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Abstract: In order to control the spread of the Coronavirus Disease 2019 (COVID-19), many countries
around the world adopted aggressive anti-contagion policies (APs), the most common of which
was to restrict people’s transportation and economic activities, which not only curbed the spread
of the epidemic but also improved urban air quality during the APs’ implementation. However,
the impact that these policies had in the post-AP period is unclear. Using daily air quality data for
prefecture-level cities in China in early 2020 and the Difference-in-Differences (DiD) models, we
measured the short-term (AP implementation period) and medium-term (post-AP period) impacts of
the city APs (CAPs) on different kinds of air pollutants and considered the meteorological conditions.
We found that the policies significantly reduced air pollution (i.e., particulate matter [PM2.5, PM10]
and nitrogen dioxide [NO2]) in the short term; although the medium-term impacts are in line with the
short-term impacts, they are not significant. The effects were reduced in cities with higher incomes,
larger populations, more industrial activities, and greater traffic volumes, and without a central
heating system. Although the CAPs did not improve air quality in the long run, they improved
air quality and health benefits in the short term. In addition, the policies’ experiments verified the
complexity of environmental governance.

Keywords: city anti-contagion policies; unsustainable impacts; DiD models; air quality

1. Introduction

The public health incident COVID-19 affected more than 219 countries around the
world and killed more than 6.3 million people (World Health Organization (WHO), Geneva,
Switzerland, 2022). Faced with this sudden crisis, all countries adopted emergency policies
to mitigate its impact. These policies aimed to reduce the spread of the virus by reducing
personal contact within or between populations, such as, for example, increasing or ex-
tending holidays, restricting populations to their homes, closing restaurants or restricting
travel, and delaying the resumption of housing construction and municipal infrastructure
projects. Effective policies depend on people’s social preferences and the government man-
agement capacity, and, on the other hand, on an accurate cost–benefit analysis of different
anti-contagion policies (APs) [1]. When only focusing on the health benefits, which create
huge costs for developing countries or regions, all countries consider whether the benefits
of APs are worth the corresponding social and economic costs. These policies controlled
the spread of the epidemic in a short period of time. However, little is known about the
widespread impact of the APs.

An important component of evaluating the benefits of the APs’ implementation is to
measure non-negligible impacts on public benefits (e.g., air quality) in the short and long
term. This special period was the “largest scale experiment ever” on air quality. In this
context, it is possible to better measure the impact of human behavior on air quality [2].
Some studies have examined the short-term impact of government control measures on
air quality. Scholars examined whether, how, and to what extent the policies affected air
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quality in different cities (e.g., Almaty, Barcelona, Bengaluru, Beijing, Brescia, Dhaka, Las
Vegas, Lima, Madrid, Milan, Moscow, Mumbai, Quito, Rio de Janeiro, Rome, São Paulo,
and Wuhan), regions (e.g., the Yangtze River Delta [YRD], the Pearl River Delta, California,
and Western Europe, the world’s 50 most polluted capital cities, and major cities across the
globe), and countries (e.g., Canada, China, Ecuador, India, Iran, Nigeria, Poland, Portugal,
Spain, Türkiye, the United Kingdom (UK), and the United States (US)). In 2020, a notable
improvement in air quality was observed during the COVID-19 lockdown (implementing
the APs) across the globe [3,4].

Developed economic regions: In Canada, the concentration levels of NO2 and carbon
monoxide (CO) were strongly correlated with the APs [5]. In the US, after the shutdown,
PM2.5 and NO2 concentration levels decreased significantly in New York, along with
PM2.5, NO2, and CO in California, but the ozone (O3) concentration increased [2,6–8]. In
Italy, PM10 and NO2 concentrations were significantly reduced between 1 January and 27
March in Brescia [9]; from 9 March to 5 April, PM2.5, PM10, NOx, CO, black carbon (BC),
and benzene concentrations were significantly reduced, but O3 increased in Milan [10]. In
Poland, five large cities showed a reduction in pollutant concentrations (PM2.5, PM10, and
NO2) in April and May compared to the same periods in 2018 and 2019 [11]. In Portugal,
these reductions were observed for PM2.5, PM10, and NO2 [12,13]. In Spain, at various
time periods from February to April 2020, the concentration levels of PM10, SO2, NO2, CO,
and BC were reduced, but O3 increased in some cities [14–16]. In the UK, compared to the
same period in the previous years, the PM2.5, NO2, and nitrogen monoxide (NO) levels
dropped substantially, but the O3 levels increased [17–19].

