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Abstract: The climate and energy crisis requires immediate countermeasures. Renewable energy
communities (RECs) are capable of enhancing the consumption of renewable energy, involving
citizens with a leading role in the energy transition process. The main objective of a REC is to
maximize the consumption of renewable energy by reducing the mismatch between energy supply
and demand. This is possible through the use of strategies and technologies including energy storage
systems. Among these, the use of thermal energy storage (TES) is an efficient strategy due to the
lower investment required compared to other storage technologies, like electric batteries. This study
aims to define the role of TES in RECs, through a bibliometric analysis, in order to highlight research
trends and possible gaps. This study shows that the existing literature on TES does not present terms
related to RECs, thus presenting a research gap. On the other hand, RESs address the topic of energy
storage in the literature, without focusing on TES in particular but considering the general aspect
of the topic. Therefore, this leaves open a possibility for the development of research on TES as a
possible technology applied to a REC to maximize the renewable energy sharing.

Keywords: renewable energy community; thermal energy storage (TES); bibliometric analysis

1. Introduction

Year after year, the climate crisis represents an increasingly concrete threat against
which it is now urgent to take countermeasures. In the stocktaking at the last UN Climate
Change Conference (COP 28), the goal of peaking global greenhouse gas emissions by 2025
and reducing them by 43% by 2030 and 60% by 2035 compared to 2019 levels in order to
limit global warming to 1.5 °C was confirmed [1].

In the context of climate change mitigation, energy is one of the sectors where emission
reductions can have the greatest short-term effects. This is why there is an increasing need
for a transition to renewable energy sources and a consequent shift away from fossil fuels.

The European Union manifested this objective in recent years through the “Clean
Energy Package” [2] and the “Fit for 55” [3], measures promoted by the European Commis-
sion that set a perspective of climate neutrality from fossil fuels from 2050 onwards. The
Clean Energy Package focus aims to transform the economy and society according to a new
sustainability paradigm, in which citizens should be encouraged to actively participate in
the energy market, even in aggregated forms, to foster their empowerment and make them
responsible for their consumption. To achieve this objective, consumers should be able to
directly manage their energy.
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In this context, renewable energy communities (RECs) [4] represent a social innovation
capable of advancing more equitable models for managing, consuming, and producing
energy, enhancing democratic decision-making and control over renewable energy, and
placing it in the hands of communities and individuals. This citizens” empowerment
further contributes to increasing social acceptance of renewable energy generation plants
thanks to the underlying participatory approaches that provide citizens an active role in
the decision-making process [5].

Introduced by the European Renewable Energy Directive (RED II), RECs are au-
tonomous legal entities, in which the members and stakeholders controlling it can partic-
ipate openly and voluntarily, staying close to renewable energy production plants. This
participation must not generate financial gains, but can give economic, social, environ-
mental, and energy benefits. Members of an energy community can be classified into
energy producers, energy consumers, and energy prosumers, i.e., producers of energy that
self-consume on site. The main objective of a REC is to maximize the sharing of energy pro-
duced through renewable energy sources (RESs) in a collective self-consumption scheme [6].
However, the use of RESs entails the usual problem of solving the time mismatch between
production and user demand for energy.

In this context, the so-called power-to-X strategies [7] consist of energy carrier conver-
sions in order to efficiently use the available energy storage technologies. Power-to-heat [8]
is an example of a strategy for which thermal energy storage (TES) systems play an impor-
tant role. With the use of a heat pump, it is possible to convert electrical energy into a heat
carrier, storing it to meet the heat demand of a utility. In these systems, TES [9] consist-
ing of hot water tanks is a simple and economical solution for storing excess renewable
energy [10].

This can be a way of increasing the sharing of renewable energy within a REC. In fact,
the use of TES allows for storing the excess electrical energy produced by the plants of
the producers that are part of the REC. Thus, the use of energy from renewable sources
is guaranteed to the different consumers of the REC, not only in the periods of electrical
energy demand peaks, but also in the thermal energy demand peaks.

This solution proves to be more sustainable than the installation of an electric storage
battery. This is evidenced by Fambri et al. [11], who in their study compare the use of an
electric battery and a heat pump thermal energy storage system in a REC.

However, the use of TES also has additional benefits. For example, it can decrease
the thermal energy demand of buildings; counteract the randomness of renewable energy
production, both thermal and electrical; and constitute a source of heat recovery [12].

Furthermore, in a larger field than the individual building, e.g., in the case of dis-
tricts [13—15], more relatable to a REC, they can foster the diffusion, development, and
flexibility of district heating and cooling systems powered by renewables, providing ther-
mal energy to all consumers in them.

This study shows that although there is an energy saving from increased self-
consumption of renewables through electrical storage, the economic benefit is not such as
to justify the investment. On the other hand, the use of TES, despite having lower results in
terms of energy savings, proves to be more cost-effective. The use of TES in a REC is also
taken up in other works as a strategy to utilize surplus energy [16-18].

