However, Seq2Seq models require multiple iterations
to calculate long-distance dependencies [34], and their training phase lacks parallel comput-
ing, which could affect computational efficiency and graph-related structural information
in pre-processing [35]. Hybrid methods that combine time convolution with recurrent
structures may capture time dependencies more accurately and efficiently. Further research
is required to confirm the efficacy of such hybrid architectures.

Figure 1. The relationship between the road grid, nodes, and vehicles. At time = 0, sensors A and B
exhibit a strong correlation due to road connectivity; at time = 1, this correlation weakens as a result
of traffic control measures.

This paper introduces a novel model architecture, named the spatiotemporal dynamic
multi-hop network (ST-DMN), designed to tackle the aforementioned challenges. At the
core of our approach is a dynamic graph learning algorithm tailored for each time step,
adept at updating the graph structure in real time to reflect evolving temporal relationships.
To address long-distance spatial dependencies, we have integrated multi-hop operation
into our framework. Additionally, our model utilizes a transformer layer to introduce
position coding to the spatiotemporal sequence generated by ST-Blocks. This approach
not only improves the model’s ability to capture the global temporal structure of the
data but also emphasizes the interaction of relative positions within the sequence. In
the domain of temporal correlation modeling, the ST-DMN employs an encoder–decoder
architecture. The encoder in this architecture consists of L ST-Blocks designed to extract
spatiotemporal features from historical traffic data. Subsequently, the decoder utilizes
multiple diffusion multi-hop graph convolutional gated recurrent units (DMGCGRUs) as
its foundational elements. These units enable the model to achieve multi-step prediction by
performing autoregressive decoding of the extracted features. This research offers several
key contributions:

• We have created an advanced encoder–decoder architecture tailored for multi-step
prediction. The encoder extracts important spatiotemporal features from historical
data by using multiple ST-Blocks. The decoder then uses DMGCGRUs to decode these
features and produce multi-step prediction results.

• We present a dynamic graph learning algorithm to better capture the complex and
evolving topology of traffic networks. This algorithm utilizes an iterative updating
mechanism to dynamically construct and adjust the topological graph of road networks.

• ST-DMN combines the multi-hop operation of dynamic graphs with the diffusion
convolution technique to effectively capture the inherent long-distance spatial de-
pendence in traffic data. Furthermore, the transformer layer enhances the model’s
comprehension and perception of the overall temporal structure within the spatiotem-
poral embeddings generated by the ST-Blocks.
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• Experimental results on publicly available traffic speed datasets, including METR-
LA and PEMS-BAY, indicate that ST-DMN achieves competitive or even superior
performance compared to various baseline models.

The structure of the paper is as follows: Section 2 provides a review of existing research
and graph structure learning methods in the domain of traffic prediction. In Section 3, we
provide a detailed explanation of the architecture of ST-DMN and its underlying algorithms.
Sections 4 and 5 present a comprehensive comparison of the prediction accuracy of the
ST-DMN model against several baseline models. It evaluates the influence of different
parameters on the model’s outcomes and compares training times, thereby demonstrating
its superior performance. Section 6 concludes with the findings and discusses avenues for
future research.

2. Related Works
2.1. Traffic Flow Forecasting

Pioneering techniques for anticipating traffic dynamics, including the historical aver-
age (HA), autoregressive integrated moving average (ARIMA) [11], and vector autoregres-
sion (VAR) [36], were founded on principles of mathematical statistics and rudimentary
machine learning algorithms. However, these models frequently faced challenges in ad-
dressing the complexity and dynamics of real-world traffic conditions. Traditional traffic
research has often oversimplified forecasting by treating it primarily as a time series prob-
lem, overlooking the substantial impact of other network nodes on traffic conditions. To
improve predictive performance, researchers have explored innovative methods to cap-
ture the spatial characteristics of traffic networks. For example, ConvLSTM [37] uses
convolutional operations to capture spatial features within temporal sequences. Graph
convolutional neural networks (GCNs) extend traditional convolution concepts to non-
Euclidean data structures. Spatiotemporal graph neural networks (STGNNs), such as
STGCN [23], integrate graph convolution with temporal convolution or recurrent neural
networks to adeptly capture spatiotemporal features within road networks.

In recent years, advanced models like GraphWaveNet [31] and AGCRN [38] have
gained attention for their ability to dynamically learn the graph structure of road networks
from traffic data. These models achieve predictive performance comparable to models
based on predefined graphs. Deep neural networks, known for their powerful predic-
tive capabilities, have been integrated with graph neural networks (GNNs) to construct
spatiotemporal graph neural networks, enhancing prediction performance [22,39]. These
models can be categorized by temporal modeling approaches into RNN-based, CNN-based,
and attention-based models. For example, DCRNN [22] combines diffusion graph convolu-
tion with GRU for traffic forecasting, and STGCN [23] captures spatiotemporal correlations
using 1D CNN and graph convolution. Transformer-based models like STAEFormer [40]
and HTVGNN [41] have made significant strides in predictive accuracy and performance
by introducing adaptive embeddings and time-varying graph structures.

2.2. Graph Structure Learning

Graph structure learning is a crucial field in machine learning that aims to extract
structural information from data. In traffic forecasting, the graph structure models the road
network, with nodes representing road intersections or segments and edges indicating
traffic capacity or distance relationships. One of the primary challenges in learning graph
structures is effectively capturing the intricate interdependencies between nodes.