Economies in transition regions: In Kazakhstan, from 19 March to 14 April, the concen-
tration levels of PM2.5, NO2, and CO were reduced, compared to the average in the same
period in the previous two years, but O3 increased in Almaty [20]. Developing economic
regions: In Bangladesh, from 8 March to 15 May, there were nonuniform reductions in PM
2.5, SO2, NO2, O3, and CO concentrations in Dhaka [21]. In Brazil, the concentrations of
CO, NO2, and PM10 decreased to varying degrees, but O3 increased in Rio de Janeiro [22];
compared to the monthly mean for the last five years, there were drastic reductions in NO,
NO2, and CO concentrations, and O3 increased in São Paulo [23]. In Ecuador, PM2.5 and
NO2 concentrations decreased significantly, and O3 concentrations increased [24]; PM2.5,
SO2, NO2, and CO concentrations decreased drastically, and the reduction in NO2 induced
an increase in O3 in Quito [25]. In India, the AQI was improved in the mega cities [26],
with decreases in PM2.5, PM10, NO2, and CO compared to previous years and an increase
in O3 [27,28]. In Iran, from 21 March to 21 April in 2019 and 2020, concentrations of PM10,
SO2, NO2, and CO decreased, and PM2.5 and O3 increased [29]. In Nigeria, a substantial
decline in fine aerosols was observed compared with pre-lockdown [30]. In Türkiye, the
restrictions imposed (between 16 March and 15 April) in the 30 major cities significantly
improved the air quality (PM2.5, PM10, and CO) [31].

In China, studies estimated and quantified the effects of the implementation of anti-
contagion policies (e.g., travel restrictions, decreased human mobility, COVID-19 lockdown,
and intracity mobility reductions) on concentrations of different kinds of air pollutants
(e.g., PM2.5, PM10, SO2, NO2, CO, and O3) during the COVID-19 outbreak at various
time periods from January to April 2020. These studies, based on different sample cities
(e.g., 44 cities in the north, 95 cities out of 324 sample cities, 30 cities in China, and the
YRD Region) and different research methods, found similar conclusions, with significantly
varying degrees of reduction in the concentration of air pollutants (i.e., PM2.5, PM10, SO2,
NO2, and CO), but O3 increased greatly [32–40]. In summary, most of the countries or
regions mentioned above experienced a similar phenomenon that is, O3 concentrations
rose during this special period.

Although the link between APs and air quality has been widely discussed in the above
studies based on different countries, compared to the pre-pandemic situation in 2020 or the
same period in nearly five years, there was a significant reduction in different kinds of air
pollutant concentrations (the highest frequency includes PM2.5, PM10, NO2, and CO), but
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the O3 level increased in the short term (during the APs’ implementation). However, air
pollution is not a short-term problem, and there is still a lack of research on how APs affect
air quality in both the short term and the post-APs period. The effects should be tested over
time to trace both the temporal dynamics and longer effects of the APs implementation.
In China, the APs, in most cities, were issued directly by municipal governments, and a
small number of policies were promulgated by the provincial governments, which can be
broadly divided into two categories. One is defined as a restriction on the movement of
people between different cities (city APs [CAPs]), and the other is defined as restricting
mobility within the city (community APs [COAPs])) [1]. We focus on the impact of the
CAPs on air pollution improvements. Therefore, first, we measure not only the short-
term impact but also the post-policy (the medium-term) impact in China. Second, some
studies only focused on the city’s top pollutants and ignored changes in other air pollutants.
This study included six common pollutants (i.e., PM2.5, PM10, SO2, NO2, and CO) and
the Air Quality Index (AQI). Third, air pollution concentrations are closely related to
meteorological changes [41]; the concentrations of different air pollutants are related to
different meteorological variables (e.g., wind speed, air pressure, relative humidity, and
duration of sunshine) [42]. For example, the temperature, air pressure, and wind speed
have a direct impact on PM concentrations [43]. While some research measuring the
impact during the period considered the weather conditions (e.g., rainfall, snowfall, and
temperature), most of them ignored other meteorological indicators (e.g., the wind speed,
air pressure, relative humidity, and duration of sunshine), which are considered in our
research. Our findings will help researchers and policymakers in China and other countries
understand the benefits and costs of the CAPs during COVID-19, which have important
implications for current and future policy design.