The aim of this paper is to give a detailed overview and report on the state of the art
in the role and involvement of TES within RECs. Thus, a bibliometric analysis, which is a
recognized technique of interest used in order to study scientific advances in a given topic,
is carried out. A quantitative analysis is conducted regarding the number of publications,
authors, and institutions researching this topic.

The results show that studies about the integration of TES to RECs, two very recent
topics that have grown considerably in recent years, are still only marginal, as evidenced
by the small number of papers about it.
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Furthermore, to the best of the authors’ knowledge, there are still no papers in
the literature that fill this gap, nor are there any that do so through the bibliometric
analysis approach.

The objective of this study is also to provide a guide for researchers wishing to
investigate the main networks and institutions working in the field of TES as a tool for
sharing renewable energy within RECs, and to use the main research gaps identified to
inspire future research on this topic, filling this deficit.

This research can also be for industries, public administrations, and private citizens
who intend to become part of a REC, seeking to deepen their understanding of TES as a
tool for sharing renewable energy surplus.

2. Materials and Methods

This section reports the methodology applied to develop the bibliometric analysis
shown in the following sections. For this work, Scopus was preferred as the reference
database. Web of Science was not considered due to its low number of documents on
technology topics [19], while ResearchGate and Google Scholar were also not considered
due to their low reliability in the bibliometric field [20]. In order to identify research trends
and gaps in the application of TES in energy communities, bibliometric data were collected
using two queries (Table 1) on the database Scopus, with the last access on 12 January
2024. A first query was used to collect bibliometric data related to the studies on TES in
buildings including districts [21]. Compared to the work by Borri et al. [17], the query used
in this study includes both buildings and districts, whereas previously, these categories
were analyzed separately. In addition, the category “roads and bridges” is not considered
here. Moreover, in this case, the transport sector was excluded in the query. The analysis of
TES was carried out regarding its application to buildings and districts, in order to consider
not only the dimension of the individual building but also a broader one, as a community.

Table 1. Queries used for the Scopus database.

Topic

Query

TITLE-ABS-KEY (“thermal energy storage*” AND (“building*” OR “built

TES in buildings and districts environment” OR “district*” OR “municipal*” OR “neighbo$rhood”) AND NOT

(“aircraft” OR “transport* application” OR “transport sector”))

“energy communit*” AND “renewable*” AND NOT (“renewable energy
forecasting” OR “building energy community” OR “energy corridors” OR “ solar

Renewable energy communities renewable energy community” OR “NGH” OR “Cu2Se”OR “SDG 7”0OR

“computational intelligence (CI) community” OR “MEG” OR “nuclear” OR
“materials, chemistry, and renewable energy communities”)

A second, more specific query, was then formulated to draw the state of the art in TES,
specifically in energy communities. The concept of “energy community” was combined
with the aspect of “renewable” sources. This is because renewable energy communities
are often referred to simply as “energy communities”. However, the term “renewable” is
added, as sometimes the term “energy community” may refer to a broader and diversified
concept of community, understood as a group of researchers and scientists in the specific
field of energy, which is different from the concept intended in this paper. Therefore, the

voou

query excludes the keywords “building energy community”, “solar renewable energy
community”, “computational intelligence (CI) community”, “materials, chemistry, and re-
newable energy communities”, and “energy corridors”. Similarly, terms such as “nuclear”,
“MEG”, “NGH”, “Cu2Se”, and “SDG 7” were excluded, as they are related to papers not
relevant to the research in question.

In this study, bibliometric data were used to identify the main trends in the number
of publications. In order to identify the research gaps, keywords were visually mapped

and analyzed through the open-source software VOSviewer (version 1.6.20) [22]. Through
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the latter, it is possible to graphically visualize and analyze bibliometric networks based
on the links between different items of the research publication. These links can be about
co-authorship, co-occurrence, citation, bibliographic coupling, or co-citation. The elements
available for generating maps from publications include authors, institutions, countries,
and keywords. The practicality of these analyses conducted with VOSviewer is that the
output data can be easily exported and displayed in other resources [23].

Furthermore, the great advantage of VOSviewer is that through its ease of use and
accessibility, it enables accurate bibliometric analyses using clusters even for those without
extensive knowledge of clustering or software skills [24].

For this reason, VOSviewer is considered a validated tool for investigating gaps and re-
search opportunities in the scientific literature. In particular, it is interesting to see how this
software is already used to support bibliometric analysis within studies concerning energy
storage [25-28], and also those concerning prosumers and energy communities [29-32].

In this paper, the findings regarding the co-occurrence of author keywords are pre-
sented through a network visualization. Each element (author keyword) is represented by
a colored circle, with its size reflecting its weight in terms of occurrences or link strength.
The colors denote the clusters to which different elements belong, and the distance between
circles indicates the relationship between the items. Finally, the two indicated queries were
merged within VOSviewer and analyzed together in order to highlight possible points of
contact between the two topics and possible research gaps.