Lately, academic research has been concentrated on improving the performance of
graph neural networks (GNN) by optimizing graph structures [42–44]. Current graph
structure learning methods can generally be categorized into three main groups: (1) Metric
learning strategies, which assess inter-node relationships using various metrics [45,46].
(2) Probabilistic modeling approaches involve constructing graphs by sampling from
probability distributions and modeling edge generation probabilities using trainable pa-
rameters [47,48]. (3) Direct optimization techniques optimize the entire graph alongside
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GNN parameters, as explored in recent studies [49]. In traffic forecasting, recent studies
have aimed to learn adaptable graph adjacency matrices [31]. However, many methods di-
rectly engineer trainable parameters for graph structures, often overlooking node attributes.
This oversight can complicate model optimization, especially in cases with limited and
sparse training data. Node attributes that provide details on traffic conditions are crucial
for constructing a more accurate graph structure.

Recent academic studies, such as [33,44,50], have been concentrating on developing
methods to accurately uncover dependencies between nodes. Advanced techniques involve
extracting features from large traffic datasets to create graphs, which are then improved
with prediction models to enhance prediction performance. As demonstrated by [51], this
structured learning approach significantly enhances prediction accuracy. Our proposed
structured learning framework goes beyond the analysis of current traffic conditions to
deeply investigate traffic patterns. This comprehensive approach ensures the universality
and suitability of the framework across different cities and regions, thereby improving its
accuracy and scalability.

3. Materials and Methods
3.1. Problem Formulation

Traffic flow forecasting aims to accurately predict future traffic flow based on historical
data. To accomplish this, we represent the road network as a weighted directed graph
G = (V, E, W). Here, V denotes the set of nodes, e.g., sensors used to collect traffic flow data,
with |V| = N. E represents the road segments, and W ∈ RN×N is a weighted adjacency
matrix representing the proximity of a node. The element Wi,j signifies the distance between
nodes, typically determined by the road network or topological adjacency.

Wi,j = exp

(
−

dist(vi, vj)
2

σ2

)
if dist(vi, vj) ≤ κ, otherwise 0, (1)

let Wi,j indicate the weight of the edge connecting sensor vi to sensor vj, and dist(vi, vj)
represent the distance between sensor vi and sensor vj within the road network. Here, σ
stands for the standard deviation of the distances, and κ is the designated threshold.

The traffic flow on G is represented by a graph signal X ∈ RN×D, where D is the
number of features of each node, i.e., speed and flow rate. Traffic flow characteristics
encompass various attributes, including traffic flow rate, average speed, and flow density.
In this paper, the feature used is speed. The task of predicting traffic data for the next Q time
intervals, given the historical data from the previous P time intervals, can be formulated as
follows:

[Xt−P+1, · · · , Xt;G]
fθ−→
[
Ŷt+1, · · · , Ŷt+Q

]
, (2)

where θ denotes the learnable model parameters.

3.2. Model Architecture

In this section, we introduce our spatiotemporal dynamic multi-hop network (ST-
DMN), which is designed to capture spatiotemporal dependencies in traffic data. Our
model employs an encoder–decoder architecture for multi-step traffic flow forecasting,
as illustrated in Figure 2.
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Figure 2. The framework of the spatiotemporal dynamic multi-hop network (ST-DMN).

The encoder comprises L spatiotemporal blocks (ST-Blocks). Each ST-Block is com-
posed of two temporal convolution layers and one spatial convolution layer. The temporal
convolution layer captures temporal features, while the spatial convolution layer extracts
spatial features. We have integrated residual connections [52] to enhance information
flow and address the vanishing gradient issue. Subsequently, the spatiotemporal embed-
ding extracted by the L ST-Blocks is fed to a transformer layer, which enables a better
understanding and perception of the global temporal structure of spatiotemporal features.

The decoder is made up of Q diffusion multi-hop graph convolutional gated recurrent
units (DMGCGRUs). A DMGCGRU is an improved version of the gated recurrent unit
(GRU) that replaces the traditional matrix multiplication in GRUs with diffusion convolu-
tion. This modification enhances the efficiency of managing spatiotemporal information
transfer. By integrating multi-hop dynamic graph convolution, the DMGCGRUs can better
understand relationships across different locations and times. The first DMGCGRU in the
sequence takes the feature vector encoded by the encoder, ensuring that the spatiotemporal
features captured during encoding smoothly transition into the decoding phase. The de-
coder interprets this vector to reconstruct the output. At each time step i within the interval
[t + 1, · · · , t + Q], the DMGCGRUs receive the context vector generated from the previous
step and produce a prediction using diffusion multi-hop convolution. Integrating diffusion
convolution substantially improves the model’s capacity to capture long-term spatiotem-
poral dependencies. During the training phase, we employ scheduled sampling [53] to
alleviate the error accumulation that can arise from multi-step output predictions.

