
Citation: Yang, Y.; Li, Y.; Cheng, L.;

Yang, S. Short-Term Wind Power

Prediction Based on a Modified

Stacking Ensemble Learning

Algorithm. Sustainability 2024, 16,

5960. https://doi.org/10.3390/

su16145960

Academic Editor: Mohamed

A. Mohamed

Received: 15 April 2024

Revised: 19 June 2024

Accepted: 19 June 2024

Published: 12 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Short-Term Wind Power Prediction Based on a Modified
Stacking Ensemble Learning Algorithm
Yankun Yang , Yuling Li, Lin Cheng and Shiyou Yang *

College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
* Correspondence: eesyyang@zju.edu.cn; Tel.: +86-0571-87952498

Abstract: A high proportion of new energy has become a prominent feature of modern power systems.
Due to the intermittency, volatility, and strong randomness in wind power generation, an accurate
and reliable method for the prediction of wind power is required. This paper proposes a modified
stacking ensemble learning method for short-term wind power predictions to reduce error and
improve the generalization performance of traditional single networks in tackling the randomness of
wind power. Firstly, the base learners including tree-based models and neural networks are improved
based on the Bagging and Boosting algorithms, and a method for determining internal parameters
and iterations is provided. Secondly, the linear integration and stacking integration models are
combined to obtain deterministic prediction results. Since the modified stacking meta learner can
change the weight, it will enhance the strengths of the base learners and optimize the integration
of the model prediction to fit the second layer prediction, compared to traditional linear integration
models. Finally, a numerical experiment showed that the modified stacking ensemble model had
a decrease in MAPE from about 8.3% to 7.5% (an absolute decrease of 0.8%) compared to a single
learner for the 15 min look-ahead tests. Changing variables such as the season and predicting the
look-ahead time showed satisfactory improvement effects under all the evaluation criteria, and the
superiority of the modified stacking ensemble learning method proposed in this paper regarding
short-term wind power prediction performance was validated.

Keywords: wind power prediction; stacking; ensemble learning; bagging and boosting algorithms;
fusion models

1. Introduction

Wind power, as one of the oldest and most important energy sources on Earth today, has
played a predominant role in the development of renewable energies due to its advantages
such as huge resource reserves, renewability, no environmental pollution, wide distribution,
short infrastructure cycle, and low installation, operation, and maintenance costs. For example,
the development of wind power in China has advanced in both total quantity and growth
rate. Nevertheless, wind power abandonment is still prominent [1]. Due to the intermittency,
randomness, and volatility of wind speeds [2], wind power has low controllability and schedu-
lability, bringing operational challenges to power systems. If wind power can be predicted
to a certain extent in the sense of reducing uncertainty, wind power can better leverage its
advantages of stability and cleanliness. In terms of safety, it can reduce power grid fluctuations
and power grid losses. In terms of adaptability, it is convenient to adjust the scheduling plan
and stabilize the operation control. In terms of economy, it can reduce the operating costs of
the power system, promote new energy consumption, implement power transmission, and
save power, which are of great economic significance [3].

The mathematical models used in wind power predictions are mainly artificial-
intelligence-based methods, such as artificial neural networks (ANN) [4] and support
vector machines (SVM) [5]. A series of ensemble learning methods, including Bagging
and Boosting variants, have been introduced to improve the regression ability of deep

Sustainability 2024, 16, 5960. https://doi.org/10.3390/su16145960 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16145960
https://doi.org/10.3390/su16145960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1944-5654
https://orcid.org/0009-0007-0383-6267
https://orcid.org/0000-0002-8933-7034
https://doi.org/10.3390/su16145960
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16145960?type=check_update&version=1

Sustainability 2024, 16, 5960 2 of 17

belief networks (DBN) and are applied to low-voltage load point predictions with a strong
ability to approximate nonlinear mapping [6]. Artificial Neural Networks (ANNs), Long
Short-Term Memory (LSTM), Gate Recurrent Units (GRUs), and eXtreme Gradient Boosting
(XGboost) have been used to predict deterministic and probabilistic wind power generation
and compare their performance using numerical weather predictions [7]. A novel adaptive
ensemble data driven (AEDD) approach has been proposed for nonparametric probabilistic
forecasting of electricity load by mining the uncertainty distribution from historical obser-
vations [8]. A backpropagation (BP) neural network with a sparrow search algorithm was
proposed to improve the accuracy of wind power predictions [9]. Linear regression has been
used as the meta learner of a second layer to construct a photovoltaic power prediction model
with multiple stacking models embedded in machine learning algorithms [10].

The issue in existing wind power prediction models is that a single learner and
traditional ensemble learning have a more limited role in wind power prediction error
elimination. Due to the greater uncertainties of wind power versus load, more complex
ensemble learning is needed to reduce errors and enhance the generalization ability. A
stacking algorithm—which learns the model in two layers, saving the output of the first
layer’s base learner as the input of the second layer’s meta learner, and training again to
find the ensemble learning and deeper logic inside the wind power—can solve this problem
to some extent [11].

A traditional stacking algorithm usually uses Random Forest, XGBoost, LightGBM,
three tree-based learners, in the first layer; this method has been used in predictions of, e.g.,
the state of charge of a battery [12] and photovoltaic power predictions [10]. However, the
tree-based model is a simplified version of a neural network, which can memorize more
complex and probability-based rules. Previous studies have proven that the performance
of neural networks can be better than that of the tree-based algorithm in both classification
problems [13] and regression problems at the expense of more than 10 times the training
time being used [14].

Therefore, the main contributions in this paper include the following:

- Five suitable base models were chosen for the following research, including two
boosting algorithms and methods to determine internal parameters.

- A stacking algorithm with both tree-based models and neural networks combines the
advantages of the two, both of which have been proposed for wind power predictions
and to reduce errors therein.

- In addition, a modified stacking algorithm is proposed to overcome deficiencies, such
that all outputs of the first layer have equal weights.

In summary, all the improvements make the errors of the proposed short-term wind
power predictions smaller and meet the relevant national standards.

2. Model Evaluation Criteria

In the regression problem of machine learning, the most commonly used evaluation
metrics are the mean absolute error (MAE), the root mean square error (RMSE), and the
coefficient of determination (R2). In order to facilitate a comparison of the performance
of the models with different numbers of samples, the normalized percentage metrics are
used as much as possible for measuring. In view of this, this paper uses the mean absolute
percentage error (MAPE), the normalized root means square error (NRMSE), and the
coefficient of determination. In the following description, y(xi) is the true value of the
sample output corresponding to the ith input, y is the average of the true value of the
sample output, ŷ(xi) is the predicted value of the sample output corresponding to the ith
input, N is the number of samples, ymax and ymin are the maximum value and minimum
value of the sample output.

The mean absolute error is the arithmetic mean of the absolute error between the
actual value and the predicted value, reflecting the deviation between the predicted value

Sustainability 2024, 16, 5960 3 of 17

and the actual value, which is normalized to MAPE. The MAPE takes a value in the range
of [0, 1]; the smaller this value, the better performance. Moreover,

MAPE =

1
N

N
∑

i=1
|y(xi)− ŷ(xi)|

ymax − ymin
× 100%. (1)

The root mean square error is the root of the mean of the squared sum of the difference
between the predicted and actual values, that is, the standard deviation between the
predicted and actual values, reflecting the degree of dispersion between the predicted and
actual values. It is NRMSE after normalization whose value is in the range of [0, 1]; the
smaller this value, the lower the variance, meaning better performance. Moreover,

NRMSE =

√
1
N

N
∑

i=1
(y(xi)− ŷ(xi))

2

ymax − ymin
× 100%. (2)

The coefficient of determination is the ratio of the regression square and the total square
in the regression; this reflects the regression equation for the predicted value of the fit of the
metrics. It takes a value in the range of [0, 1]; the closer to 1, the better the fit. Moreover,

R2 = 1 −

N
∑

i=1
(y(xi)− ŷ(xi))

2

N
∑

i=1
(y(xi)− y)2

. (3)

3. A Modified Stacking Ensemble Learning Algorithm

Ensemble learning accomplishes learning tasks by building and combining multiple
learners. The general approach is to first generate a set of base learners and then combine the
results of multiple base learners with some strategy through ensemble learning, which often
leads to a superior result over a single learner and becomes a strong learner. If the base learners
are the same types of algorithms, the integration is then called homogeneous; otherwise, it is
called heterogeneous. In terms of both a certain level of accuracy and diversity, the integration
error rate decreases as the number of learners in the inheritance increases, and the integration
result will theoretically be better than the optimal result in the base learner [15]. Common
ensemble learning methods include Bagging, Boosting, and Stacking.