3. Results and Discussion
3.1. TES in Buildings and Districts

This section reports the results of the bibliometric analysis carried out with the method-
ology described in Section 2. Figure 1 shows the number of documents published in the
field of TES applied to buildings and districts. The trend indicates a rapid increase in
the number of publications per year since 2009, with over 500 publications in the year
2023. This demonstrates that TES is gaining momentum in built environment applications,
becoming a pivotal component of the energy transition.

600
500

N
o
o

300
200
100

0
1993 1998 2003 2008 2013 2018 2023
Year

Number of documents published

Figure 1. Number of documents published per year in thermal energy storage.

Figure 2 illustrates the publication trend over the years for the leading territories that
have published papers on TES for building and district applications. As already illustrated
by Borri et al. [17], the data reveal that the United States (USA) began publishing documents
related to TES before 1990, whereas Europe and China commenced their publications
after 2008. In the USA, most cited publications are focused on phase change materials
(PCMs) [33-35], optimizing the control of TES [36,37], and the use of TES in district heating
and cooling systems [38].
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Figure 2. Number of publications over the years on TES in buildings and districts for the top 3
territories between 1993 and 2023.

Research on this topic in Europe has increased rapidly as a result of directives about
the energy performance of buildings and energy efficiency introduced by the European
Union [39,40]. The most cited papers from Europe on Scopus predominantly consist of
review articles focusing on PCMs in buildings [41-44].

In addition to these, within the same scope lies the most cited article, published
by Cabeza et al. [45] in 2011, which constitutes a review on the use of this technology,
classification of materials, materials available, and problems and possible solutions on the
application of such materials in buildings. Additional highly cited documents include
general reviews on TES and the materials used in their application [9,46].

From Figure 2, it can be observed that China follows a similar trend to that of the
European Union, albeit with a lower number of publications. This is because, like Europe,
China has implemented a substantial plan to reduce emissions from fossil fuels by 2030
compared to those in 2005 [47].

Among the most cited articles in this field, there are general reviews on TES [48] and
the application of latent heat thermal energy storage [49]. Additionally, numerous reviews
regarding the study and use of PCMs [50-53] are available on Scopus. The most cited paper
concerns precisely this topic and was published in 2012 by Zhou et al. [54]. In Figure 3, the
main European countries publishing documents regarding the application of TES in the
context of buildings and districts are shown.

300
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Figure 3. Number of publications over the years on TES in buildings and districts for the top EU27
countries between 1993 and 2023.

It is possible to notice that Spain, Italy, and Germany have a similar trend of publica-
tions that started to rapidly increase after 2010. As of 2023, Italy is the country with the
highest number of publications, among which the most cited ones focus on energy manage-
ment strategies [55-57], cogeneration [58,59], district heating and cooling systems [60], and
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the use of thermal energy storage techniques in thermal insulation [61]. The second country
with the highest number of publications is Spain, whose studies focus PCMs [62,63] and
the application of TES in the domain of buildings [64,65].

Finally, the third country with the highest number of publications is Germany, which
covers various topics including the application of TES to buildings to enhance their develop-
ment [66,67], the study of PCMs [68,69], aquifer TES [70], TES for solar power plants [71,72],
and district heating [73].

Figure 4 illustrates the journals with the most publications related to TES applied
to buildings and districts. The best is Energy and Buildings, with 297 publications as of
December 2023. It is interesting that the journal Energies appears in Figure 4, with 143
open-access publications. The most cited paper from this journal was published in 2020 by
Enescu et al. [74]. The authors and the institutions with most publications on TES applied to
buildings and districts are shown in Tables 2 and 3, respectively. The author with the most
publications is Luisa F. Cabeza, affiliated with the “Universitat de Lleida”, in Spain, with
121 publications as of December 2023. Her most cited article on TES applied to buildings
and districts dates back to 2011 and it shows a review of the publications on the use of
PCMs in buildings [45]. Some of his other most cited works concern the application of
PCMs [75-78] and TES technologies integrated [79,80] to the field of buildings. This makes
Universitat de Lleida the affiliation with the highest number of publications on this topic.

The second most published author is Ahmet Sari, affiliated with Karadeniz Technical
University, Turkey, which is also among the affiliations with the highest number of pub-
lications on TES in buildings and districts. His most cited articles focus on the thermal
properties of PCMs [81-84]. As China is the second most published territory, two Chinese
affiliations are among those with the most published articles: the Ministry of Education of
the People’s Republic of China, and Tsinghua University.

