Seismic Risk Assessment and Analysis of Influencing Factors in the Sichuan–Yunnan Region
Abstract
:1. Introduction
2. Literature Review
3. Overview of Study Area and Data Sources
3.1. Overview of Study Area
3.2. Development of Index System
3.3. Data Sources
4. Research Method
4.1. Information Entropy
4.2. Comprehensive Index Method
4.3. Geographic Detector
5. Results and Analysis
5.1. Temporal Evolution Characteristics of Seismic Disaster Risk in the Sichuan–Yunnan Region
5.1.1. Causative Factors Hazard Index
5.1.2. Disaster-Prone Environment Stability Index
5.1.3. Disaster-Bearing Bodies Vulnerability Index
5.1.4. Overall Earthquake Disaster Risk Index
5.2. Temporal Evolution Characteristics of Seismic Disaster Risk in the Sichuan–Yunnan Region
5.2.1. Causative Factors Hazard Index
5.2.2. Disaster-Prone Environment Stability Index
5.2.3. Disaster-Bearing Bodies’ Vulnerability Index
5.2.4. Comprehensive Earthquake Disaster Risk Index
5.3. Analysis of Factors Affecting Earthquake Disaster Risk Levels in the Sichuan–Yunnan Region
5.3.1. Univariate Analysis
5.3.2. Interaction Effects’ Detection
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Economic Forum. The Global Risks Report 2020; Marsh & McLennan and Zurich Insurance Group: Davos, Switzerland, 2020. [Google Scholar]
- Yang, Y.Q.; Yuan, Z.X.; Kong, F.; Xiang, M.Z.; Wang, Q.X. Studies on the Development of comprehensive disaster reduction in China. J. Catastroph. 2021, 36, 139–144. (In Chinese) [Google Scholar]
- Central People’s Government of the People’s Republic of China. Hui Liangyu Emphasizes Strengthening Comprehensive Disaster Reduction Capacity and Raising Public Awareness of Disaster Reduction. Available online: http://www.gov.cn/ldhd/2006-10/10/content_409182.htm (accessed on 10 October 2006). (In Chinese)
- Wen, J.H.; Yin, Z.E.; Meng, Q.J.; Ye, X.L. Mainstreaming disaster risk management in China. Prog. Geogr. 2010, 29, 771–777. (In Chinese) [Google Scholar]
- Central People’s Government of the People’s Republic of China. Report of the 20th national congress of the communist party of China (CPC). Available online: https://www.gov.cn/xinwen/2022-10/25/content_5721685.htm (accessed on 25 October 2022). (In Chinese)
- White, G.F. Human Adjustment to Floods; University of Chicago: Chicago, IL, USA, 1945. [Google Scholar]
- Burton, I.R.W.; Katers; White, G.F. The Environment as Hazard, 2nd ed.; The Guilford Press: New York, NY, USA, 1993. [Google Scholar]
- Blaikie, P.T.; Cannon, I.; Davis, I.; Wisner, B. At Risk Natural Hazards People’s Vulnerability, and Disasters, 1st ed.; Routledge: London, UK, 1994. [Google Scholar]
- Shi, P.J. The ory and practice of disaster study. J. Nat. Disasters 1994, 4, 6–17. [Google Scholar]
- Zhang, W.; Guo, H.; Wu, Y.; Zhang, Z.; Yin, H.; Feng, K.; Liu, J.; Fu, B. Temporal and spatial evolution of meteorological drought in inner Mongolia Inland River Basin and its driving factors. Sustainability 2024, 16, 2212. (In Chinese) [Google Scholar] [CrossRef]
- Wan, X.; Ding, X.-Y.; Zhang, T.-T.; Li, L.-Z. Research on social impacts of rainstorm disaster considering infrastructure disruption: Ananalysis of sentimental and behavioral evolution from a public perspective. J. Nat. Res. 2023, 38, 2919–2932. [Google Scholar] [CrossRef]
- Xue, Z.J.; Wang, Z.Y.; Zhang, J.P.; Yan, C.G.; Xu, Z.K.; Zhang, Y.L.; Huang, X.M.; Ma, T. Toughness analysis and improvement of road structure under action of debris flow. J. Jilin Univ. (Eng. Technol. Ed.) 2023, 53, 1773–1781. [Google Scholar]