3.3. Encoder Architecture
3.3.1. ST-Blocks

The ST-Blocks integrate temporal convolution and spatial convolutions on graph-
structured data to extract intricate dynamic spatial and temporal patterns in traffic data,
as shown in Figure 3. Each ST-Block includes two temporal convolution layers and one
spatial convolution layer. The initial temporal convolution layer uses convolutional kernels
that slide along the temporal dimension to extract temporal features of the input traffic data.
Subsequently, the spatial convolution layer learns the spatial dependencies by utilizing
spatial convolution operations on the weighted adjacency matrix and performing multi-
hop operations on the dynamic adjacency matrix to infer the spatial relationships between
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nodes. After the spatial convolution layer, the ReLU activation function is applied to
enhance the neural network’s nonlinear modeling capability. Further, the second temporal
convolution layer strengthens the time-varying relationship across the road segments and
extracts hidden temporal features. A residual connection is implemented to capture and
transmit important information, thereby avoiding the issue of gradient disappearance in
deep networks. Finally, layer normalization is used to ensure the stability of the network
training process.

Figure 3. The architecture of ST-Block consists of two temporal convolutional layers and one spatial
convolutional layer, with the utilization of residual connections for the output.

ST-Blocks integrate temporal and spatial convolutions, making them well-suited for
complex spatiotemporal tasks that require extracting intricate spatiotemporal dependencies,
and they exhibit strong training stability and generalization ability.

3.3.2. Dynamic Graph Learning

In a real traffic network, the interdependence among road segments varies and contin-
uously evolves due to changing conditions such as time and weather. Traditional traffic
forecasting methods often assume fixed interdependence, ignoring dynamic characteristics,
and limiting prediction accuracy. To overcome this limitation, the study introduces a new
method that no longer relies solely on a static adjacency matrix to represent the relationship
between nodes. We incorporate the dynamically updated adjacency matrix into the model,
as shown in Figure 4.
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Figure 4. The process of dynamic graph learning demonstrates how the dynamic graph at the current
time step can be generated from the dynamic graph of the previous time step through the use of an
update gate.

This matrix primarily includes the dynamic graph from the previous time step, the ad-
jacency matrix at the current time step, and the dynamic graph at the current time step.
The dynamic graph learning process will be detailed below. This enhancement aims to
enhance the accuracy and applicability of traffic flow forecasting, making it more adaptable
to changes in traffic flow data.

Our proposed algorithm takes into account the nonlinear changes in adjacency re-
lationships over time, which are observed in real traffic networks. It involves using a
time-varying adjacency matrix and node embeddings to capture this dynamic interac-
tion. Distinct from existing studies, our approach utilizes a three-dimensional tensor
Dt ∈ RT×N×N to represent the temporal changes in adjacency relations. Here T denotes
the time steps and N denotes the number of nodes in the dataset. By embedding the time
series X through a specific layer, we obtain graph signal embeddings, denoted as X(1)

t and

X(2)
t . This facilitates the learning of dynamic interactions among traffic network nodes

at individual time steps. The specific learning process is carried out using the following
dynamic spatial dependency computation formula:

Dt = So f tMax
(

ReLU
(

X(1)
t · (X(2)

t )⊤
))

, (3)

X(1)
t and X(2)

t represent embeddings of one-hop neighboring nodes, and Dt ∈ RT×N×N

represents the adjacency matrix at time t.
During this computational process, the model accurately captures and updates the

strength of interactions between nodes at different time slots. It is important to note that
the adjacency matrix of a node obtained through this method represents the embedding
of graph signals at the current time slot. As a result, the adjacency relationships can be
dynamically adjusted based on optimization objectives.

In addition, the study proposes an iterative updating mechanism to preserve spatial
relationships across consecutive time intervals. This mechanism continuously improves the
adjacency matrix over successive time steps, allowing the model to not only represent the
current traffic data but also smoothly transition to the next moment. The approach ensures
that the model fully considers continuity within the temporal dimension. Thus, at each
time step t, the core updating process of the dynamic graph updating algorithm can be
represented by the following steps:

A0 = D0,

Ut = σ(θ ⊙ (Dt + At−1)),
(4)
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initialize dynamic the adjacency matrix A and set it to the initial state of D at time step 0.
Compute the update gate Ut, which is a parameterized transformation activated by the
Sigmoid activation function. It combines the information from the current time step Dt and
the prior dynamic adjacency matrix state At−1. ⊙ denotes the hadamard product, and θ
represents the learnable parameters. Adjust the state of the dynamic adjacency matrix A at
time step t by employing the update gate Ut to maintain a balance between the stability
and the dynamism of the dynamic graph:

At = Ut ⊙ Dt + (1 − Ut)⊙ At−1, (5)

Through this approach, the model proposed in this study not only excels in captur-
ing time-varying traffic characteristics but also demonstrates outstanding scalability and
robustness in long-term time series forecast tasks.

3.3.3. Temporal Convolution Layer

When analyzing and forecasting spatiotemporal data, it is crucial to consider the
temporal dependency within time series data. In time series analysis, RNN-based methods
are commonly used but often encounter challenges such as high computational complexity
and issues with exploding or vanishing gradients, especially when dealing with long-range
dependencies in real-world applications. To tackle these challenges, this study proposes
a strategy that involves stacking temporal convolutional layers within the encoder. This
approach improves the model’s sensitivity and its capability to model spatiotemporal
information. The temporal convolutional layers effectively capture and model the temporal
dependencies within the input data sequences through convolution operations and gated
linear units (GLU) [54].