Figure 5 shows the co-occurrence of keywords obtained through the software VOSviewer
for the first query related to TES in buildings and districts. As stated in the methodology,
the keywords belonging to the same topic were grouped to represent the macro-areas of
research. In order to obtain the results displayed in the figure, the keywords were filtered
with a minimum occurrence of 10. In the right part of the figure (green cluster), it is possible
to notice that a lot of studies are related to the development and the improvement of storage
materials, in particular PCMs. On the left side of the figure, it is possible to notice that the
bigger cluster (red) is related to TES applications, including keywords such as “control”,
“optimization”, “demand side management”, “numerical model”, and “district heating”.
The blue cluster is related to the applications of TES as a system in buildings, including
keywords such as “heating”, “cooling”, “buildings”, and “energy saving”. The other
main cluster (yellow) is related to methods to analyze improve the thermal parameters of
storage materials.

Energes IR
Energy NN
Jurnal Of Energy Storage [N
Applied Energy N
Energy And Buildings

0 50 100 150 200 250 300 350

Figure 4. Top 5 journals publishing on TES applied to buildings and districts.
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Table 2. Top 5 institutions with documents published on TES in buildings and districts.

Affiliation Publication Country
Universitat de Lleida 123 Spain
Ministry of Education of the .
People’s Republic of China 108 China
Tsinghua University 71 China
Karadeniz Technical
University 59 Turkey
King Fahd University of 58 Saudi Arabia

Petroleum and Minerals

Table 3. Top 10 authors on documents published on TES in buildings and districts.

Author Name # Publications Affiliation Country
Cabeza, L.F. 121 Universitat de Lleida Spain
Sari, A. 84 Karader}lz Te.chmcal Saudi Arabia
University
Barreneche, C. 40 Universitat de Spain
Barcelona
Tyagi, V.V. 37 Shri Mata Vashini India

Devi University
Universitat de

Fernandez, A.L 34 Spain
Barcelona
. Karadeniz Technical
Hekimoglu, G. 34 . . Turkey
University
Kim, S. 33 Yonsei University South Korea
de Gracia, A. 28 Universitat de Lleida Spain
Gencel, O. 25 Bartin Universitesi Turkey
Universita degli Studi
Pisello, A.L. 25 . . Ital
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Figure 5. Network visualization of author keywords on “TES on buildings and districts” elaborated
with VOSviewer.

Table 4 shows the author keywords with the highest number of occurrences on “TES
on buildings and districts”. While the keyword with the most occurrences is obviously
“TES”, it can be seen that the second is “PCM (phase change materials)”. This is evidenced
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by the large number of articles that were published on this topic in different territories
and countries. A further keyword with a high occurrence is “numerical model”, due to
the widespread use in the literature of numerical modelling techniques to simulate the
behavior of TES, in particular PCMs [35,85-87].

Table 4. Highest number of occurrences on “TES on buildings and districts”.

Keyword Number of Occurrences
TES (thermal energy storage) 1609
PCM (phase change material) 1257
numerical model 230
optimization 204
energy storage 184
district heating 168
latent heat TES 164
solar energy 155
heat pump 138
phase change enthalpy 124

The keyword “optimization” mainly refers to optimization studies for the integra-
tion of thermal storage in building systems, in order to reduce the mismatch between
demand and supply of renewable energy and minimize costs [67,88-91]. The scope of the
districts taken into consideration through the query is highlighted by the keyword “district
heating”. Among the most frequently cited articles with this keyword are applications
of TES to combined heat and power (CHP) systems for district heating [15,92,93], review
articles [38,60,94], and studies on the thermal inertia of buildings as thermal storage in
district heating and cooling systems [95,96].

A research gap emerges from Figure 5. In fact, there are no terms or keywords re-
lated to RECs. However, there are keywords such as “distributed energy system”, “smart
grid”, “micro-grid”, and “sector coupling”, which are related to a broader concept than
the single building and can be approached as energy sharing. Indeed, these terms are
related to a collective dimension of energy consumption and management, attributable to
the concept of RECs. The keyword “distributed energy system” refers to a system based on
small-scale installations distributed across the territory, in stark contrast to the traditional
model of centrally produced power plants. It is precisely on this basis that the REC is
built, aiming to facilitate the spread of renewable energies in the territory, meeting both
environmental and community needs [97]. The concept of a “microgrid” is instead linked to
energy communities through the themes of energy self-sufficiency and energy sharing. The
members of an energy community are no longer seen as mere consumers, but become “pro-
sumers”, meaning they are energy producers who consume and are capable of exchanging
energy with each other through “peer-to-peer” sharing mechanisms [98,99]. Furthermore,
through energy efficiency systems and smart management energy systems, linked to the
maximization of renewable energy sharing, “smart grids” become a fundamental tool for
RECs [100-102]. Lastly, the possibility of having a highly integrated energy system, capable
of maximizing the use of renewable energy produced either through storage [103] or across
different consumption sectors [104,105], makes “sector coupling” a fundamental element
in optimizing energy communities.