- Kakalou, E.; Tsiamis, C. Infectious diseases outbreaks following natural disasters: Risk assessment, prevention, and control. Emerg. Med. Trauma Disaster Manag. 2021, 13, 525–535. [Google Scholar]
- Kang, N. Hazard of sudden disasters to urban lifeline system and its countermeasure. Soft Sci. 1991, 1, 12–19. (In Chinese) [Google Scholar]
- Tang, Y.D.; Yu, X.; Liu, C.P.; Dong, S.H. Basic thinking and framework for earthquake risk integrated assessment of natural gas pipeline. J. Nat. Disasters 2009, 18, 135–138. (In Chinese) [Google Scholar]
- Wang, S.Y.; Jin, S.M. Risk evaluation and optimization of water supply system under earthquake. J. Harbin Inst. Technol. 2013, 45, 20–25. (In Chinese) [Google Scholar]
- Liu, Z.; Wen, Y.J.; Xue, J.L.; Geng, S.L. Spatial changes of housing vualerability from seismic disaster in rural region of Baoji City. N. China Earthq. Sci. 2018, 36, 25–32. (In Chinese) [Google Scholar]
- Guo, Z.J.; Guo, A.N. Discussion on the medium-term prediction of Jiuzhaigou, Sichuan Ms7.0 earthquake on August 8, 2017, by means of triplet method. China Earthq. Eng. J. 2017, 39, 797–798. (In Chinese) [Google Scholar]
- Celik, E. Analyzing the shelter site selection criteria for disaster preparedness using best–worst method under interval type-2fuzzy sets. Sustainability 2024, 16, 2127. [Google Scholar] [CrossRef]
- Martinez, I.; Gallegos, M.F.; Araya-Letelier, G.; Lopez-Garcia, D. Impact of probabilistic modeling alternatives on the seismic fragility analysis of reinforced concrete dual wall–frame buildings towards resilient designs. Sustainability 2024, 16, 1668. [Google Scholar] [CrossRef]
- Li, N.; Kang, S.; Zhu, L.Y. Study on present-day locking and seismic hazard of the Red River fault zone based on GPS date. J. Geod. Geodyn. 2019, 39, 700–705. (In Chinese) [Google Scholar]
- Ruggieri, S.; Calò, M.; Cardellicchio, A.; Uva, G. Analytical-mechanical based framework for seismic overall fragility analysis of existing RC buildings in town compartments. Bull. Earthq. Eng. 2023, 20, 8179–8216. [Google Scholar] [CrossRef]
- Ruggieri, S.; Liguori, F.S.; Leggieri, V.; Bilotta, A.; Madeo, A.; Casolo, S.; Uva, G. An archetype-based automated procedure to derive global-local seismic fragility of masonry building aggregates: META-FORMA-XL. Int. J. Disaster Risk Reduct. 2023, 95, 103903. [Google Scholar] [CrossRef]
- Du, J.; Ji, M.X.; Liu, J.; Wang, J.A. Urban risk assessment research of major natural disasters in China. Adv. Earth Sci. 2002, 2, 170–177. (In Chinese) [Google Scholar]
- Sun, Z.; Pang, L.; Lu, Y.Y. Research on the comprehensive disaster risk assessment based on multidimensional spatial coupling model: Take Nanyang’s downtown area as an example. J. Catastroph. 2024, 39, 89–95. (In Chinese) [Google Scholar]
- Li, M.; Zou, Z.H.; Shi, P.J.; Wang, J.A. World earthquake disaster risk assessment. J. Nat. Disasters 2015, 24, 1–11. (In Chinese) [Google Scholar]
- Chaulagain, H.; Rodrigues, H.; Silva, V. Seismic risk assessment and hazard mapping in Nepal. Nat. Hazards 2015, 78, 583–602. [Google Scholar] [CrossRef]
- Dolce, M.; Prota, A.; Borzi, B.; Porto, F.; Lagomarsino, S.; Magenes, G.; Moroni, C.; Penna, A.; Poles, A.; Speranza, E.; et al. Seismic risk assessment of residential buildings in Italy. B. Earthq. Eng. 2020, 19, 2999–3032. [Google Scholar] [CrossRef]
- Li, S.B. Seismic zoning map of China and its explanation. Chin. J. Geophys. 1957, 2, 127–158. (In Chinese) [Google Scholar]