2. Materials and Methods
2.1. Methodology

The exogenous shock time of APs was regarded as a natural experiment; we used the
DiD model, an econometric model widely used to measure the causal effects of intervention
methods, to examine the impact of the CAPs on air quality. This method overcomes the
endogeneity problem and identifies the causal relationship by taking advantage of the
heterogeneous effects of an exogenous shock on the treatment group (with CAPs) and the
control group (without CAPs) before and after the policies were implemented.

2.1.1. Generalized DiD Model

In the first stage, we estimated the CAPs’ short-term impacts from 1 January to 7
April 2020, using the generalized DiD Model, which measured the relative change in air
quality between the two groups. We constructed the following econometric model for
Difference-in-Differences testing:

Yit = α+ βCAPit + γMetit + µi + πt + εit (1)

where i represents the city, and t represents the time (day). Yit is the daily value of the
air pollutant concentration or AQI in city i on day t. CAPit, a dummy variable, denotes
whether city i implemented CAPs on day t. CAPit equals 1 if CAPs were implemented
on date t, and 0 otherwise. Metit is the daily value of meteorological indicators in city i at
day t. µi and πt are both vectors of dummy variables. µi is a set of dummy variables for a
city and can control the mixed confounders for each city (e.g., conditions of geographical
landscape, economic structure, and natural environment); πt is a set of dummy variables
for the date and can explain the shocks that occur collectively in all cities on a given day. εit
is the error term.

Thus, in the Two-way Fixed Effects (TWFE) model, the coefficient β estimates the
difference in air quality between the two groups before and after implementing the CAPs.
The coefficient γ is a vector that estimates the impact of different meteorological indicators
on air pollutant concentrations.
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Second, most studies continued to implement the previous policies, and business
activities were not fully recovered, even after the CAPs were lifted. Thus, based on the
time interval for short-term impact measurements, datasets from 8 April to 31 July were
defined as the post-CAPs period to measure the medium-term impacts on air quality. We
reconstructed the following equation:

Yit = α+ βsCAPit + βmpostCAPit + γMetit + µi + πt + εit (2)

where postCAPit, a dummy variable, is an interactive term. When CAPs were implemented
between 1 January and 7 April 2020, and the date t can be between 8 April and 31 July the
postCAPit equals 1, and 0 otherwise. The coefficient βs estimates the short-term impact of
CAPs. The coefficient βm estimates the medium-term impacts. The rest of the explanations
are the same as in Equation (1).

2.1.2. Event Study

The basic assumption of the DiD model is that air quality trends are the same in both
groups of cities without CAP intervention (i.e., the parallel trend assumption). Although
the results show an improvement in air quality in the treated cities after implementation, the
results may not be due to the effects of CAPs, but to systemic differences between the two
groups. This hypothesis is impossible to test because we cannot observe counterfactuals
about how air pollution concentrations in the experimental group of cities would change
without these policies. However, before implementing CAPs, we must examine the air
quality trends of the two groups and test whether they are comparable. Therefore, we used
the following equation to test this comparability.

Yit = α+
M

∑
m=k, m ̸=−1

βk × D_CAPit,k + γMetit + µi + πt + εit (3)

where D_CAPjt,k, a set of dummy variables, indicates the experimental status at different
periods. We put 1 week into one bin (bin m∈M) in order to avoid the impact of high
daily air pollution fluctuations on the trend testing [40]. The dummy value of m = −1 is
omitted from Equation (3) so that the impact of CAPs is relative to the period of the week
before the policies’ implementation. m = −1 is used as a reference because the impact
of CAPs may have been felt before they were implemented; for example, some people
start personal protection by reducing travel and group activities before the government
announces the CAPs, depending on the trend of new cases in the epidemic. During the
prevention and control period, many cities in China used a seven-day observation period
to observe the changes in new cases. βk estimates the effects of CAPs m weeks after their
implementation. We added leads of the experimental dummy to test whether the CAPs
affect air pollutant concentrations before implementation. Intuitively, the coefficient βk

measures the difference in air quality between cities with CAPs and otherwise in period k,
which is related to the difference one week before implementing CAPs. If the CAPs can
mitigate air pollution, βk is less than 0 when k ≥ 0. The underlying assumption is satisfied;
βk is close to 0 when k ≤ −2.