Figures 6 and 7 show the co-occurrence of these keywords and their links. The figures
highlight, given the small number of links, the low relevance of these terms in the literature.
Figure 6 shows the co-occurrence of the keyword “distributed energy system”. The few
links present all concern the red cluster, in the context of TES applications. The most cited
paper on distributed energy systems applied in TES was published in 2020, from Wirtz
et al. [73], and it is about a low-temperature network of buildings equipped with heat
pumps, chillers, and heat exchangers for thermal energy storage, connected to minimize
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annual energy costs and to reduce emissions. This concept is very close to that of RECs and
is also approached by other studies on this topic [106-108].

distributed

(a)

! - thermal gomfort

distributed ge ne I AL - i - Phas SMBE

(b)

Figure 6. Co-occurrence and links concerning the keywords (a) “distributed energy system” and

(b) “smart grid”.
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Figure 7. Co-occurrence and links regarding the keywords (a) “micro-grid”, and (b) “sector coupling”.

Figure 7 shows how microgrids and sector coupling have the lowest occurrences
and thus represent research gaps in the applications of TES. In fact, the term microgrid
has only four links besides TES: “demand side management”, “artificial intelligence”,
“optimization”, and “renewables”. It is no coincidence that the main studies of TES on this
topic concern optimal energy management models applied to microgrids [109-111]. Also,
the term sector coupling has just four links besides TES, and they are “district heating”,

V7

“energy management”, “numerical model”, and “smart grid”. It is interesting to note that
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the most cited article related to this keyword in the context of TES, published by Bartolini
et al. [112] in 2020, has as its subject the concept of an energy community based on a
multi-energy system to which various storage technologies are applied.

The most cited article in the field of microgrids applied to TES dates back to 2021 and
was published by Li et al. [113]. The most cited article on sector coupling applied to TES
is by Zeyen et al. and it explores strategies to mitigate winter heating demand peaks in
the European Union, crucial for cost and emissions reduction goals [114]. In the field of
materials development, they are all related to the keyword “TES”, while in the field of TES
applications, they are related to terms such as “demand side management”, “optimization”,
and “numerical model”.

3.2. Renewable Energy Communities

The number of documents published related to renewable energy communities (RECs)
is shown in Figure 8. The trend shows a steady and progressive increase in publications
since 2018. This shows how the energy community is considered a key tool in the energy
transition process.

350
300
250
200
150
100

Number of document published

50

0
2003 2008 2013 2018 2023
Year

Figure 8. Number of publications per year in RECs.

Figure 9 illustrates the trend in publications for the main territories that have pub-
lished on renewable energy communities (RECs). The trend shows that, compared to the
United States and China, the European Union has significantly increased the number of
publications on RECs since 2018. This increase is due to the European Parliament approval
of Directive 2018/2001/EU (RED II) [115] and Directive 2019/944/EU (IEM) [116]. These
directives are part of the Clean Energy Package [2], a collection of regulations adopted by
the European Union in 2019 to decarbonize the European energy system. Through the RED
II and IEM directives, the concept of an energy community was introduced in Europe as
well as the concept of renewable energy sharing.

1000

B (o2} o]
(=] (=] o
o o o

Number of publications

N
(=]
o

2003 2008 2013 2018 2023
Years
—BU-27 United States — China

Figure 9. Number of publications over the years on RECs for the top 3 territories between 1993 and
2023.
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The article with the highest number of citations in Europe was published by Lowitzsch
et al. [117] in 2020 and contained a definition of the European regulatory context of the
RED II and IEM directives, providing a preliminary practical interpretation while awaiting
implementation by the member states of the European Union. Furthermore, the most
cited papers focus on the innovations brought about by energy communities as a tool for
transitioning towards renewable energies, from regulatory [118], economic [119], as well as
environmental and social perspectives [120-123].

Despite significantly fewer publications, United States ranks second in terms of the
highest number of citations. In the USA, there is a notable focus on research concerning net
zero energy communities [98,124-126], where the primary goal is achieving zero emissions
from fossil fuel combustion. Furthermore, several studies address the application in energy
communities of optimization strategies [127,128] and of battery storage systems [98,129] for
these communities. Regarding this topic, the most cited paper in the USA was published
by Barbour et al. in 2018 [130].

Finally, China has started showing interest in RECs quite recently, since 2016, as seen
in Figure 9. The most cited article is from 2020, authored by Feng et al. [127], and evaluates
a coalitional game model to manage an energy community. The majority of the most cited
articles in China also focus on net zero energy communities [131-135].

Figure 10 shows the main European countries by the number of publications between
1993 and 2023. Among these, Italy is the country that has increased its number of publi-
cations on this topic the most in recent years. In the figure, there is a noticeable positive
deviation in the trend starting from 2018 and a further one starting from 2021. These
two dates correspond to the implementation of the RED II and IEM directives in Italian
legislation. In 2018, there was an early implementation through Law 8/2020 [136], while in
2021, there was the final implementation through Legislative Decree 199/2021 [137], which
defined the characteristics of RECs in terms of energy and economics by establishing a
shared energy incentive system [138].