In the traffic network G, each node undergoes processing by the temporal convolu-
tional layer, where padding is applied to keep the time step length P unchanged following
the convolution operation. This helps preserve the temporal sequence of the data. Given an
input tensor X ∈ RB×P×N×D, the temporal convolutional layer uses convolutional kernels
of size kt, with an input dimension of D and an output dimension of 2D. These kernels
execute temporal convolution operations, efficiently mapping the input data features into a
space of higher dimensionality. The convolution operation ∗ is conducted across multiple
channels, with each channel undergoing independent convolution. The outcomes of all
channels are then aggregated to produce an output with the dimension of 2D. This output is
subsequently divided into two equal parts along the feature dimension and is subsequently
input into the GLU. The mathematical expression for the temporal convolutional layer is
formulated as:

C = W ∗ X + b, (6)

where C represents the output of dimension 2D after convolution, W denotes the convolu-
tional kernel weights, and b stands for the bias term.

GLU(X) = σ(C1)⊙ C2, (7)

T(X) = (GLU(C) + X) · θ, (8)

where σ represents the activation function Sigmoid applied to the first half channels of
C, while C2 denotes the last half channels of C. The symbol ⊙ indicates element-wise
multiplication. The output of the temporal convolutional layer is scaled by θ to enhance
stability. Additionally, the gated linear unit (GLU) is utilized for non-linear transformation,
aiding in accelerating model training and improving generalization capability.

3.3.4. Spatial Convolution Layer

The dynamics of traffic conditions can vary significantly across different roads and
change constantly. To effectively capture long-distance spatial relationships, we have
decided to move away from using the traditional multilayer graph neural network (GNN)
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model. Previous research [55] has pointed out that traditional multi-layer GNNs suffer from
over-smoothing, where node representations in locally connected subgraphs become overly
similar, resulting in decreased prediction accuracy. We have developed an innovative
spatial convolutional layer to adaptively capture the interrelationships between sensors
in the road network, addressing this challenge effectively. We use a single-layer approach
in this study to update node representations and integrate information from multi-hop
neighbors. This method not only comprehensively captures the traffic topology of the
road network, but also effectively mitigates the over-smoothing phenomenon. As part of
this innovative approach, we have constructed a multi-hop graph model to operationalize
our methodology:

A(k+1) = (1 − α)αÃ + (1 − α)A(k) Ã, (9)

where α ∈ (0, 1) is the attenuation factor used to control the degree of weight attenuation
transmitted through the multi-hop path. Ã is the one-hop matrix, which is the dynamic
adjacency matrix, and k is the number of hops.

In addition to learnable dynamic graphs, predefined adjacency matrices are also
crucial. The matrix represents the fixed links among various parts of the urban network.
Spatial proximity information is usually provided by the dataset itself or can be accessed
through city maps. We model spatial dependencies by correlating time series to diffusion
processes, explicitly capturing the random nature of traffic dynamics. An explicit graph S
represents these correlations, with the diffusion process characterized by random walks on
graph G.

One limitation of basic graph convolution is its restriction to undirected graphs, which
does not suit the directed nature of traffic networks. To address this, Li et al. [22] introduced
forward and backward diffusion processes for graph signals with K finite steps, enabling
convolution on directed graphs. Studies show that the bidirectional diffusion convolution
technique successfully models both upstream and downstream traffic impacts in predictive
models. The diffusion convolution operation is defined as follows:

S(X, W) =
K−1

∑
k=0

(
Wk,1

(
D−1

O W
)k

+ Wk,2

(
D−1

I W⊤
)k
)

X, (10)

where Wk,1 and Wk,2 are the learnable filter parameters. K denotes the number of diffusion
steps. D−1

O W, D−1
I W⊤ represent the transfer matrices for the diffusion process (output)

and the reverse diffusion process (input), respectively.
In this study, we couple the static graph generated by prior relationships with the

dynamic graph produced through multi-hop processing, ultimately proposing the spatial
convolution layer of this paper, represented as follows:

Z(k+1)
t = S(X, W) + D(k+1)

(t) (X, Ã), (11)

where Z(k+1)
t represents the output signal of the spatial convolution layer. S(·) and D(·)

denote the outputs of the static and dynamic graphs after the diffusion convolution layer,
respectively.

The spatial convolution layer uses both static graphs and dynamic multi-hop graphs
to handle spatial relationships. It makes use of static graphs to address underlying spatial
dependencies, while dynamic multi-hop graphs are particularly effective at identifying
long-distance spatial connections. We have employed an integrated strategy that combines
dynamic graph modeling with multi-hop operation. This fusion allows the network to
flexibly map dynamic traffic topology changes and simulate interactions between different
road network sections over various time points. This integrated approach ensures a com-
prehensive understanding of spatial relationships. It enhances the network’s adaptability
and responsiveness to fluctuations in traffic patterns.
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3.3.5. Transformer Layer

Recently, there has been increasing interest in neural network architectures that effec-
tively model the internal dependencies of spatiotemporal data. In this paper, we introduce
a transformer layer module specifically designed to handle spatiotemporal information.
Our module integrates a self-attention mechanism, a convolutional layer, and positional
encoding to capture complex patterns in a flexible and scalable manner.