- National Seismological Bureau. Report on Seismic Intensity Zoning in China, 1st ed.; Seismological Press: Beijing, China, 1981. (In Chinese)
- Seismological Bureau. Probability of Seismic Intensity Map in China, 1st ed.; Seismological Press: Beijing, China, 1996. (In Chinese)
- Gao, M.T. New national seismic zoning map of China. Acta Seismol. Sin. 2003, 6, 630–636. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.C.; Bo, W.J. Xianshuihe fault motion coordination ratio anomalies and seismicity in Sichuan. Seismol. Geomag. Obs. Res. 2021, 42, 139–140. (In Chinese) [Google Scholar]
- Chen, L.J. Variations in apparent stress and b value in the 2019 Ms6.0 Changning earthquake. Prog. Earthq. Sci. 2021, 51, 49–58. (In Chinese) [Google Scholar]
- Tian, H.X.; Mao, Y.P.; Qian, X.D. Estimation on maximum aftershock of earthquake sequences in Yunan. J. Seismol. Res. 2014, 37, 9–15. (In Chinese) [Google Scholar]
- Li, H.J.; Wang, Z.J.; Fan, H.H.; Hu, R.P.; Han, J.Y.; Zhang, J.J. Research and calidation of rapid magnityde estimation model for early earthquake warning in the Sichuan region using events from the Yunnan region, 2014. China Earthq. Eng. J. 2018, 40, 1337–1342. (In Chinese) [Google Scholar]
- Wu, D.; Pei, Y.S.; Zhao, Y.; Xiao, W.H. Numerical simulations of climate change under IPCC A1B scenario in Southwestern China. Progr. Geogr. 2012, 31, 275–284. (In Chinese) [Google Scholar]
- Teng, J.W.; Pi, J.L.; Yang, H.; Yan, Y.F.; Zhang, Y.Q.; Ruan, X.M.; Hu, G.Z. Wenchuan-Yingxiu Ms8.0 earthquake seismogenic faults and deep dynamic response. Chin. J. Geophys. 2014, 57, 392–403. (In Chinese) [Google Scholar]
- Shi, P.J. Theory and practice of disaster research. J. Nanjing Univ. 1991, 11, 37–42. (In Chinese) [Google Scholar]
- Shi, P.J. Re-discussion on the theory and practice of disaster research. J. Nat. Disasters 1996, 5, 6–17. (In Chinese) [Google Scholar]
- Shi, P.J. Theory and practice on disaster system research in a fourth time. J. Nat. Disasters 1996, 14, 1–7. (In Chinese) [Google Scholar]
- Wan, J.; Yan, J.P.; Liu, Z.Q.; Wang, X.M.; Zhang, Y.F.; Wang, C.B. Temporal characteristics and trend assessment of Ms ≥ 5.6 earthquakes in Tianshan area of China based on co-occurrence analysis. Appl. Geophys. 2021, 18, 396–407. [Google Scholar] [CrossRef]
- Keefer, D.K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 1984, 95, 406–421. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Du, C.L.; Liu, A.Z.; Zhang, W.S. Analysis on relationship between 3-level exceeding probability (EP) and horizontal PGA. N. China Earthq. Sci. 2009, 27, 39–41. (In Chinese) [Google Scholar]
- Guo, G.; Chen, Y.; Li, M.H.; Dang, J. Statistic relationship between slope gradient and landslide probability in soil slopes around reservoir. J. Eng. Geol. 2013, 21, 607–612. (In Chinese) [Google Scholar]
- Yang, T.; Deng, R.G.; Liu, X.L. The distributing and subarea character of the seismic landslides in Sichuan. Mt. Res. 2002, 4, 456–460. (In Chinese) [Google Scholar]
- Li, C.Y.; Wang, X.C.; He, C.Z.; Wu, X.; Kong, Z.Y.; Li, X.L. National 1:200000 digital geological map (open edition) spatial database. Geol. China 2019, 46, 1–10. (In Chinese) [Google Scholar]
- Zhang, G.W. Research on earthquake relocation and b-value in the Yunnan area. Earthq. Res. China 2016, 32, 54–62. (In Chinese) [Google Scholar]
- Sichuan Provincial Bureau of Statistics. Sichuan Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006.