3.1. Bagging

Bagging, also known as Bootstrap aggregation, comprises parallel ensemble learning,
where individual learners do not have strong dependencies on each other and can be
generated simultaneously [16]. Randomly selected m data in original dataset M are trained
to generate an input space to output space learner. Sampling is repeated S times, and a total
of S new datasets are selected to train S learners, respectively. Bagging is sampling with
put-back; the number of samples in each subset must be the same as the original number of
samples, while duplicates are allowed. Finally, the results of these S learners are averaged
using a simple voting method.

3.2. Boosting

Boosting is an algorithm that can boost a weak learner into a strong one; it is an
example of the sequential ensemble learning. There are strong dependencies between
individual learners that must be generated serially. Its general method is the same as that
of Bagging, but with two main improvements [17].

Firstly, each training sample in the original dataset has a different selection probability.
Bagging takes equal probability sampling, and the S samples are completely independent

Sustainability 2024, 16, 5960 4 of 17

of each other. In boosting, only in the first sampling instant, an equal probability random
sampling is used; after that, according to the learning results of each instant, the probability
of each sample being selected into the new sample set is adjusted by the re-weighting
method, and each round needs to detect whether the currently generated learner meets
the basic standards of accuracy. In case of unsatisfactory results, the current learner is
discarded, and the learning process stops.

Secondly, the combination methods of the results of the individual bases are more
diverse. Boosting algorithms combine the results of each base model more rationally,
applying methods including weighted averaging, median selection of the results of the
error function, and matrix calculation instead of simple averaging (as in bagging).

These two changes make boosting pay more attention to the samples that are difficult
to learn, increasing the training accuracy of the samples with large errors and reducing the
calculation of the samples that are easy to identify, which ultimately improves the accuracy
of the model. In this paper, BEM (Basic Ensemble Method) Boosting and AdaBoost.RT
(Adaptive Boosting) are used to construct the base learner.

3.2.1. Procedure of BEM Boosting

The training of BEM Boosting [6] includes the following six steps.

1. Initialize sample probabilities in original data set DO so that their initial selection
probabilities are equal and the probability of the ith sample is determined as:

p0
i = 1/N, i = 1, 2, . . . N, (4)

where N is the number of the datum in the sample set.
2. Compose a new input space based on the above probability with putative sampling,

and use the corresponding output space as the target to train the learner.
3. From the simulated raw data of the above learner, calculate absolute error AE between

the simulated and actual values:

AEi = |y(xi)− ŷ(xi)|, i = 1, 2, . . . N. (5)

4. Split the data into two categories of large and small errors based on the absolute error,
with the split point set to an adjustable φ. Count the data with errors larger than the
split point and calculate their errors ε for subsequent integrations:

Nupper =
N

∑
i=1

1{AEi > φ}, (6)

ε =
{
∑ AEi

∣∣AEi > φ
}

. (7)

5. Since boosting pays more attention to the samples that are difficult to learn and have
large errors, the selection probability of the samples with large errors is increased,
while the selection probability of the samples with small errors is decreased. The mth
probability is updated:

pm+1
i =

pm
i

Z
×
{ N

Nupper
, AEi > φ

Nupper
N , AEi ≤ φ

, i = 1, 2, . . . N, (8)

where normalization constant Z = ∑ pm+1
i .

6. Repeat steps 2–5 several times, with the first T times serving to meet the accuracy of
the basic conditions of the combination of learners and the remaining iterations being
implemented because the beginning of the T + 1 times learners are all abandoned.

Sustainability 2024, 16, 5960 5 of 17

Here, T is the final number of iterations. Combine the initial learner and these T
learners in the following way:

ŷEnsemble =

T
∑

t=1
log
(

ε−1
t

)
× ŷ(t)

T
∑

t=1
log
(

ε−1
t

) . (9)

3.2.2. Procedure of AdaBoost.RT

AdaBoost.RT is similar to BEM Boosting with only a slight difference in the classifi-
cation error definition, i.e., the average relative error is used to update the mean absolute
error in Equation (5):

AREi =
|y(xi)− ŷ(xi)|

y(xi)
× 100%, i = 1, 2, . . . N. (10)

The subsequent split point φ should also correspond with the mean relative error
percentage; the rest is the same as with BEM Boosting.

3.3. Generate the Base Learner

Ensemble learning uses some learners as base learners in order to get better results; it
can have a strong nonlinear fitting ability in wind power predictions. Ensemble learning
mainly consists of bagging and boosting algorithms, of which Random Forest (RF) is
the most widely used of the bagging algorithms. XGBoost and LightGBM are boosting
algorithms which show better performance in terms of dealing with the overfitting runs
and time effects. Therefore, five models, i.e., RF, XGBoost, LightGBM, BP BEM Boosting,
and BP AdaBoost.RT are combined as base learners in the stacking algorithm.

Random Forest is a classical integrated learning model based on bagging; it further
introduces a random attribute selection in the training of decision trees [18]. The random-
ness of each training is ensured by two alterations, data random sampling and feature
random sampling, to construct different prediction trees with both sample perturbation
and attribute perturbation. Ultimately, the prediction results are obtained by voting or av-
eraging, which further improves the generalization performance of the ensemble learning
with an increase in the degree of variances.

XGBoost (eXtreme Gradient Boosting) is a boosting algorithm, which is an improve-
ment of the Gradient Boosting Decision Tree algorithm (GBDT); it uses Newton’s method
when solving the extreme value of the loss function [19]. Expanding the Taylor expansion of
the loss function to the second order and adding a regularization term in the loss function,
it considers the accuracy and complexity of the model. It has a parallel operation structure
with the advantages of being easy to implement and achieving high accuracy. It is one of
the most commonly used decision tree models.

LightGBM (Light Gradient Boosting Machine) is a kind of gradient boosting framework.
Essentially, it is still a decision tree, used as a weak learner model [20]. LightGBM has the
advantages of efficient parallel computing, faster training speed, and lower memory use. It is
suitable for dealing with large-scale data, and as such. it has a wide range of applications.

Backpropagation (BP) neural networks are multilayer networks and the most success-
ful neural network learning algorithms to date [15]. Without loss of generality, they are
widely used in ensemble learning. A BP network is structured into three layers: the input
layer, hidden layer, and output layer. The hidden layer and output layer are used to operate
on the data, while the output layer outputs the results. The training is divided into two
processes, forward propagation and back propagation, as shown in Figure 1.

Sustainability 2024, 16, 5960 6 of 17

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 18

LightGBM (Light Gradient Boosting Machine) is a kind of gradient boosting frame-
work. Essentially, it is still a decision tree, used as a weak learner model [20]. LightGBM
has the advantages of efficient parallel computing, faster training speed, and lower
memory use. It is suitable for dealing with large-scale data, and as such. it has a wide
range of applications.

Backpropagation (BP) neural networks are multilayer networks and the most suc-
cessful neural network learning algorithms to date [15]. Without loss of generality, they
are widely used in ensemble learning. A BP network is structured into three layers: the
input layer, hidden layer, and output layer. The hidden layer and output layer are used to
operate on the data, while the output layer outputs the results. The training is divided into
two processes, forward propagation and back propagation, as shown in Figure 1.

Figure 1. Schematic diagram of BP.

The forward propagation process allows the data to enter the network and directly
picks the values of the neurons in each layer multiplied by the corresponding weights +
bias variables as inputs, which then go to activation function Sigmoid to produce the out-
put. Let the input be x and the predicted target output be z.

The output of the hidden layer is:

The output of the output layer is:

where d, q, and l are the numbers of neurons in the input, hidden, and output layers, re-
spectively; ihv is the weight between the ith neuron in the input layer to the hth neuron
in the hidden layer;

hjw is the weight between hth neuron in the hidden layer to the jth
neuron in output layer; hθ ,

jb are the hth bias of the hidden layer and the jth bias of the
output layer, respectively; and hα ,

jβ are the hth input of the hidden layer and the jth
input of the output layer; f is the activation function.

The backpropagation process uses the gradient descent method and the objective
function is the sum of error squares:

BP network training results are obtained after updating the parameters. Since the
network has good nonlinear mapping ability and strong migration ability, it can be used
as the base network of a boosting algorithm to enhance wind power predictions. BP BEM

()
1

d

h h ih i h
i

H f f v xα θ
=

 = = − 
 
 , (11)

()
1

ˆ
q

j j hj h j
h

z f f w H bβ
=

 
= = − 

 
 , (12)

()
() ()

()2
, , , , , , 1

1 ˆ, , , arg min arg min
2

l

j j
v w b v w b j

v w b E z z
θ θ

θ
=

= = − . (13)

Figure 1. Schematic diagram of BP.