The positional encoding augments the sequence information of the spatiotemporal
embedding, enabling the model to accurately distinguish information across different time
steps and effectively manage long-term dependencies. Enhancing sensitivity to spatiotem-
poral relationships, the self-attention mechanism enables the model to dynamically focus
on information from different locations when processing sequence data. Additionally,
the convolution layer is used to extract local features, thereby enhancing the model’s ca-
pability to perceive the local structure of the input data space. To further stabilize and
expedite the model’s convergence during training, particularly with long sequence data,
we have introduced a layer normalization mechanism. This module uses as input the
spatiotemporal embedding H ∈ RB×T×N×D processed by ST-Blocks, expressed as follows:

H(PE) = H + PE(H), (12)

Q = Conv1

(
H(PE)

)
,

K = Conv2

(
H(PE)

)
,

V = Linear
(

H(PE)

)
,

(13)

A = So f tMax

(
QK⊤
√

C

)
, (14)

Hout = LayerNorm(AV + H(PE)), (15)

where PE is the matrix calculated based on the positional encoding, the input
H(PE) ∈ RB×T×N×D of the transformer block. Conv1 and Conv2 are convolution operations,
and Linear is a linear transformation. A denotes the self-attention matrix,
Hout ∈ RB×T×N×D represents the output of this module.

3.4. Decoder Architecture

We utilize Q diffusion multi-hop graph convolutional gated recurrent units (DMGC-
GRUs) as decoders, as illustrated in Figure 5, to independently capture static and multi-hop
spatial dependencies. Specifically, we replace the matrix multiplication of the traditional
gated recurrent unit (GRU) with diffusion convolutions. This modification allows us to
input the context vector at each time step t within the range t = [t+ 1, . . . , t+ Q]. Multi-hop
dynamic graph convolution, GZ in Figure 5, is introduced in the process of dynamic spatial
dependency computation, and this design broadens the receptive field of the target node
and adaptively captures the fluctuations in the connectivity of the road network. The
computational process for the DMGCGRUs at time t is as follows:

ut = Sigmoid(GZ(Xt ⊕ Ht−1)θu + bu),

rt = Sigmoid(GZ(Xt ⊕ Ht−1)θr + br),

Ct = Tanh(GZ(Xt ⊕ (rt ⊙ Ht−1))θC + bC),

Ht = (1 − ut)⊙ Ct + ut ⊙ Ht−1,

(16)

among them, Xt and Ht denote the input signal and hidden state signal at time t, respec-
tively. rt and ut denote the reset gate and update gate at time t, respectively. The symbol ⊙
denotes the Hadamard product. The vector concatenation is denoted by ⊕. GZ represents
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the multi-hop dynamic graph convolution layer as given in Equation (11), with θu, θr, θC
being the parameters of the corresponding filters.

Figure 5. The architecture of DMGCGRU. It contains dynamic graph multi-hop operations and static
graph coupling processes GZ and GRU units.

3.5. Loss Function

In this study, the loss function used is the mean absolute error (MAE), formulated as
shown in Equation (17).

L(θ) = 1
T

1
N

t=T

∑
t=1

i=N

∑
i=1

|Yi,t − Ŷi,t(θ)| (17)

where θ denotes all trainable parameters, Ŷi,t denotes the predicted output, and Yi,t repre-
sents the ground truth of the i-th node at time t.

4. Experiments
4.1. Datasets

Experiments are performed on two real-world large-scale traffic datasets: METR-LA
and PEMS-BAY. METR-LA consists of 207 nodes, while PEMS-BAY comprises 325 nodes.
Specific statistics can be found in Table 1.

To ensure a fair comparison with other benchmark methods, we adhered to the data
processing procedure outlined in the paper [22]. The dataset was split chronologically,
with 70% used for training, 20% for testing, and the remaining 10% for validation. Further-
more, all input speed data were normalized using the Z-score method [22,31,56].

Table 1. Description and statistics of METR-LA and PEMS-BAY datasets.

Dataset Nodes Edges Time Steps Data Points

METR-LA 207 1515 34,272 6,519,002
PEMS-BAY 325 2369 52,116 16,937,179

4.2. Baselines

To assess the effectiveness of ST-DMN, we benchmarked it against various traditional
and advanced model methodologies. Our focus was on the prediction errors associated
with the 15, 30, and 60 min forecasts. Here is a refined overview of the comparative
baselines we considered:

• HA: employs the mean of past data as a basis for forecasting subsequent traffic volumes.
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• ARIMA [57]: combines autoregression, differencing, and moving average to forecast
non-stationary time series.

• FC-LSTM [58]: combines fully connected layers and LSTM for enhanced time se-
ries prediction.

• DCRNN [22]: it is a deep learning model that integrates a graph convolutional network
with the recurrent neural network and enhances the model’s understanding of spatial
correlation by a diffusion convolution operation.

• Graph WaveNet [31]: uses graph convolutional networks and dilated convolutions to
capture spatiotemporal traffic patterns.

• GMAN [59]: adopts an encoder–decoder architecture with spatiotemporal attention
blocks for dynamic traffic prediction.

• CCRNN [60]: integrates spatial and temporal features using coupled graph convolu-
tions and gated recurrent units.

• GTS [33]: learns probabilistic graph structures for multiple time series prediction.
• PM-MemNet [61]: uses a memory network with pattern matching to predict traffic in

complex road networks.