400
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200

Number of publications

2007 2011 2015 2019 2023
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—ltaly Spain  —Germany
Figure 10. Number of publications during the year in RECs for the top 3 EU27 countries between

1993 and 2023.

The implementation of these directives in Italian legislation has provided a boost to
research and development in energy communities as a new tool for energy management.
The most cited Italian article is by Moroni et al. [139], dating back to 2019, and represents an
introduction to energy communities through a taxonomic approach, attempting to explain
what they are and their importance in the energy transition. Additional highly cited articles
focus on the application of battery energy storage to RECs [112,129], smart energy systems
in so-called “smart energy communities” [140,141], and the definition of optimization
models for RECs [142,143].

In comparison to Italy, as can also be seen from Figure 10, in Germany, energy
communities have represented a minor element of novelty, because they have already
been established since the early 2000s in the German energy system, as “energy coop-
eratives” [144]. Furthermore, already in 2017, the Renewable Energy Sources Act 2017
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(EEG) [145] defined self-supply and introduced the definition of an “energy community
into German legislation.

The most cited paper in Germany about RECs is from Lowitzsh et al. [117] and
introduces the novelties of the Clean Energy Package in the European energy scenario.
Further articles among the most cited focus on the importance of the new European direc-
tives [118,146]. In addition, as evidence of the established presence of energy communities
in the German system, among the most cited articles is one by Schweizer-Ries et al. [147],
dating back to 2008, which investigates the social dimension of the acceptability of renew-
able energies in the territory.

Spain represents the third European country in terms of the number of citations on the
topic of energy communities. In 2019, Royal Decree 244 /2019 [148] of April 5 established a
legal definition of self-consumption and allowed for shared or collective self-consumption,
both in the internal network and in nearby installations over the network. Indeed, Figure 10
shows an increase in the publication trend starting from 2019. The most cited article on
energy communities in Spain was published in 2019 by Lezama et al. [119] and deals with
the role of energy communities in local markets and how local markets can facilitate energy
trading, thereby increasing the tolerable penetration of renewable resources and facilitating
the energy transition. Among the most cited articles, there are also definitions of optimal
REC models [149-151], as well as an analysis of sustainable energy communities, in a
comparative analysis between Spain and Germany [151].

Figure 11 shows the main journals containing publications related to RECs. In this case,
the top journal is Energies, with a total number of 124 publications updated to December
2023, all in open-access form. The authors and the institutions with the most publications
on REC are shown in Tables 5 and 6, respectively. Looking at Table 5, one can see that
among the affiliations with the highest number of publications on RECs, the top three
positions are occupied by Italian universities. This is mainly due to the recent transposition
of European directives and the introduction of the REC as a model in the Italian energy
system. For this reason, several studies have been published in recent years to illustrate
what a REC is and what its benefits are, introducing reproducible models and case studies
in the national energy context [139,142,152-154].

Renewable And Sustainable Energy Reviews |
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International Conference On The European Energy
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Figure 11. Top 5 journals publishing on RECs.

Table 5. Top 5 institutions with documents published on RECs.

Affiliation Publications Country
Politecnico di Torino 47 Italy
Sapienza Universita di Roma 46 Italy
Politecnico di Milano 27 Italy
Delft University of 2% The Netherlands
Technology

Technische Universitit Wien 26 Austria
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Table 6. Top 10 authors with documents published on RECs.

Author Name # Publications Affiliation Country

Vale, Z. 20 Instituto Politécnico do Porto Portugal
Ghiani, E. 16 Universita degli Studi di Cagliari Italy
Martirano, L. 15 Sapienza University of Rome Italy
Menniti, D. 12 Universita della Calabria Italy
Pinnarelli, A. 12 Universita della Calabria Italy

&VOSviewer

Furthermore, the Politecnico di Torino university supported the research activity that
led to the creation of the first energy community in Italy [155,156], in Magliano Alpi, in the
province of Cuneo. It is interesting to note that Delft University of Technology is among the
affiliations with the highest number of publications. The Netherlands, in contrast to Italy, is
a pioneer state on the subject of RECs, having already introduced them into its legislation
in 1998 and counting over 500 projects in the country [157]. The most cited article from that
university was published in 2018 by Koirala et al. [122] and emphasizes the importance of
citizen involvement in order to create a low-carbon community.