The forward propagation process allows the data to enter the network and directly
picks the values of the neurons in each layer multiplied by the corresponding weights
+ bias variables as inputs, which then go to activation function Sigmoid to produce the
output. Let the input be x and the predicted target output be z.

The output of the hidden layer is:

Hh = f (αh) = f

(
d

∑
i=1

vihxi − θh

)
, (11)

The output of the output layer is:

ẑj = f
(

β j
)
= f

(
q

∑
h=1

whj Hh − bj

)
, (12)

where d, q, and l are the numbers of neurons in the input, hidden, and output layers,
respectively; vih is the weight between the ith neuron in the input layer to the hth neuron
in the hidden layer; whj is the weight between hth neuron in the hidden layer to the jth
neuron in output layer; θh, bj are the hth bias of the hidden layer and the jth bias of the
output layer, respectively; and αh, β j are the hth input of the hidden layer and the jth input
of the output layer; f is the activation function.

The backpropagation process uses the gradient descent method and the objective
function is the sum of error squares:

(v, w, θ, b) = argmin
(v,w,θ,b)

E = argmin
(v,w,θ,b)

1
2

l

∑
j=1

(
ẑj − zj

)2. (13)

BP network training results are obtained after updating the parameters. Since the
network has good nonlinear mapping ability and strong migration ability, it can be used
as the base network of a boosting algorithm to enhance wind power predictions. BP BEM
Boosting and BP AdaBoost.RT are algorithms that use a BP network and enhance its per-
formance with two boosting methods. The above five learners are heterogeneous learners,
with tree and multi-layer network structures, including ensemble learning of bagging and
boosting theories. They provide respective prediction advantages to complement each
other as the base learners of wind power predictions.

3.4. Linear Weighted Model Integration

Due to the uncertainty and stochasticity of wind power, a single base learner needs to
be improved. Also, it is necessary to integrate the base learner with ensemble learning to
improve the model’s immunity to interference and generalization performance, so as to
enable it to cope with more situations. Tuning the parameters of the three networks, i.e.,
RF, XGBoost, and LightGBM, as well as two kinds of improvements to the BP network, i.e.,

Sustainability 2024, 16, 5960 7 of 17

BP BEM Boosting and BP AdaBoost.RT, yields the basic requirements for predictions and is
used with base learners to construct an ensemble learning integrated model.

The average and stacking methods were chosen for model integrations in this pa-
per [13]. Five different kinds of average integrated models are shown below. In
Equations (14)–(18), n represents the number of base learners.

7. Equal Weighted Integrated Model

The equal weight integrated model is the simplest, taking the arithmetic mean directly
as the final result:

ŷLiner_Weighted1 =
1
n

n

∑
i=1

ŷi, (14)

8. Weighted Integrated Model

Compared to the equal weight integrated model, the weighted integrated model
considers the superiority or inferiority of the prediction effect of each base learner, and the
weight coefficients are only related to the model prediction value:

ŷLiner_Weighted2 =
n

∑
i=1

ωi ŷi, ωi =

m
∑

j=1
ŷi(xj)

m
∑

j=1

n
∑

i=1
ŷi(xj)

, (15)

9. Sum of Squared Error Weighted Integrated Model

Similar to the above except that the weights are assigned differently, and the inverse
of the sum of squared errors is used for weight calculations:

ŷLiner_Weighted3 =
n

∑
i=1

ωi ŷi, ωi =
1/SSEi

n
∑

i=1
(1/SSEi)

=

1/
m
∑

j=1

(
ŷi(xj)− yi(xj)

)2

n
∑

i=1

[
1/

m
∑

j=1

(
ŷi(xj)− yi(xj)

)2
] , (16)

10. Root Mean Squared Error Weighted Integrated Model

The inverse of the (standardized) root mean square error is used for weighting calculations:

ŷLiner_Weighted4 =
n

∑
i=1

ωi ŷi, ωi =
1/NRMSEi

n
∑

i=1
(1/NRMSEi)

, (17)

11. Coefficient of Determination Weighted Integrated Model

Weights are calculated using the coefficient of determination:

ŷLiner_Weighted5 =
n

∑
i=1

ωi ŷi, ωi =

(
R2)

i
n
∑

i=1
(R2)i

. (18)

The combination logic of the above five models is the same, using a linear combination
of the base learner prediction results and the corresponding weights. These weights have a
high percentage of learner predictions with small errors and high accuracy, except that the
reference standards for measuring the error in the different weighted models are different.
All the weights sum to 1 to guarantee the integration results.

3.5. Stacking

Stacking, like bagging and boosting, is a typical algorithm for ensemble learning to
integrate multiple models [21]. While bagging focuses on reducing the variance of the

Sustainability 2024, 16, 5960 8 of 17

model and boosting focuses on reducing the bias of the model, stacking is able to reduce
the bias and variance of the model in a comprehensive way. Stacking has a more complex
contracture and improves the performance of the model.

Stacking is the process of constructing a new input variable from the predictions of
several models and using it to train a new model to obtain the final output. It is generally
divided into two layers. The single learner used for the first layer of training is called
the base learner (level-0 model), and the inductive and integrated learner used for the
second layer of training is called the meta-learner (level-1 model). Several base models
are trained and used to predict the results based on the inputs and outputs of the original
data from the first level hypothesis space. This step has already been done in Section 3.4.
and we assume the output values are ŷ1, ŷ2, ŷ3, ŷ4, ŷ5. The prediction is done using a K-fold
cross-validation method [22], with k taken as 5, which effectively prevents overfitting. By
arranging the outputs of these base learners as a new input vector (matrix), the outputs are
still the corresponding real outputs, while the training meta learner is constructed as a new
hypothesis space:

hStacking : v(xi) → y(xi), v(xi) = {ŷ1(xi), ŷ2(xi), ŷ3(xi), ŷ4(xi), ŷ5(xi)}. (19)

Then, training the meta learner will yield the final stacking prediction.
Since the base learners have already gone through one round of predictions, the

output should be closer to the true value, although still biased. Each dimension of the
meta-learner’s input variables is close to the output, and the second layer of training brings
these predictions closer to the real outputs. This is how stacking can reduce model errors
and increase stability.

Modified Stacking: The weight of each dimension in input vector v is the same, but
the performance of each base learner is different in the actual prediction, so it is desirable
to increase the weight of the base learner with better performance in the second layer
and decrease the weight with poor performance. Therefore, the new hypothesis space for
modified stacking is:

hModi f ied_Stacking : v′(xi) → y(xi), v′(xi) = {ω1ŷ1(xi), ω2ŷ2(xi), ω3ŷ3(xi), ω4ŷ4(xi), ω5ŷ5(xi)} (20)

where ωi is the weight corresponding to the best performing model in the linear weighted
fusion model above. The process is exactly the same as with stacking. A flow chart is
shown in Figure 2.

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 18

Figure 2. Flow chart of (modified) stacking.

Stacking has the following considerations for model selection: For base learners, het-
erogeneous learners with good performance and large differences in algorithmic princi-
ples should be elected, so that each learner can benefit from its respective advantages for
different inputs and outputs, and then integrate them with the idea of ensemble learning
to complement each other’s strengths. For meta learners, it should be stable and not du-
plicated with that of the base learner, so as to avoid the same data passing through the
base learner and meta learner, resulting in a large number of overfittings. The five base
learners have met the above requirements, and the meta learner can use a simple Gradient
Boosting Decision Tree algorithm (GBDT), which has a fast running time and stable re-
sults.

4. Case Study
4.1. Data Collection

In order to verify the performance of the improved stacking model proposed in this
paper, actual wind power NWP data from a wind farm in China for one year were used
as a case study. The data included wind speed and direction at 10 m, 30 m, and 50 m of
the wind tower, the temperature and humidity of the wind farm at different moments, as
well as the corresponding wind power. The data were measured from 1 January to 31
December with a time interval of 15 min. We divided this period into four quarters in our
analysis. The first two months of each quarter were used for training and the first 20 days
of the latter month were used for testing, i.e., to make sure the ratio of the training and
testing sets was 3:1. Below, if not otherwise specified, the wind power was taken as the
predicted output, and the rest of the physical quantities were taken as the predicted in-
puts, so that the inputs of a certain moment could be used to predict the wind power of
the next moment (i.e., 15 minutes later). MAPE was used as the primary metric of model
performance, while NRMSE and R2 were used as the secondary reference indicators. All
models were implemented in Jupyter Notebook under the Python framework.