- Sichuan Provincial Bureau of Statistics. Sichuan Statistical Yearbook 2011; China Statistics Press: Beijing, China, 2011.
- Sichuan Provincial Bureau of Statistics. Sichuan Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016.
- Sichuan Provincial Bureau of Statistics. Sichuan Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019.
- Health Commission of Sichuan Province. Sichuan Health Statistics Yearbook 2010; Sichuan University Press: Chengdu, China, 2011.
- Health Commission of Sichuan Province. Sichuan Health Statistics Yearbook 2015; Southwest Jiaotong University Press: Chengdu, China, 2016.
- Health Commission of Sichuan Province. Sichuan Health Statistics Yearbook 2018; Southwest Jiaotong University Press: Chengdu, China, 2019.
- Sichuan Electric Power Yearbook Compilation Committee. Sichuan Electric Power Yearbook 2005; China Local Records Publishing: Beijing, China, 2006.
- Sichuan Electric Power Yearbook Compilation Committee. Sichuan Electric Power Yearbook 2010–2011; China Local Records Publishing: Beijing, China, 2011.
- Sichuan Electric Power Yearbook Compilation Committee. Sichuan Electric Power Yearbook 2016; China Local Records Publishing: Beijing, China, 2016.
- Sichuan Electric Power Yearbook Compilation Committee. Sichuan Electric Power Yearbook 2019; Sichuan Science and Technology Publishing House: Chengdu, China, 2019.
- Yunnan Provincial Bureau of Statistics. Yunnan Statistical Yearbook 2006; China Statistics Press: Beijing, China, 2006.
- Yunnan Provincial Bureau of Statistics. Yunnan Statistical Yearbook 2011; China Statistics Press: Beijing, China, 2011.
- Yunnan Provincial Bureau of Statistics. Yunnan Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016.
- Yunnan Provincial Bureau of Statistics. Yunnan Statistical Yearbook 2019; China Statistics Press: Beijing, China, 2019.
- Fu, X.A. Yunnan Health Yearbook 2011–2012; Yunnan People’s Publishing House: Kunming, China, 2013. [Google Scholar]
- Qi, B.H.; Dong, W.L. China’s Ethnic Yearbook 2006; China Ethnic Yearbook Editorial Department: Beijing, China, 2006.
- National Ethnic Affairs Commission of the People’s Republic of China. China’s Ethnic Yearbook 2011; National Ethnic Affairs Committee Ethnic Theory Policy Research Office: Beijing, China, 2011.
- China Ethnic Yearbook Editorial Department. China’s Ethnic Yearbook 2016; China Ethnic Yearbook Editorial Department: Beijing, China, 2016.
- China Ethnic Yearbook Editorial Department. China’s Ethnic Yearbook 2019; China Ethnic Yearbook Editorial Department: Beijing, China, 2019.