Figure 12 shows the co-occurrence of keywords obtained through the software
VOSviewer for the second query related to RECs. The results shown in the figure were
obtained by filtering the keywords with a minimum occurrence of 7. From the figure,
it can be observed that the keyword “energy community” is linked to various types of
energy-sharing schemes. Indeed, there are connections with terms such as “renewable
energy communities” and “citizen energy community” (green cluster), types introduced
in Europe through the RED II and IEM directives of the Clean Energy Package [118,158],
as well as local energy communities (yellow cluster), understood as energy communities
where citizens are extensively involved in local renewable energy system projects [158].
Table 7 shows the author keywords with the highest number of occurrences on “renewable
energy communities”.

renewable energy system

electrigyehicle
artificial intelligence

energy mahagement

internetof things

renewable en* communities
smaghgrid

power sharing

micg@grid energyistorage

energy wmunity

optingigation energy.market

ren‘)les

citizen energgreommunity

peer-to-peer trading distribution grid

electriciy market pros@iners

flexibility

decarbahization local energy.community

Figure 12. Co-occurrence of keywords related to RECs.
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Table 7. Author keywords with the highest number of occurrences on “renewable energy communities”.

Keyword Number of Occurrences
energy community 401
renewables 258
renewable energy communities 219
energy storage 63
prosumers 62
smart grid 58
microgrid 57
optimization 55
energy management 43

Among the various items related to RECs, there is no specific reference to TES, but
only the general term “energy storage” is mentioned. The subsequent Figure 13 illustrates
the co-occurrence of the keyword “energy storage”. Through Figure 13, it is evident that the
keyword “energy storage” has a high number of connections both within the general scope
of “blue cluster” energy communities and within the more specific realms of renewable
and citizen energy communities (green cluster), as well as within the energy market and
relationships among consumers of the CER (yellow cluster). Currently, the figure shows
that the implementation of energy storage in energy communities is linked with “PV”.
Furthermore, there are some keywords that describe an optimization of the energy storage
system as artificial intelligence and internet of things (red cluster).

renewable abergy system

electrigiyenicle
artificial ifitelligence

energy m@pagement

\ internetf things

renewable en.’éommunities
smafigtd.

mic@Erid yﬁmge
e

energy.muniry

optirffBadan energyimarket

ren.}les

peer-to-peef trading distribution grid

electricigy market progiiiners

Flexibility

Figure 13. Co-occurrences and links with the keyword “energy storage”.

The most cited article in the field of energy storage applied to RECs was published in
2018 by Barbour et al. [130] It highlights the necessity for the development of community-
level storage technologies. While the literature predominantly features articles on battery
energy storage [101,128,158-161], among the most cited articles is a study by Liu et al. [132],
which applies a multi-energy storage system, both electrical and thermal, to achieve self-
sufficiency in a net zero energy community. Additionally, Bartolini et al. [112] conduct a
comparison between battery storage and TES to determine the optimal utilization of excess
energy produced by a facility in a REC. The combination of battery and TES has also been
taken up by further studies to create a hybrid system capable of maximizing the use of
renewable energy [160,162,163].
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In addition, Figure 13 indicates that energy storage applied to RECs is linked to the
realm of smart grids and microgrids, corroborating what was previously analyzed in the
co-occurrence analysis of TES. Finally, analyzing the latest publications on energy storage
applied to RECs, it can be observed that solutions involving TES are increasingly prevalent,
either in standalone systems or hybrid configurations with battery storage. For this reason,
TES systems can represent a feasible possibility of application to RECs as a solution for
maximizing renewable energy sharing.

3.3. Combined Results from Both Queries

Figure 14 shows the co-occurrence of keywords obtained by combining the queries
concerning RECs and TES systems in buildings and districts into the VOSviewer software.
The image shows how there is a clear separation between the two topics. It can be seen
that the keywords related to the field of RECs are concentrated on the left-hand side, while
those related to TES are on the right-hand side.
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Figure 14. Co-occurrence of the keywords related to the merged queries.

This gap of the implementation of TES in RECs is confirmed with Figure 15, high-
lighting the main links to the keywords “energy community” and “TES”. It can be seen
that the two keywords are not related to each other. Furthermore, numerous keywords
related to the sphere of TES are clearly separated from RECs. A clear example is “PCM”,
located on the opposite side of the figure from “energy community”. However, it is possible
to highlight several common points between TES and RECs that can be starting points
for future research developments. For example, the term “TES” has links to the words
“prosumer”, “smart grid”, “microgrid”, “pv”, and “demand side management”, which are
related to the field of RECs and the collective sharing of renewables.

One of these is the keyword “energy storage”, the co-occurrence of which is shown in
Figure 16a. As already shown in the previous section, most of the REC publications devoted
to energy storage mostly concern electric storage batteries, as also shown by the terms
“electric vehicle” and “electricity market”, so a further gap is evident. Furthermore, the
presence of the term “seasonal tes” indicates that from the perspective of TES systems, the
focus of research is more on large systems, in contrast to smaller, distributed technologies
that are more suited to the scope of RECs. However, the keywords “heat pump”, “cogener-
ation”, “trigeneration”, and “district heating”, also present in the co-occurrence of another

common keyword, “solar energy” (Figure 16b), open up future research possibilities not
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only on the electrical side, but also on the thermal side. For this reason, the topic of energy
storage could represent a bridge between TES and RECs. “Heat pump” is an important
common point, which means that electrification of heating systems in energy communities
could be the main focus of TES implementation. The keyword “district heating” once
again highlights the importance of TES in areas of application greater than the individual
building, expanding the possibility of sharing renewable thermal energy between several
consumers. Finally, the terms “cogeneration” and “trigeneration” refer to the already
mentioned possible benefits of theses in terms of recovering surplus heat.
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Figure 15. Co-occurrence of the keywords (a) “energy community” and (b) “TES”.