4.2. Base Learner
Determining the internal parameters of the base learner provides a significant im-

provement in its performance. Without loss of generality, the test was performed using
the 15-min ahead numerical example for the second quarter data from this wind farm.
Random Forest, XGBoost, and LightGBM can all be trained with the Grid Search algo-
rithm [23]. The number of iterations and internal parameters of BP BEM Boosting and BP
AdaBoost.RT need to be calculated manually. The following will take BP BEM Boosting
as an example to illustrate the training of the boosting algorithm.

Figure 2. Flow chart of (modified) stacking.

Stacking has the following considerations for model selection: For base learners, het-
erogeneous learners with good performance and large differences in algorithmic principles
should be elected, so that each learner can benefit from its respective advantages for dif-

Sustainability 2024, 16, 5960 9 of 17

ferent inputs and outputs, and then integrate them with the idea of ensemble learning to
complement each other’s strengths. For meta learners, it should be stable and not dupli-
cated with that of the base learner, so as to avoid the same data passing through the base
learner and meta learner, resulting in a large number of overfittings. The five base learners
have met the above requirements, and the meta learner can use a simple Gradient Boosting
Decision Tree algorithm (GBDT), which has a fast running time and stable results.

4. Case Study
4.1. Data Collection

In order to verify the performance of the improved stacking model proposed in this
paper, actual wind power NWP data from a wind farm in China for one year were used
as a case study. The data included wind speed and direction at 10 m, 30 m, and 50 m of
the wind tower, the temperature and humidity of the wind farm at different moments,
as well as the corresponding wind power. The data were measured from 1 January to
31 December with a time interval of 15 min. We divided this period into four quarters in
our analysis. The first two months of each quarter were used for training and the first
20 days of the latter month were used for testing, i.e., to make sure the ratio of the training
and testing sets was 3:1. Below, if not otherwise specified, the wind power was taken as
the predicted output, and the rest of the physical quantities were taken as the predicted
inputs, so that the inputs of a certain moment could be used to predict the wind power of
the next moment (i.e., 15 minutes later). MAPE was used as the primary metric of model
performance, while NRMSE and R2 were used as the secondary reference indicators. All
models were implemented in Jupyter Notebook under the Python framework.

4.2. Base Learner

Determining the internal parameters of the base learner provides a significant im-
provement in its performance. Without loss of generality, the test was performed using the
15-min ahead numerical example for the second quarter data from this wind farm. Random
Forest, XGBoost, and LightGBM can all be trained with the Grid Search algorithm [23]. The
number of iterations and internal parameters of BP BEM Boosting and BP AdaBoost.RT
need to be calculated manually. The following will take BP BEM Boosting as an example to
illustrate the training of the boosting algorithm.

Figure 3 plots the MAPE of the BP BEM Boosting model as a function of the number
of iterations. It can be seen that the MAPE decreases significantly at the beginning, reaches
its lowest at iteration 6, and remains essentially flat thereafter. If the result of one iteration
is smaller than that of the following two, the iteration terminates, i.e.,

i f : MAPE(i) < MAPE(i + 1)& MAPE(i) < MAPE(i + 2)
Iteration = min{i} (21)

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 18

Figure 3 plots the MAPE of the BP BEM Boosting model as a function of the number
of iterations. It can be seen that the MAPE decreases significantly at the beginning, reaches
its lowest at iteration 6, and remains essentially flat thereafter. If the result of one iteration
is smaller than that of the following two, the iteration terminates, i.e.,

Figure 3. MAPE of different iterations in BP BEM Boosting.

As a result, the number of iterations for the subsequent integration was selected as 6.
The optimal result (at the sixth iteration) and the original BP model (at the first iteration)
were compared, and the error decreased by about 4.35%.

This selection also suggests that the seventh iteration, after increasing the chosen pos-
sibility of data with high prediction errors, led to a greater overall error in the results.
Weak learners were those that did not meet the ensemble learning requirements, i.e., pre-
dicting correctly at a rate higher than 50%. Mixing in a poor learner in an otherwise better
set of learners obviously reduces the model’s performance.

Similarly, the same operation was applied to BP AdaBoost.RT and the optimal model
was obtained when the number of iterations was 7. Figure 4 shows an image of MAPE of
different iterations in BP AdaBoost.RT.

Figure 4. MAPE of different iterations in BP AdaBoost.RT.

The internal parameter φ is independent of iterations, which decides the dividing of
different samples. Through extensive experimental testing , φ = 0.4 was taken for BP BEM

{ }
: () (1) & () (2)

min
if MAPE i MAPE i MAPE i MAPE i

Iteration i
< + < +

=
 (21)

Figure 3. MAPE of different iterations in BP BEM Boosting.

Sustainability 2024, 16, 5960 10 of 17

As a result, the number of iterations for the subsequent integration was selected as 6.
The optimal result (at the sixth iteration) and the original BP model (at the first iteration)
were compared, and the error decreased by about 4.35%.

This selection also suggests that the seventh iteration, after increasing the chosen
possibility of data with high prediction errors, led to a greater overall error in the results.
Weak learners were those that did not meet the ensemble learning requirements, i.e.,
predicting correctly at a rate higher than 50%. Mixing in a poor learner in an otherwise
better set of learners obviously reduces the model’s performance.

Similarly, the same operation was applied to BP AdaBoost.RT and the optimal model
was obtained when the number of iterations was 7. Figure 4 shows an image of MAPE of
different iterations in BP AdaBoost.RT.

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 18

Figure 3 plots the MAPE of the BP BEM Boosting model as a function of the number
of iterations. It can be seen that the MAPE decreases significantly at the beginning, reaches
its lowest at iteration 6, and remains essentially flat thereafter. If the result of one iteration
is smaller than that of the following two, the iteration terminates, i.e.,

Figure 3. MAPE of different iterations in BP BEM Boosting.

As a result, the number of iterations for the subsequent integration was selected as 6.
The optimal result (at the sixth iteration) and the original BP model (at the first iteration)
were compared, and the error decreased by about 4.35%.

This selection also suggests that the seventh iteration, after increasing the chosen pos-
sibility of data with high prediction errors, led to a greater overall error in the results.
Weak learners were those that did not meet the ensemble learning requirements, i.e., pre-
dicting correctly at a rate higher than 50%. Mixing in a poor learner in an otherwise better
set of learners obviously reduces the model’s performance.

Similarly, the same operation was applied to BP AdaBoost.RT and the optimal model
was obtained when the number of iterations was 7. Figure 4 shows an image of MAPE of
different iterations in BP AdaBoost.RT.

Figure 4. MAPE of different iterations in BP AdaBoost.RT.

The internal parameter φ is independent of iterations, which decides the dividing of
different samples. Through extensive experimental testing , φ = 0.4 was taken for BP BEM

{ }
: () (1) & () (2)

min
if MAPE i MAPE i MAPE i MAPE i

Iteration i
< + < +

=
 (21)

Figure 4. MAPE of different iterations in BP AdaBoost.RT.

The internal parameter φ is independent of iterations, which decides the dividing
of different samples. Through extensive experimental testing, φ = 0.4 was taken for BP
BEM Boosting and φ = 0.8 was taken for BP AdaBoost.RT to achieve the best performance,
respectively.

The results of these five base models are compared in Table 1.

Table 1. Performance Comparison of Base Models.

Model MAPE NRMSE R2

RF 8.303% 11.659% 0.764211072
XGBoost 8.316% 11.697% 0.762671824

LightGBM 8.315% 11.565% 0.768005054
BP BEM Boosting 8.315% 12.513% 0.728408502
BP AdaBoost.RT 8.613% 12.172% 0.743009887

To make sure the predicted wind power was closer to the real wind power, we chose
MAPE as the main criterion and NRMSE and R2 as secondary criteria. From Table 1, it can
be seen that within the five base learners, Random Forest was the best and BP AdaBoost.RT
was the worst. Since the basic requirements of heterogeneity and good performance of
the base learners were satisfied, they could be used for the construction of the subsequent
linear weighted integration model and stacking integration model.

4.3. Meta Learner (Integration Model)

Both the Linear Weighted Integration Model and the (Modified) Stacking Integration
Model were trained and tested according to the process described above. The main test
variables were different seasons (quarters) and prediction look-ahead time, and the test
contained a training set and test set performance metrics [24].