4.3. Experiment Settings

All deep learning-based models, including our ST-DMN, were implemented using
Python 3.8 and PyTorch 1.10.0 and executed on a GPU server equipped with one RTX
3090/24 GB. We conducted 5 experiments for each model, and the final results were
averaged to ensure reliability and statistical significance.

During our experiments, we optimized all hyperparameters by minimizing the MAE
metric. According to previous work [22], the number of input steps equals the number
of output steps. For instance, we used P = 12 steps (equivalent to 60 min) to predict the
next Q = 12 steps (60 min). The model included L = 2 ST-Blocks, allowed for a maximum
diffusion of a K = 1 step, used an embedding dimension of DGL equal to 16, and employed
a batch size of 64. During training, the Adam optimizer [62] was used with a fixed learning
rate of 0.01, decayed by 0.5 every 10 epoch. Training sessions lasted for 100 epochs,
with early stopping implemented to prevent overfitting.

4.4. Evaluation Metrics

Suppose Y denotes the ground truth, Ŷ denotes the predicted values, and N denotes
the total number of samples. The evaluation metrics used in this study include: mean
absolute error (MAE), measured in mph, root mean square error (RMSE), also measured in
mph, and mean absolute percentage error (MAPE), measured in %. They are widely used
as an evaluation index in traffic state prediction tasks.

MAE =
1
N

N

∑
i=1

|Y − Ŷ| (18)

RMSE =

√√√√ 1
N

N

∑
i=1

(Y − Ŷ) (19)

MAPE =
1
N

N

∑
i=1

|Y − Ŷ
Y

| (20)

5. Results
5.1. Experiment Results and Analysis

The results presented in Table 2 compare the ST-DMN model with other baseline
models based on predictions made 15 min (3 steps), 30 min (6 steps), and 60 min (12 steps)
in advance using the METR-LA and PEMS-BAY datasets. Superior predictive performance
is highlighted in bold, while suboptimal performance is underlined. Our model demon-
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strates superior performance, indicated by bold highlighting. Based on these experimental
findings, the following conclusions can be drawn:

(1) Deep learning methods demonstrate superior performance over traditional time series
methods and machine learning models. Traditional approaches often face challenges
in achieving high data stationarity, whereas deep neural networks excel in modeling
the nonlinear dynamics of traffic data.

(2) Among deep learning models, graph-based architectures like DCRNN, GW-Net,
and GMAN consistently outperform FC-LSTM models. This emphasizes the signifi-
cance of integrating road network data into traffic flow forecasting models, indicating
that spatial connectivity plays a critical role in accurate prediction.

(3) The CCRNN model initializes its learnable graph using a 0–1 adjacency matrix of
the road network, while the GTS model transforms the problem into learning a
probabilistic graphical model by optimizing the performance averaged across the
graph distribution. These models leverage dynamic graph structures to enhance
predictive performance over earlier methods.

(4) The PM-MemNet model innovatively uses a key-value memory structure to associate
input data with representative patterns and identify the best pattern for predicting
future traffic conditions based on given spatiotemporal features.

At present, the PM-MemNet model represents the forefront of traffic forecasting and
shows superior performance.

Table 2. Comparison of forecasting performance between ST-DMN and other baseline models on the
METR-LA and PEMS-BAY datasets.

Dataset Models
15 min/Horizon 3 30 min/Horizon 6 60 min/Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

HA 4.16 7.80 13.00 4.16 7.80 13.00 4.16 7.80 13.00
ARIMA [57] 3.99 8.12 9.60 5.15 10.45 12.7 6.90 13.23 17.40

FC-LSTM [58] 3.44 6.30 9.60 3.77 7.23 10.90 4.37 8.69 13.20
DCRNN [22] 2.77 5.38 7.30 3.15 6.45 8.80 3.60 7.60 10.50
GW-Net [31] 2.69 5.15 6.90 3.07 6.22 8.37 3.53 7.37 10.01
GMAN [59] 2.80 5.55 7.41 3.12 6.49 8.73 3.44 7.35 10.07
CCRNN [60] 2.85 5.54 7.50 3.24 6.54 8.90 3.73 7.65 10.59

GTS [33] 2.65 5.22 6.83 3.09 6.34 8.45 3.59 7.29 9.83
PM-MemNet [61] 2.65 5.29 7.01 3.03 6.29 8.42 3.46 7.56 10.26

ST-DMN 2.63 5.09 6.65 3.01 6.15 8.08 3.45 7.32 9.91

PEMS-BAY

HA 2.88 5.59 6.80 2.88 5.59 6.80 2.88 5.59 6.80
ARIMA [57] 1.62 3.30 3.50 2.33 4.76 5.40 3.38 6.50 8.30

FC-LSTM [58] 2.05 4.19 4.80 2.20 4.55 5.20 2.37 4.96 5.70
DCRNN [22] 1.38 2.95 2.90 1.74 3.97 3.90 2.07 4.74 4.90
GW-Net [31] 1.30 2.74 2.70 1.63 3.70 3.70 1.95 4.52 4.60
GMAN [59] 1.35 2.90 2.87 1.65 3.82 3.74 1.92 4.49 4.52
CCRNN [60] 1.38 2.90 2.90 1.74 3.87 3.90 2.07 4.65 4.87