Figure 17, on the other hand, shows the co-occurrence of the keyword “numerical
model”, for which there are several links to both RECs and TES. However, this shows a
further gap, as it highlights the absence of the experimental field in the application of these
two topics.

Finally, it is interesting to note that terms such as “building envelope”, “thermal
comfort”, and “energy efficient buildings”, which can be traced back to the residential
sector, are repeated in the occurrences of these keywords common to TES and RECs. This
could represent a further possibility to research the use of TES as a domestic solution to
achieve energy efficiency for consumers and members of a REC.
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Figure 16. Co-occurrence of the keywords (a) “energy storage” and (b) “solar energy”.
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Figure 18 shows the overlay visualization created using the VOSviewer software,
allowing for us to observe the trends of different research items. It is evident that both TES
and RECs are relatively recent research topics. As we move from TES to RECs from right
to left, RECs appear to be an increasingly recent topic. While terms related to materials in
TESs, such as “thermal properties”, “fatty acids”, and “building material” are positioned in
2017 [164-166], the items in the field of RECs, including “prosumer”, “peer-to-peer trading”,
“local energy community”, and “citizen energy community”, are very recent, dating back
to 2021 [167-170]. It can be concluded that the application of TES in the field of RECs is
still relatively unexplored at the research level. However, it represents a recently emerging
topic, still in its initial phase, with several possibilities for expansion and exploration in
the future.
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Figure 18. Overlay visualization for merged queries.

4. Conclusions

Renewable energy communities (RECs) represent a fundamental tool for the energy
transition to renewable energy sources. Thanks to the distributed generation of renewable
energy and the involvement of community members, who are no longer mere consumers
but active and aware participants, they can effectively constitute a new paradigm for energy
production, management, and consumption. This paradigm starkly contrasts with the
fossil fuel-dependent model, addressing not only environmental and energy needs but also
social ones.

The main goal of a REC is to maximize the sharing of renewable energy among its
members. To achieve this, it is necessary to align periods of energy demand and supply. In
this regard, there are various strategies, including the use of energy storage systems. Among
these, TES represents a solution. Thanks to the power-to-heat strategy, which involves
converting excess electrical energy into heat; its versatility; and its lower cost compared
to other types of storage such as battery storage, TES presents a tangible opportunity
to maximize the utilization of renewable energy in a REC. Furthermore, in a collective
dimension of self-consumption such as RECs, TES systems can represent an opportunity for
the implementation of district heating and heating systems fueled by renewables, providing
flexibility and the possibility of bridging the mismatch between demand and availability
of energy.

This study aimed to define the perspective of TES in RECs with a detailed bibliometric
analysis. An analysis of TES systems was carried out regarding their application to build-
ings and districts, in order to consider not only the dimension of the individual building but
also a broader one, traceable to a community. An initial analysis of the results shows that
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these two topics are very recent, with a significant increase in the trend of publications only
in recent years. TES research, for example, has seen a considerable increase in publications
since 2010, especially in Europe, following the approval of energy efficiency targets. Even
more recent is the development of REC studies, which have grown exponentially since
2018, also based on the approval of European directives.

For this reason, most of the publications on these topics are very recent.

This work showed that energy communities constitute a research gap in the TES
literature. In the co-occurrence analysis of keywords referring to TES, no terms related
to RECs emerged. However, the presence of some terms characteristic of a larger storage
dimension than the individual user, like “district heating”, “smart grid”, and “micro grid”,
leaves open the possibility of research in the area of collective self-consumption, not only
from an electrical point of view, but also from that of thermal energy.

Furthermore, through bibliometric analysis, it became apparent that energy storage
is applied in RECs, although it is referred to in the literature, through keywords, by this
general definition, without focusing explicitly on thermal storage. However, among the
most cited publications were several papers on the comparison between battery storage
and TES. Moreover, more recent studies focus more on thermal or hybrid battery—TES
systems. This allows for not only reducing the unreasonable investment costs of battery
storage, but also for maximizing the sharing of renewable energies, through another energy
carrier, towards increasing self-sufficiency.

Analyzing the merged keywords related to TES and RECs underscores the gap between
these two topics. However, it also shows how the concepts of “energy storage”, “solar
energy”, and “numerical model”, which are relevant to both, could be a starting point for
future research. These common points, with the big novelty that characterizes the subject,
give room for potential investigation of TES technologies applied into RECs, in particular
in Europe, where the research of these two topics is focused.
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