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Weng, W.B. Fundamentals of Forecasting Theory; Petroleum Industry Press: Beijing, China, 1984. [Google Scholar]
- Lv, N.D.; Zhang, Q. Theory of Forecasting; Petroleum Industry Press: Beijing, China, 1996. [Google Scholar]
- Long, X.X.; Yan, J.P.; Sun, H.; Wang, Z.Z. Study on earthquake tendency in Sichuan-Yunnan region based on commensurability. J. Catastroph. 2006, 21, 81–84. (In Chinese) [Google Scholar]
- Cui, X.J.; Yan, J.P.; Dong, Z.B.; Pang, L. The active pattern and future trend of earthquakes with Ms ≥ 7 in Philippines in recent 50 years. S. China J. Seismol. 2013, 33, 47–54. (In Chinese) [Google Scholar]
- Li, S.S.; Yan, J.P. Space-time symmetry of Ms ≥ 8 earthquake in north-western pacific plate seduction. Prog. Geophys. 2012, 27, 960–966. (In Chinese) [Google Scholar]
- Zhang, L.L.; Dong, J.; Yan, J.P.; Wang, T. The symmetry and the tendency judgment of Ms ≥ 6.6 earthquakes in southern Tibet. Plateau Earthq. Res. 2012, 24, 1–5. (In Chinese) [Google Scholar]
- Li, X.N.; Yan, J.P. Space-time symmetry and trend of Ms ≥ 7.0 earthquakes in Chuandian area. Prog. Geophys. 2017, 32, 1447–1453. (In Chinese) [Google Scholar]
- Wang, H.; Yan, J.P.; Tang, B.Q.; Li, Y.J. Space-time symmetry and tendency judgment of Mw ≥ 6.9 earthquake in Peru. J. Zhejiang Univ. (Sci. Ed.) 2018, 45, 1008–9497. (In Chinese) [Google Scholar]
Geographical Division | City | Causative Factors Hazard Index | Disaster-Prone Environment Stability Index | Disaster-Bearing Bodies Vulnerability Index | Overall Earthquake Disaster Risk Index | |||
---|---|---|---|---|---|---|---|---|
2005 | 2010 | 2015 | 2018 | |||||
I | Chengdu | 2.06 | 1.8 | 23.63 | 23.26 | 18.29 | 22.73 | 11.9 |
Zigong | 0.09 | 0.81 | 5.72 | 5.94 | 9.92 | 9.86 | 4.55 | |
Luzhou | 0.77 | 0.32 | 2.39 | 2.5 | 2.52 | 2.86 | 1.5 | |
Deyang | 2.06 | 1.16 | 5.92 | 5.61 | 4.44 | 4.61 | 3.24 | |
Mianyang | 2.06 | 2.58 | 2.86 | 2.81 | 2.68 | 3.04 | 2.63 | |
Guangyuan | 2.06 | 1.43 | 1.59 | 1.67 | 1.46 | 1.63 | 1.63 | |
Suining | 0.01 | 0.29 | 4.32 | 4.94 | 5.24 | 5.77 | 2.59 | |
Neijiang | 0.04 | 0.29 | 4.61 | 4.81 | 4.52 | 3.94 | 2.14 | |
Leshan | 2.22 | 2.7 | 2.64 | 2.53 | 2.63 | 2.35 | 2.46 | |
Nanchong | 0.01 | 0.04 | 3.07 | 3.3 | 2.96 | 2.98 | 1.44 | |
Meishan | 1.75 | 1.51 | 3.69 | 6.79 | 3.55 | 2.77 | 2.67 | |
Yibin | 1.24 | 0.94 | 2.5 | 2.39 | 2.13 | 2.86 | 1.71 | |
Guangan | 0.01 | 0.21 | 3.68 | 3.39 | 3.45 | 2.89 | 1.49 | |
Dazhou | 0.01 | 1.18 | 1.95 | 2.17 | 2.04 | 1.93 | 1.09 | |
Yaan | 5.04 | 5.23 | 1.12 | 1.49 | 1.23 | 1.16 | 3.28 | |
Bazhong | 0.01 | 0.22 | 1.41 | 1.6 | 1.52 | 1.38 | 0.6 | |
Ziyang | 0.01 | 0.46 | 2.89 | 3.18 | 2.65 | 2.62 | 1.34 | |
II | Kunming | 1.79 | 2.97 | 5.11 | 3.73 | 5.03 | 6.64 | 4.29 |
Qujing | 0.34 | 2.62 | 1.3 | 1.3 | 1.74 | 2.05 | 1.51 | |