GTS [33] 1.39 2.95 2.88 1.78 4.06 3.98 2.24 5.17 5.35
PM-MemNet [61] 1.34 2.82 2.81 1.65 3.76 3.71 1.95 4.49 4.54

ST-DMN 1.30 2.74 2.73 1.62 3.73 3.67 1.89 4.46 4.51

We compared the performance of the ST-DMN with the latest baseline model using
the relative error rate metric. On the METR-LA dataset, our ST-DMN model showed
improvements in the mean absolute percentage error (MAPE) of 5.41% for 3 steps, 4.21%
for 6 steps, and 3.53% for 12 steps. When tested on the PEMS-BAY dataset, we observed
improvements of 2.93%, 1.09%, and 0.67% for the 3, 6, and 12 steps ahead predictions,
respectively. Overall, the experimental results demonstrate that ST-DMN performs strongly
and competitively against both traditional and state-of-the-art baseline models. The ability
of the model to leverage spatiotemporal information significantly enhances prediction
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accuracy, making it a promising candidate for practical applications, including traffic
management and urban planning.

Figure 6 compares the time series prediction performance of the four latest models
on the METR-LA and PEMS-BAY datasets. As illustrated, the prediction errors for all
models tend to increase as the forecasted time horizon extends. This trend is due to the
increased uncertainty inherent in longer prediction spans. Overall, the ST-DMN model
performs better than the others on both datasets, with suboptimal results for the one-hour
forecast on METR-LA. This may be because the factors to be considered become more
complex and uncertain as the prediction time increases, such as with accidents and weather
conditions. The PM-MemNet model also demonstrates robust performance, particularly
in short-term forecasting, likely owing to its efficient memory mechanism for handling
time series data. Conversely, the CCRN model exhibits significant errors across all time
domains, possibly due to its simpler structure struggling to capture the intricacies of
spatiotemporal relationships.

In summary, the ST-DMN model shows more prominent performance on both datasets,
likely due to its ability to effectively handle spatiotemporal dependencies in time series
data. However, errors for all models increase as the forecast time interval lengthens,
highlighting the inherent challenge of time series forecasting: longer forecasts come with
greater uncertainty.

Figure 6. Prediction error at each horizon on METR-LA and PEMS-BAY.

5.2. Model Configuration Analysis

Throughout our study, we conducted several experiments to assess the impact of
different parameter settings on model performance. Table 3 shows the average values of
MAE, RMSE, and MAPE for various parameters.

We started by analyzing the parameter k in Equation (9). The experimental results
were notably influenced by the chosen value of k. As k increases, the average values of the
three metrics decrease, indicating an overall improvement in predictive performance. For
instance, when k = 3, the MAE decreased by 0.04 compared to when k = 1, and the RMSE
decreased by 0.1. This aligns with the findings in [63], demonstrating that by considering
more distant neighbors through multi-hop paths, the model’s predictive outcomes are
positively affected. However, we also noticed that when k reaches 4, the performance
declined. This suggests that while a larger k captures a broader graph structure information,
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it also increases computational complexity. Therefore, striking a balance between model
performance and computational efficiency is crucial. Furthermore, it became apparent
that the additional improvements in predictive performance become limited with further
increases in k.

Next, we explored how the decay factor α in Equation (9) affects experimental out-
comes. Our study revealed that a smaller α has a positive impact on the model, yielding the
best results when α = 0.15. The parameter α influences the amplification of low-frequency
signals in the graph structure. A smaller α enhances low-frequency signals while sup-
pressing high-frequency ones [63]. Selecting an appropriate α value allows the model to
effectively capture graph structure information and improves prediction performance.

Lastly, we discussed the critical parameter of node embedding dimensions in DGL.
Table 3 reveals that neither excessively large nor small embedding dimensions achieve
optimal performance. Smaller embedding dimensions may limit the expressive power
of node features, while larger dimensions increase computational complexity and risk
overfitting. The model achieves the best results with an embedding dimension of 16,
demonstrating its robustness.

Analyzing these parameters provides a better understanding of their impact on model
performance, which facilitates more informed decisions in practical applications.

Table 3. Average performance metrics for different model configurations.

Configurations k(hops) α Embedding MAE RMSE MAPE (%)

k(hops)

1 0.15 16 3.01 6.12 8.02
2 0.15 16 3.00 6.11 8.08
3 0.15 16 2.97 6.02 7.98
4 0.15 16 2.98 6.10 8.03

α

3 0.1 16 2.98 6.04 7.94
3 0.15 16 2.97 6.02 7.98
3 0.3 16 2.99 6.05 7.98
3 0.4 16 2.99 6.07 7.99
3 0.5 16 3.00 6.05 8.01

Embedding

3 0.15 8 3.00 6.12 7.99
3 0.15 16 2.97 6.02 7.98
3 0.15 32 3.01 6.10 7.99
3 0.15 64 3.00 6.12 8.19

5.3. Model Efficiency

Table 4 presents a comparison of the computation times between ST-DMN and other
state-of-the-art baseline models on the METR-LA dataset. We recorded the average train-
ing time per epoch for each model. One advantage of ST-DMN over DCRNN is that
its encoder does not use a recurrent neural network, resulting in better computational
performance. PM-MemNet utilizes graph convolutional memory networks (GCMem),
which can increase computational costs when dealing with large-scale datasets. While GTS
simplifies the optimization process with a single-stage optimization approach, the search
for an optimal solution among many possible graph structures can increase computational
demands. Despite the lack of a dedicated decoder, ST-DMN outperforms Graph WaveNet
in predictive performance, although it is slightly slower in terms of computation speed.
Therefore, for researchers looking for a balance between computational cost and perfor-
mance, ST-DMN is an ideal choice, offering enhanced performance while maintaining high
computational efficiency.
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Table 4. Comparison of computation time of different models on the METR-LA dataset.