Sustainability 2024, 16, 5960 11 of 17

4.3.1. Wind Power Prediction Results at Different Times

The training set used 60 days (about 2 months) of data with 5760 points, while the
test set used 20 days of data with 1920 points. Deterministic wind power predictions were
done in four quarters.

1. The first quarter deterministic prediction. In this phase, the historical NWP data from
January to February were used, and the first 20 days of March were tested.

2. The second quarter deterministic prediction. In this phase, the historical NWP data
from April to May were used, and the first 20 days of June were tested.

3. The third quarter deterministic prediction. In this phase, the historical NWP data
from July to August were used, and the first 20 days of September were tested.

4. The last quarter deterministic prediction. In this phase, the historical NWP data from
October to November were used, and the first 20 days of December were tested.

Table 2 shows a performance comparison of deterministic predictions in different
seasons, including the training dataset and test dataset. Comparing the training and test
sets of the same quarter and model, it was clearly established that the test set error was
generally larger than that of the training set.

Table 2. Performance Comparison of Deterministic Predictions in Different Seasons.

Season Model
Training Dataset Metrics Test Dataset Metrics

MAPE NRMSE R2 MAPE NRMSE R2

1st Quarter

RF 3.720% 7.180% 0.943799246 6.824% 10.692% 0.876278386
XGBoost 3.542% 6.600% 0.952517148 6.958% 10.970% 0.869752545

LightGBM 4.175% 7.601% 0.937008462 6.905% 10.715% 0.875734685
BP BEM Boosting 5.158% 11.107% 0.865503138 6.976% 10.715% 0.875731071
BP AdaBoost.RT 5.154% 11.103% 0.865595447 7.500% 11.963% 0.845121147

Linear Weighted 1 4.063% 7.889% 0.932155762 6.335% 9.996% 0.891858533
Linear Weighted 2 4.066% 7.895% 0.932040174 6.336% 9.999% 0.891790414
Linear Weighted 3 3.869% 7.299% 0.941922394 6.489% 10.235% 0.886613431
Linear Weighted 4 3.952% 7.543% 0.937969772 6.399% 10.100% 0.889587824
Linear Weighted 5 4.040% 7.814% 0.933430257 6.344% 10.012% 0.891509564

Stacking 2.831% 5.459% 0.967507691 6.017% 9.598% 0.904283235
Modified Stacking 2.854% 5.450% 0.967612491 5.967% 9.503% 0.906589526

2nd Quarter

RF 7.944% 11.847% 0.822613381 8.303% 11.659% 0.764211072
XGBoost 8.138% 11.937% 0.819909272 8.316% 11.697% 0.762671824

LightGBM 8.656% 12.541% 0.801238329 8.315% 11.565% 0.768005054
BP BEM Boosting 10.628% 17.103% 0.630305072 8.315% 12.513% 0.728408502
BP AdaBoost.RT 11.038% 17.208% 0.625762387 8.613% 12.172% 0.743009887

Linear Weighted 1 8.402% 12.638% 0.798147646 7.840% 11.128% 0.785186501
Linear Weighted 2 8.463% 12.752% 0.794477499 7.829% 11.124% 0.785359731
Linear Weighted 3 8.146% 12.129% 0.814089328 7.946% 11.207% 0.782117116
Linear Weighted 4 8.241% 12.330% 0.807860135 7.889% 11.155% 0.784130852
Linear Weighted 5 8.278% 12.399% 0.805698832 7.876% 11.146% 0.784506212

Stacking 6.833% 10.224% 0.867889374 7.559% 10.656% 0.794307533
Modified Stacking 6.798% 10.212% 0.868206889 7.494% 10.581% 0.797350030

3rd Quarter

RF 7.944% 8.786% 0.870844715 9.576% 13.041% 0.776532352
XGBoost 8.138% 8.886% 0.867889090 9.682% 13.236% 0.769792381

LightGBM 8.656% 9.413% 0.851758807 9.677% 13.038% 0.776647279
BP BEM Boosting 10.628% 9.982% 0.833305919 9.761% 13.447% 0.762397117
BP AdaBoost.RT 11.038% 10.162% 0.827246353 9.793% 13.220% 0.770365891

Linear Weighted 1 6.057% 8.929% 0.866629720 9.284% 12.573% 0.792304657
Linear Weighted 2 6.059% 8.924% 0.866777689 9.285% 12.572% 0.792310802
Linear Weighted 3 6.057% 8.892% 0.867721061 9.299% 12.599% 0.791421221
Linear Weighted 4 6.056% 8.909% 0.867208690 9.290% 12.585% 0.791904049
Linear Weighted 5 6.057% 8.922% 0.866838530 9.286% 12.577% 0.792169706

Stacking 5.078% 7.400% 0.908396294 8.636% 11.502% 0.800468944
Modified Stacking 5.056% 7.400% 0.908379363 8.602% 11.428% 0.803092836

Sustainability 2024, 16, 5960 12 of 17

Table 2. Cont.

Season Model
Training Dataset Metrics Test Dataset Metrics

MAPE NRMSE R2 MAPE NRMSE R2

4th Quarter

RF 4.790% 8.149% 0.920345949 2.572% 4.775% 0.876127312
XGBoost 4.852% 8.081% 0.921679310 2.601% 4.794% 0.875137442

LightGBM 5.474% 8.908% 0.904827315 2.766% 4.595% 0.885309730
BP BEM Boosting 4.938% 9.552% 0.890562007 2.220% 4.116% 0.907979616
BP AdaBoost.RT 6.169% 10.887% 0.857850149 5.516% 7.910% 0.660125525

Linear Weighted 1 4.997% 8.433% 0.914707161 2.902% 4.597% 0.885217680
Linear Weighted 2 5.002% 8.446% 0.914435299 2.918% 4.610% 0.884567662
Linear Weighted 3 4.935% 8.283% 0.917719618 2.757% 4.507% 0.889631651
Linear Weighted 4 4.962% 8.349% 0.916384685 2.821% 4.542% 0.887931725
Linear Weighted 5 4.988% 8.411% 0.915141855 2.880% 4.580% 0.886060534

Stacking 3.684% 6.340% 0.951788957 2.455% 4.270% 0.900361683
Modified Stacking 3.675% 6.335% 0.951867104 2.445% 4.218% 0.903223258

Without loss of generality, the following illustration still takes the second quarter of
Table 2 as an example to compare the performance of different learners and the integration
results in the same quarter. The five linearly weighted fusion models had an error of
about 7.9% in the test set and were within 0.15% of each other, revealing that there was
not much difference in the performance of these linear weighted models. Compared with
the five base learners, the error of the MAPE decreased from about 8.3% to 7.9%, which is
a relative decrease of 4.8% and an absolute decrease of 0.4%, and all the linear weighted
integration models outperformed the base learners in terms of all three metrics. This fully
illustrates the basic principle of ensemble learning, which can be achieved by combining
weak learners to develop strong learners, allowing heterogeneous learners to function
in the face of data points that they are good at, and other learners to average to reduce
the errors at the points where their own predictions are poor. Since all learners yielded
good predictions at most of the points and poor prediction at some of the points, the
above averaging operation was able to complement the strengths of each procedure and
improve the performance and generalization ability. In addition, Linear Weighted 2~Linear
Weighted 5 were unequally weighted, which enabled learners with small errors to take up
more weight and learners with large errors to reduce their weights, reducing the integration
error even more. However, the five linear weighted models were constructed with similar
ideas, and there was not much difference in terms of performance between the internals.

The ensemble learning stacking integration model yielded a decrease in MAPE from
about 8.3% to 7.5% (an absolute decrease 0.8%) compared to the base learner, and a relative
decrease of 9.0% and 9.8% for stacking and modified stacking. Similar to the analysis above,
(modified) stacking reduced the model error more compared to simple linear weighting;
all three metrics reflected this observation. In summary, the model performance for both
the training and test sets may be ordered as follows: modified stacking > stacking > linear
weighted > base learners. The reason that stacking outperformed linear weighting was that
the second layer of the algorithm was trained to optimally combine the model predictions
to form a new set of predictions, instead of simply assigning a fixed weight to each variable.
The modified stacking model showed slightly improved performance compared to stacking,
indicating that the idea was valid but could be improved [20,25–30].

From the four quarterly comparisons, it was observed that the errors in the 2nd and
3rd quarters were larger than those in 1st and 4th quarters, mainly due to the fact that the
average values of the real wind power in the former were larger than that in the latter. The
wind farm was characterized by a distinct monsoon climate, with high wind speeds in
summer and low wind speeds in winter. The wind power often equaled 0 when the wind
speed was low, thus reducing the uncertainty and making it easier to predict with smaller
overall errors. This was also the reason for the anomalous test set error being less than the
training set error in the 4th quarter, i.e., the real wind speed was too small in the sampled
December test set.