Yuxi | 5.37 | 2.56 | 1.41 | 1.16 | 1.19 | 1.33 | 2.84 | |
Zhaotong | 1.24 | 2.51 | 0.95 | 1.02 | 0.74 | 0.97 | 1.25 | |
III | Baoshan | 6.02 | 3.5 | 0.59 | 0.49 | 0.7 | 0.72 | 2.84 |
Puer | 5.08 | 3.39 | 0.33 | 0.5 | 0.33 | 0.33 | 2.36 | |
Lincang | 5.08 | 2.87 | 0.48 | 0.6 | 1.11 | 0.53 | 2.39 | |
Honghe | 5.89 | 2.15 | 1.65 | 1.23 | 2.55 | 1.66 | 3.21 | |
Wenshan | 0.21 | 1.59 | 1.43 | 1.05 | 1.06 | 0.83 | 0.81 | |
Xishuangbanna | 3.17 | 2.78 | 0.71 | 0.27 | 0.61 | 0.27 | 1.64 | |
Dehong | 3.34 | 3.75 | 1.18 | 1.09 | 1.06 | 0.82 | 2.3 | |
IV | Panzhihua | 0.09 | 3.81 | 3.67 | 2.79 | 2.9 | 2.5 | 2.25 |
Aba | 3.87 | 4.49 | 1.53 | 1.66 | 2.76 | 1.48 | 3.2 | |
Ganzi | 5.07 | 8.87 | 0.54 | 0.59 | 1.08 | 0.63 | 3.76 | |
Liangshan | 5.88 | 7.14 | 0.66 | 0.74 | 0.71 | 0.75 | 3.65 | |
Lijiang | 4.01 | 5.09 | 0.48 | 0.37 | 0.28 | 0.35 | 2.39 | |
Chuxiong | 5.37 | 3.15 | 1.33 | 0.83 | 1.12 | 0.75 | 2.79 | |
Dali | 8.36 | 4 | 1.24 | 1.17 | 1.92 | 0.98 | 4.12 | |
Nujiang | 5.55 | 5.71 | 0.64 | 0.37 | 0.95 | 0.64 | 3.18 | |
Diqing | 4.83 | 5.88 | 0.8 | 0.66 | 0.95 | 0.39 | 2.95 |
q (Cx∩Cy) | q-Statistic Value | Type of Interaction | q (Cx∩Cy) | q-Statistic Value | Type of Interaction |
---|---|---|---|---|---|
q (C1∩C2) | 0.212 | Bifactor enhance | q (C3∩C4) | 0.887 | Nonlinear enhance |
q (C1∩C3) | 0.347 | Nonlinear enhance | q (C3∩C5) | 0.888 | Nonlinear enhance |
q (C1∩C4) | 0.861 | Bifactor enhance | q (C3∩C6) | 0.420 | Nonlinear enhance |
q (C1∩C5) | 0.887 | Bifactor enhance | q (C3∩C7) | 0.887 | Nonlinear enhance |
q (C1∩C6) | 0.281 | Bifactor enhance | q (C4∩C5) | 0.793 | Bifactor enhance |
q (C1∩C7) | 0.886 | Bifactor enhance | q (C4∩C6) | 0.858 | Bifactor enhance |
q (C2∩C3) | 0.215 | Bifactor enhance | q (C4∩C7) | 0.816 | Bifactor enhance |
q (C2∩C4) | 0.930 | Nonlinear enhance | q (C5∩C6) | 0.855 | Bifactor enhance |
q (C2∩C5) | 0.912 | Bifactor enhance | q (C5∩C7) | 0.841 | Bifactor enhance |
q (C2∩C6) | 0.337 | Nonlinear enhance | q (C6∩C7) | 0.833 | Bifactor enhance |
q (C2∩C7) | 0.898 | Bifactor enhance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Dou, R.; Ma, T. Seismic Risk Assessment and Analysis of Influencing Factors in the Sichuan–Yunnan Region. Sustainability 2024, 16, 5968. https://doi.org/10.3390/su16145968
Wan J, Dou R, Ma T. Seismic Risk Assessment and Analysis of Influencing Factors in the Sichuan–Yunnan Region. Sustainability. 2024; 16(14):5968. https://doi.org/10.3390/su16145968
Chicago/Turabian StyleWan, Jia, Ruiyin Dou, and Tao Ma. 2024. "Seismic Risk Assessment and Analysis of Influencing Factors in the Sichuan–Yunnan Region" Sustainability 16, no. 14: 5968. https://doi.org/10.3390/su16145968
APA StyleWan, J., Dou, R., & Ma, T. (2024). Seismic Risk Assessment and Analysis of Influencing Factors in the Sichuan–Yunnan Region. Sustainability, 16(14), 5968. https://doi.org/10.3390/su16145968