Models ST-DMN PM-
MemNet GTS DCRNN GW-Net

Time
(s/epoch) 82.44 131.38 727.60 249.31 53.68

5.4. Ablation Study

To thoroughly validate our proposed model design, we conducted a series of ablation
experiments to systematically analyze the impact of various components on performance.
These experiments were evaluated using the METR-LA and PEMS-BAY datasets. The
results, detailed in Table 5, offer a comprehensive overview of the model’s performance
across different prediction intervals: 15 min (3 steps), 30 min (6 steps), and 60 min (12 steps).
The distinctive features of these variants are as follows:

• “w/o Transformer Layer” excludes the transformer layer.
• “w/o DGL” excludes the dynamic graph learning.
• “w/o Multi-Hop” excludes the multi-hop operation.

Table 5. The results of ablation experiments on METR-LA and PEMS-BAY datasets.

Dataset Models
15 min/Horizon 3 30 min/Horizon 6 60 min/Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

w/o Transformer Layer 2.64 5.12 6.75 3.02 6.20 8.20 3.48 7.39 9.94
w/o DGL 2.66 5.14 6.71 3.04 6.24 8.14 3.50 7.44 9.87

w/o Multi-Hop 2.66 5.17 6.72 3.03 6.23 8.17 3.47 7.32 9.89
ST-DMN 2.63 5.09 6.65 3.01 6.15 8.08 3.45 7.32 9.91

PEMS-BAY

w/o Transformer Layer 1.31 2.75 2.77 1.64 3.77 3.76 1.92 4.52 4.59
w/o DGL 1.31 2.77 2.77 1.63 3.77 3.73 1.92 4.54 4.60

w/o Multi-Hop 1.32 2.77 2.77 1.65 3.78 3.73 1.94 4.53 4.57
ST-DMN 1.30 2.74 2.73 1.62 3.73 3.67 1.89 4.46 4.51

In our evaluation of the METR-LA dataset, we initially assessed the effects of excluding
the transformer layer from the model. The results indicated a slight increase in MAE,
RMSE, and MAPE across all prediction horizons for the model lacking the transformer
layer. This finding emphasizes the critical role of the transformer layer in capturing
spatiotemporal relationships within traffic data. Similarly, we investigated the performance
impact of removing the dynamic graph learning (DGL) component. The results indicated
a decrease in performance, highlighting the significance of dynamic graphs in learning
spatial dependencies between traffic nodes. Furthermore, we examined the contribution
of multi-hop operation to the model. The exclusion of multi-hop operation resulted in
higher prediction errors, highlighting their essential role in modeling extended spatial
dependencies. The model’s ability to thoroughly capture traffic topology information
within the road network and mitigate the issue of over-smoothing further highlights the
importance of these operations.

The complete model, ST-DMN, incorporating all proposed components, demonstrates
the best performance across all evaluation metrics and prediction periods of the METR-LA
dataset. Similar trends as those on the METR-LA dataset were observed in the ablation
experiments conducted on the PEMS-BAY. The performance decline of the ST-DMN model
when excluding the transformer layer, DGL, and multi-hop operations are graphically
represented in Figure 7. Consistently, the comprehensive ST-DMN model outperforms
its counterparts lacking certain components across all evaluation metrics and different
prediction horizons.
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Figure 7. Comparison of ST-DMN variants on the METR-LA and PEMS-BAY dataset.

In summary, the ablation experiments highlight the effectiveness of the proposed
components in the ST-DMN model and emphasize the synergistic effect of Transformer
layers, DGL, and multi-hop operations in improving the overall prediction accuracy on the
METR-LA and PEMS-BAY datasets. This detailed analysis further validates the importance
of our proposed model architecture in capturing the spatiotemporal dependencies necessary
for accurate traffic flow forecasting.

6. Conclusions

This study introduces the spatiotemporal dynamic multi-hop network (ST-DMN),
an innovative architectural model designed to address the complexity of traffic flow fore-
casting. The core of ST-DMN is a dynamic graph learning algorithm that iteratively
updates the traffic network graph to accurately represent the evolving traffic patterns.
By integrating multi-hop operation with diffusion convolutional techniques, our model
effectively captures long-distance spatial dependencies, an important aspect of traffic data
that existing models fail to adequately address. In addition, the incorporation of trans-
former layers enables ST-DMN to effectively understand the global temporal structure,
consequently enhancing its prediction ability. ST-DMN successfully captures the intricate
spatiotemporal dependence of traffic speed and outperforms existing models in terms
of prediction accuracy. In future work, we plan to explore the application of extended
models, including validation on different cities or traffic network structures to evaluate its
generalization performance.
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