Sustainability 2024, 16, 5960 13 of 17

The deterministic prediction results of 15-min-ahead on typical days in different
seasons at this wind farm are plotted in Figure 5a–d. To facilitate the observation, a total of
384 points for only 4 days in each season are plotted with the optimal results of the stacking
integration model, the optimal results in the linear weighted integration model, and the
real data images, respectively.

Sustainability 2024, 16, x FOR PEER REVIEW 13 of 18

the basic principle of ensemble learning, which can be achieved by combining weak learn-
ers to develop strong learners, allowing heterogeneous learners to function in the face of
data points that they are good at, and other learners to average to reduce the errors at the
points where their own predictions are poor. Since all learners yielded good predictions
at most of the points and poor prediction at some of the points, the above averaging op-
eration was able to complement the strengths of each procedure and improve the perfor-
mance and generalization ability. In addition, Linear Weighted 2~Linear Weighted 5 were
unequally weighted, which enabled learners with small errors to take up more weight and
learners with large errors to reduce their weights, reducing the integration error even
more. However, the five linear weighted models were constructed with similar ideas, and
there was not much difference in terms of performance between the internals.

The ensemble learning stacking integration model yielded a decrease in MAPE from
about 8.3% to 7.5% (an absolute decrease 0.8%) compared to the base learner, and a rela-
tive decrease of 9.0% and 9.8% for stacking and modified stacking. Similar to the analysis
above, (modified) stacking reduced the model error more compared to simple linear
weighting; all three metrics reflected this observation. In summary, the model perfor-
mance for both the training and test sets may be ordered as follows: modified stacking >
stacking > linear weighted > base learners. The reason that stacking outperformed linear
weighting was that the second layer of the algorithm was trained to optimally combine
the model predictions to form a new set of predictions, instead of simply assigning a fixed
weight to each variable. The modified stacking model showed slightly improved perfor-
mance compared to stacking, indicating that the idea was valid but could be improved
[20,25–30].

From the four quarterly comparisons, it was observed that the errors in the 2nd and
3rd quarters were larger than those in 1st and 4th quarters, mainly due to the fact that the
average values of the real wind power in the former were larger than that in the latter. The
wind farm was characterized by a distinct monsoon climate, with high wind speeds in
summer and low wind speeds in winter. The wind power often equaled 0 when the wind
speed was low, thus reducing the uncertainty and making it easier to predict with smaller
overall errors. This was also the reason for the anomalous test set error being less than the
training set error in the 4th quarter, i.e., the real wind speed was too small in the sampled
December test set.

The deterministic prediction results of 15-min-ahead on typical days in different sea-
sons at this wind farm are plotted in Figure 5a–d. To facilitate the observation, a total of
384 points for only 4 days in each season are plotted with the optimal results of the stack-
ing integration model, the optimal results in the linear weighted integration model, and
the real data images, respectively.

(a) 1st Quarter (b) 2nd Quarter

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 18

(c) 3rd Quarter (d) 4th Quarter

Figure 5. Deterministic prediction results of integration models compared with real data with 15
min look-ahead time from four typical days (384 points) in different quarters: (a) 1st Quarter, (b)
2nd Quarter, (c) 3rd Quarter, (d) 4th Quarter.

4.3.2. Wind Power Prediction Results of Different Look-Ahead Times
Without a loss of generality, for the purpose of comparing the performance selection

of seasons with higher wind speeds, the 2nd quarter data were used to make forecasts of
15-min-ahead, 30-min-ahead, and 1-h-ahead. The 15-min-ahead forecasts are given in the
2nd Quarter part of Table 2; the other results are shown in Table 3.

Table 3. Performance Comparison of Deterministic Predictions with Different Look-ahead Times.

Look-Ahead
Time

Model
Training Dataset Metrics Test Dataset Metrics

MAPE NRMSE R2 MAPE NRMSE R2
15 min See above

30 min

RF 9.015% 13.065% 0.784251850 9.061% 12.615% 0.723847075
XGBoost 9.212% 13.227% 0.778874960 9.050% 12.642% 0.722655063

LightGBM 9.750% 13.833% 0.758151130 9.050% 12.482% 0.729659837
BP BEM Boosting 11.359% 17.946% 0.592946634 8.994% 13.236% 0.696015216
BP AdaBoost.RT 11.466% 17.760% 0.601351939 9.368% 13.372% 0.689747241

Linear Weighted 1 9.354% 13.823% 0.758491032 8.613% 12.140% 0.744277930
Linear Weighted 2 9.377% 13.868% 0.756911813 8.611% 12.139% 0.744325672
Linear Weighted 3 9.203% 13.441% 0.771669886 8.682% 12.184% 0.742420939
Linear Weighted 4 9.261% 13.601% 0.766189456 8.642% 12.153% 0.743712171
Linear Weighted 5 9.270% 13.623% 0.765442534 8.639% 12.150% 0.743822392

Stacking 7.744% 11.329% 0.837794039 8.192% 11.724% 0.759075358
Modified Stacking 7.724% 11.324% 0.837933722 8.160% 11.710% 0.759707105

1 h

RF 11.269% 15.683% 0.689119575 11.186% 15.229% 0.597820244
XGBoost 11.587% 16.018% 0.675682783 11.009% 15.096% 0.604793105

LightGBM 12.111% 16.596% 0.651864864 11.142% 15.081% 0.605570133
BP BEM Boosting 13.507% 20.974% 0.443999575 10.993% 16.290% 0.539794949
BP AdaBoost.RT 14.875% 21.766% 0.401172809 12.445% 17.327% 0.479350627

Linear Weighted 1 11.720% 16.638% 0.650101009 10.595% 14.706% 0.624942026
Linear Weighted 2 11.775% 16.732% 0.646156699 10.608% 14.716% 0.624432778
Linear Weighted 3 11.542% 16.216% 0.667615956 10.660% 14.711% 0.624721131
Linear Weighted 4 11.613% 16.395% 0.660265527 10.619% 14.696% 0.625497369
Linear Weighted 5 11.564% 16.279% 0.665040871 10.640% 14.704% 0.625083714

Stacking 9.696% 13.640% 0.764829815 10.063% 14.222% 0.627542378
Modified Stacking 9.647% 13.583% 0.766817397 10.053% 14.187% 0.629403895

Figure 5. Deterministic prediction results of integration models compared with real data with 15 min
look-ahead time from four typical days (384 points) in different quarters: (a) 1st Quarter, (b) 2nd
Quarter, (c) 3rd Quarter, (d) 4th Quarter.

4.3.2. Wind Power Prediction Results of Different Look-Ahead Times

Without a loss of generality, for the purpose of comparing the performance selection
of seasons with higher wind speeds, the 2nd quarter data were used to make forecasts of
15-min-ahead, 30-min-ahead, and 1-h-ahead. The 15-min-ahead forecasts are given in the
2nd Quarter part of Table 2; the other results are shown in Table 3.

As the prediction look-head time increased, the error increased for all models, due to
the overall increase in uncertainty caused by the physical boost of the prediction look-ahead
time. Also, comparing modified stacking with the base learners, predicting 30 min and
1 h ahead relatively reduced the MAPE by about 9.3% and 8.6%, respectively (absolutely
0.83% and 0.94%) [7]. This shows that the model still worked when the base learners were
slightly underperforming. The rest of the conclusions are basically the same as above, and
a performance comparison still yielded the following order: modified stacking > stacking >
linear weighted > base learners. It is worth noting that at 30 min and 1 h ahead predictions,
the two BP Boosting models showed a significant increase in the error within the training
set, and there was a disparity in the performance compared to the other base learners. This
suggests that after increasing the prediction time further, the two BP learners may correctly
predict less often than expected, and it may appear that the integration error of the five
base learners is larger than the integration result of the three base learners.

The deterministic prediction results of 30 min and 1 h ahead on a typical day of the
2nd Quarter of this wind farm are plotted in Figure 6a,b. A total of 384 points from four

Sustainability 2024, 16, 5960 14 of 17

days were still taken to plot the optimal results of the modified stacking integration model,
the optimal results in the linear weighted integration model, and the real data images,
respectively. The deterministic prediction images for 15-min-ahead are given in Figure 5b.

Table 3. Performance Comparison of Deterministic Predictions with Different Look-ahead Times.

Look-Ahead
Time Model

Training Dataset Metrics Test Dataset Metrics

MAPE NRMSE R2 MAPE NRMSE R2

15 min See above

30 min

RF 9.015% 13.065% 0.784251850 9.061% 12.615% 0.723847075
XGBoost 9.212% 13.227% 0.778874960 9.050% 12.642% 0.722655063

LightGBM 9.750% 13.833% 0.758151130 9.050% 12.482% 0.729659837
BP BEM Boosting 11.359% 17.946% 0.592946634 8.994% 13.236% 0.696015216
BP AdaBoost.RT 11.466% 17.760% 0.601351939 9.368% 13.372% 0.689747241

Linear Weighted 1 9.354% 13.823% 0.758491032 8.613% 12.140% 0.744277930
Linear Weighted 2 9.377% 13.868% 0.756911813 8.611% 12.139% 0.744325672
Linear Weighted 3 9.203% 13.441% 0.771669886 8.682% 12.184% 0.742420939
Linear Weighted 4 9.261% 13.601% 0.766189456 8.642% 12.153% 0.743712171
Linear Weighted 5 9.270% 13.623% 0.765442534 8.639% 12.150% 0.743822392

Stacking 7.744% 11.329% 0.837794039 8.192% 11.724% 0.759075358
Modified Stacking 7.724% 11.324% 0.837933722 8.160% 11.710% 0.759707105

1 h

RF 11.269% 15.683% 0.689119575 11.186% 15.229% 0.597820244
XGBoost 11.587% 16.018% 0.675682783 11.009% 15.096% 0.604793105

LightGBM 12.111% 16.596% 0.651864864 11.142% 15.081% 0.605570133
BP BEM Boosting 13.507% 20.974% 0.443999575 10.993% 16.290% 0.539794949
BP AdaBoost.RT 14.875% 21.766% 0.401172809 12.445% 17.327% 0.479350627

Linear Weighted 1 11.720% 16.638% 0.650101009 10.595% 14.706% 0.624942026
Linear Weighted 2 11.775% 16.732% 0.646156699 10.608% 14.716% 0.624432778
Linear Weighted 3 11.542% 16.216% 0.667615956 10.660% 14.711% 0.624721131
Linear Weighted 4 11.613% 16.395% 0.660265527 10.619% 14.696% 0.625497369
Linear Weighted 5 11.564% 16.279% 0.665040871 10.640% 14.704% 0.625083714

Stacking 9.696% 13.640% 0.764829815 10.063% 14.222% 0.627542378
Modified Stacking 9.647% 13.583% 0.766817397 10.053% 14.187% 0.629403895

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 18

As the prediction look-head time increased, the error increased for all models, due to
the overall increase in uncertainty caused by the physical boost of the prediction look-
ahead time. Also, comparing modified stacking with the base learners, predicting 30 min
and 1 h ahead relatively reduced the MAPE by about 9.3% and 8.6%, respectively (abso-
lutely 0.83% and 0.94%) [7]. This shows that the model still worked when the base learners
were slightly underperforming. The rest of the conclusions are basically the same as
above, and a performance comparison still yielded the following order: modified stacking
> stacking > linear weighted > base learners. It is worth noting that at 30 min and 1 h ahead
predictions, the two BP Boosting models showed a significant increase in the error within
the training set, and there was a disparity in the performance compared to the other base
learners. This suggests that after increasing the prediction time further, the two BP learn-
ers may correctly predict less often than expected, and it may appear that the integration
error of the five base learners is larger than the integration result of the three base learners.

The deterministic prediction results of 30 min and 1 h ahead on a typical day of the
2nd Quarter of this wind farm are plotted in Figure 6a,b. A total of 384 points from four
days were still taken to plot the optimal results of the modified stacking integration model,
the optimal results in the linear weighted integration model, and the real data images,
respectively. The deterministic prediction images for 15-min-ahead are given in Figure 5b.

(a) 30 min look-ahead

(b) 1 h look-ahead

Figure 6. Deterministic prediction results of the integration models compared with real data of dif-
ferent look-ahead times for four typical days (384 points) in the 2nd Quarter: (a) 30 min look-ahead,
(b) 1 h look-ahead (15 min look-ahead time is shown in Figure 5b).

For subsequent improvements, firstly, observing the performance of each base
learner when increasing the prediction look-ahead time (preferably such that the differ-
ence between their errors is not too large) and removing clearly inferior models will be
useful in fusion models. Secondly, continuing to enrich the type and number of base learn-
ers for similar models with different parameters could achieve better basic accuracy. The

Figure 6. Deterministic prediction results of the integration models compared with real data of
different look-ahead times for four typical days (384 points) in the 2nd Quarter: (a) 30 min look-ahead,
(b) 1 h look-ahead (15 min look-ahead time is shown in Figure 5b).

Sustainability 2024, 16, 5960 15 of 17

For subsequent improvements, firstly, observing the performance of each base learner
when increasing the prediction look-ahead time (preferably such that the difference between
their errors is not too large) and removing clearly inferior models will be useful in fusion
models. Secondly, continuing to enrich the type and number of base learners for similar
models with different parameters could achieve better basic accuracy. The combination of
the two above enhancements could reduce the prediction errors and improve the model’s
generalization performance.

5. Conclusions

Ensemble learning is an effective method to reduce the uncertainty and increase the
reliability of wind power predictions. Combining bagging, boosting, and stacking in ensemble
learning, this paper proposes an ensemble learning integration model based on modified
stacking. The modified stacking ensemble model showed a decrease in MAPE from about
8.3% to 7.5% (absolute decrease 0.8%) compared to a single learner for 15 min look-ahead
tests. Comparing modified stacking with the base learners, predicting 30 min and 1 h ahead
relatively reduced the MAPE by about 9.3% and 8.6%, respectively (absolutely 0.83% and
0.94%). The idea of bagging and boosting was used to train the base learners for short-term
wind power predictions of wind farms. After training, bagging and boosting were able to
improve the heterogeneous learners, with good performance and large differences. Meta
learners can optimize the results via different base learning on the basis of linear weighted
models that take advantage of strengths and complement the weaknesses, which improved
the model’s performance in all three different metrics. Changing the season and prediction
look-ahead time, this model could predict deterministic wind power at least for about 1 h-head
time, still with the best reliability. These observations prove that this method combines the
strengths of both tree-based learners and neural networks, and that it is more effective than
normal integration strategies. Base learners can be subsequently changed and applied in
modified stacking to cope with longer look-ahead time predictions.

According to China’s national wind power standards, the prediction error should
not exceed ±15% of real wind power in short-term (1–7 days ahead) predictions. In this
research, we are trying to narrow the gap between practical situations and this standard
and to increase the reliability of predictions and raise standards.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis,
writing—original draft preparation Y.Y.; investigation, resources, data curation, writing—review
and editing, visualization, L.C.; supervision, Y.L. and S.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Variables Meaning
MAPE Mean absolute percentage error
NRMSE Normalized root mean square error
R2 Coefficient of determination
y(xi) True value of wind power corresponding the ith input
y Average of the true value of wind power
ŷ(xi) Predicted value of wind power corresponding the ith input
N Number of samples
ymax Maximum value of wind power

Sustainability 2024, 16, 5960 16 of 17

ymin Minimum value of wind power
DO Original data set
AE Absolute error
φ An adjustable parameter to split point set
Nupper Number of data with errors larger than the split point
ε Total errors
pm

i Probability of the mth selection and the ith item
Z Normalization constant for probability
T Final number of iterations
ARE Average relative error
Hh hth output of the hidden layer
ẑj Prediction of the jth output of the output layer
d Number of neurons in input layers
q Number of neurons in hidden layers
l Number of neurons in output layers
vih Weight between the ith neuron in the input layer to the hth neuron in the hidden layer
θh hth bias of the hidden layer
whj Weight between hth neuron in the hidden layer to the jth neuron in output layer
bj jth bias of the output layer
αh hth input of the hidden layer
β j jth input of the output layer
f Activation function
ωi Weight coefficients of the ith model
SSE Sum of squared errors
hStacking Hypothesis space for Stacking prediction
hModi f ied_Stacking Hypothesis space for Modified Stacking prediction
v(xi) Input vector (matrix) of ith input in Stacking prediction
v′(xi) Input vector (matrix) of ith input in Modified Stacking prediction

References
1. China Electricity Council. Analysis and Forecast Report on the National Power Supply and Demand Situation in 2023–2024.

Available online: https://cec.org.cn/detail/index.html?3-330280 (accessed on 24 May 2024).
2. Wan, C.; Cui, W.; Song, Y. Probabilistic Forecasting for Power Systems with Renewable Energy Sources: Basic Concepts and

Mathematical Principles. Proc. CSEE 2021, 41, 6493–6509.
3. Wan, C.; Lin, J.; Wang, J.; Song, Y.; Dong, Z.Y. Direct quantile regression for nonparametric probabilistic forecasting of wind

power generation. IEEE Trans. Power Syst. 2016, 32, 2767–2778. [CrossRef]
4. Park, D.C.; El-Sharkawi, M.; Marks, R.; Atlas, L.; Damborg, M. Electric load forecasting using an artificial neural network. IEEE

Trans. Power Syst. 1991, 6, 442–449. [CrossRef]
5. Fan, S.; Chen, L. Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 2006, 21, 392–401.

[CrossRef]
6. Cao, Z.; Wan, C.; Zhang, Z.; Li, F.; Song, Y. Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-Voltage

Load Forecasting. IEEE Trans. Power Syst. 2020, 35, 1881–1897. [CrossRef]
7. Wu, Y.-K.; Wu, S.-H.; Huang, C.-L.; Hong, J.-S.; Chang, H.-L. Deterministic and Probabilistic Wind Power Forecasts by Considering

Various Atmospheric Models and Feature Engineering Approaches. In Proceedings of the 2022 IEEE/IAS 58th Industrial and
Commercial Power Systems Technical Conference (I&CPS), Las Vegas, NV, USA, 2–5 May 2022; pp. 1–10.

8. Wan, C.; Cao, Z.; Lee, W.-J.; Song, Y.; Ju, P. An Adaptive Ensemble Data Driven Approach for Nonparametric Probabilistic
Forecasting of Electricity Load. IEEE Trans. Smart Grid 2021, 12, 5396–5408. [CrossRef]

9. Li, Z.; Ma, P.; Wang, X.; Xu, J.; Wan, X. An improved BP neural network method for Wind Power Prediction. In Proceedings of the
2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China, 27–29 May 2022; pp. 653–658.

10. Yang, R.; Sun, Z.; Lei, X. Photovoltaic Power Prediction Based on Stacking Model Fusion. Comput. Syst. Appl. 2020, 29, 36–45.
11. Cao, Y.; Liu, G.; Luo, D.; Bavirisetti, D.P.; Xiao, G. Multi-timescale photovoltaic power forecasting using an improved Stacking

ensemble algorithm based LSTM-Informer mode. Energy 2023, 283, 128669. [CrossRef]
12. Teng, X. Research on SOC Prediction of New Energy Vehicle Power Battery Based on Stacking Algorithm; Chongqing Technology and

Business University: Chongqing, China, 2022.
13. Yashwanth, B.; Jaisharma, K. An Automated Users Profile Classification in Instagram to Improve the Precision Using an Integrated

Neural Network Model and Decision Tree Algorithm. In Proceedings of the 2023 6th International Conference on Contemporary
Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 14–16 September 2023; pp. 2553–2557.

https://cec.org.cn/detail/index.html?3-330280
https://doi.org/10.1109/TPWRS.2016.2625101
https://doi.org/10.1109/59.76685
https://doi.org/10.1109/TPWRS.2005.860944
https://doi.org/10.1109/TPWRS.2019.2946701
https://doi.org/10.1109/TSG.2021.3101672
https://doi.org/10.1016/j.energy.2023.128669

Sustainability 2024, 16, 5960 17 of 17

14. Okeleye, S.A.; Thiruvengadam, A.; Perhinschi, M.G.; Carder, D. Data-driven machine learning model of a Selective Catalytic
Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms.
Energy 2024, 290, 130117. [CrossRef]

15. Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016.
16. Pramudita, R.; Solikin; Safitri, N. Optimization Analysis of Neural Network Algorithms Using Bagging Techniques on Classifica-

tion of Date Fruit Types. In Proceedings of the 2022 Seventh International Conference on Informatics and Computing (ICIC),
Denpasar, Bali, Indonesia, 8–9 December 2022; pp. 1–4.

17. Assaad, M.; Romuald, B.; Cardot, H. A New Boosting Algorithm for Improved Time-Series Forecasting with Recurrent Neural
Networks. Inf. Fusion 2008, 9, 41–55. [CrossRef]

18. Sotnikov, D.; Lyly, M.; Salmi, T. Prediction of 2G HTS Tape Quench Behavior by Random Forest Model Trained on 2-D FEM
Simulations. IEEE Trans. Appl. Supercond. 2023, 33, 1–5. [CrossRef]

19. Badola, S.; Mishra, V.N.; Parkash, S. Landslide susceptibility mapping using XGBoost machine learning method. In Proceedings
of the 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India,
27–29 January 2023; pp. 1–4.

20. Kumar, D.; Abhinav, R.; Pindoriya, N. An Ensemble Model for Short-Term Wind Power Forecasting using Deep Learning and
Gradient Boosting Algorithms. In Proceedings of the 2020 21st National Power Systems Conference (NPSC), Gandhinagar, India,
17–19 December 2020; pp. 1–6.

21. Breiman, L. Stacked regressions. Mach. Learn. 1996, 24, 49–64. [CrossRef]
22. Dietterich, T. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Comput. 1998,

10, 1895–1923. [CrossRef] [PubMed]
23. Thanh, T.; Van, L.; Binh, L.M. Effects of Data Standardization on Hyperparameter Optimization with the Grid Search Algorithm

Based on Deep Learning: A Case Study of Electric Load Forecasting. Adv. Technol. Innov. 2022, 7, 258.
24. Zhou, Q.; Ma, Y.; Lv, Q.; Zhang, R.; Wang, W.; Yang, S. Short-Term Interval Prediction of Wind Power Based on KELM and a

Universal Tabu Search Algorithm. Sustainability 2022, 14, 10779. [CrossRef]
25. Zhao, Y.; Hu, Q.; Srinivasan, D.; Wang, Z. Data-driven correction approach to refine power curve of wind farm under wind

curtailment. IEEE Trans. Sustain. Energy 2018, 9, 95–105. [CrossRef]
26. Hu, Y.; Qiao, Y.; Liu, J.; Zhu, H. Adaptive confidence boundary modeling of wind turbine power curve using SACADA data and

its application. IEEE Trans. Sustain. Energy 2018, 10, 1330–1341. [CrossRef]
27. Xing, Z.; Zhi, Y.; Hao, R.-H.; Yan, H.-W.; Qing, C. Wind Speed Forecasting Model Based on Extreme Learning Machines and

Complete Ensemble Empirical Mode Decomposition. In Proceedings of the 2020 5th Asia Conference on Power and Electrical
Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 159–163.

28. Pan, G.; Zhang, H.; Ju, W.; Yang, W.; Qin, C.; Pei, L.; Sun, Y.; Wang, R. A Prediction Method for Ultra Short-Term Wind Power
Prediction Basing on Long Short -Term Memory Network and Extreme Learning Machine. In Proceedings of the 2020 Chinese
Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7608–7612.

29. Jizmundo, R.E.; Maltezo, R.J.F.; Villanueva, F.G.; Pacis, M.C. A Long-Term Wind Power Prediction using Support Vector Regression
and Ensemble Boosted Tree Algorithm (SVR-EBTA). In Proceedings of the 2023 15th International Conference on Computer and
Automation Engineering (ICCAE), Sydney, Australia, 3–5 March 2023; pp. 149–152.

30. Arshad, J.; Zameer, A.; Khan, A. Wind Power Prediction Using Genetic Programming Based Ensemble of Artificial Neural
Networks (GPeANN). In Proceedings of the 2014 12th International Conference on Frontiers of Information Technology, Islamabad,
Pakistan, 17–19 December 2014; pp. 257–262.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.energy.2023.130117
https://doi.org/10.1016/j.inffus.2006.10.009
https://doi.org/10.1109/TASC.2023.3262212
https://doi.org/10.1007/BF00117832
https://doi.org/10.1162/089976698300017197
https://www.ncbi.nlm.nih.gov/pubmed/9744903
https://doi.org/10.3390/su141710779
https://doi.org/10.1109/TSTE.2017.2717021
https://doi.org/10.1109/TSTE.2018.2866543

	Introduction
	Model Evaluation Criteria
	A Modified Stacking Ensemble Learning Algorithm
	Bagging
	Boosting
	Procedure of BEM Boosting
	Procedure of AdaBoost.RT

	Generate the Base Learner
	Linear Weighted Model Integration
	Stacking

	Case Study
	Data Collection
	Base Learner
	Meta Learner (Integration Model)
	Wind Power Prediction Results at Different Times
	Wind Power Prediction Results of Different Look-Ahead Times

	Conclusions
	References