2.1.3. Heterogeneity Analysis

The above regression results, based on all sample cities, may ignore the potential
differences in the impact of CAPs on air quality in different cities. We therefore further
analyzed the heterogeneous impact of the policies on air quality, along with differences in
socio-economic status, such as gross domestic product (GDP), industrial output, population,
traffic, pollutant emissions, and other variables. The heterogeneity analyses were used to
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verify that the impacts of CAPs are universal and to enhance the validity of the final results.
We fitted the following equation:

Yit = α+ βCAPit + ∑
h∈H

δh·CAPit·heteroh + γMetit + µi + πt + εit (4)

where heteroh indicates the h characteristics of cities, and CAPit·heteroh is an interaction
term between the CAP status and heteroh of city i on day t. The rest of the explanations
are the same as Equation (1). It is important to note that there is no causal explanation
for heterogeneity analysis; we compared the δh across interaction terms to analyze the
channels whereby CAPs affect air pollutant concentrations.

2.2. Data
2.2.1. Air Pollution

Air pollution is a serious problem affecting billions of people worldwide, and the
World Health Organization defines it as the pollution of the indoor or outdoor environment
by any chemical, physical, or biological agent that alters the natural properties of the
atmosphere. It is a complex mixture of particulate matter, gases, organic compounds,
and metals. The composite level is measured by indexes (i.e., the Air Pollution Index
(API) and the Air Quality Index (AQI)). The AQI is an API-based improvement that better
characterizes ambient air quality conditions. The AQI, a comprehensive Air Quality Index
evaluation, is used by government agencies to communicate real-time and future air quality
to the public. A lower AQI value means better air quality.

This study includes six kinds of air pollutants along with the AQI. These data are
obtained from the general environmental monitoring station of the Ministry of Ecology
and Environment in China [44]. The original datasets consist of hourly records of the AQI
values and common air pollutants concentrations from 1599 monitoring stations (from
1 January 2020, out-of-service monitoring stations were removed), covering 337 cities at
the prefecture level and above. The pollutant concentrations are all mass concentrations,
measured by the continuous automated monitoring system. The minimum requirement for
the validity of the hourly pollutant concentration average data is at least 45 min of sampling
time per hour. All valid data are included in statistics and evaluation. Adverse data and
human intervention monitoring evaluation results cannot be selectively discarded, and
air quality monitoring was carried out in accordance with the requirements of normative
documents such as the Ambient Air Quality Monitoring Specification (Trial) [45].

In order to obtain daily data on air quality at the municipal level, first, we calculated
the 24 h average as the current day value. Second, we worked out the distances between a
city’s population center (the location of the city government) and all monitoring stations
within the city through latitude and longitude (data source: Baidu Map and AutoNavi
Map), respectively. Finally, we used inverse distance weights to transform the station-level
data into prefecture-level data [40].

2.2.2. City Anti-Contagion Policy (CAP) Data

We collected the epidemic-prevention policies of local governments (policies related
to epidemic prevention and control) province by province and city by city using news
media and official government websites. There are other expressions in existing studies,
such as lockdowns, partial lockdowns, shutdowns, restricted activities, traffic restrictions,
and traffic-free urban areas. They all have similar meanings (i.e., travel restrictions). In
this study, a city was included in the treatment group when the city published the CAPs
in the early stage of COVID-19 prevention and control. Considering the availability and
validity of the data, the research sample in this study included 249 prefecture-level cities,
of which 47 cities were included in the treatment group and the rest belonged to the control
group. The specific distribution of cities is shown in Figure 1. Cities in the treatment group
began implementing policies at different times, from late January to mid-February (see
Table A1), mainly on 24 January; 4 and 5 February are shown in Figure 2. The policies
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were lifted between the last week of March and the first week of the following month
in most prefecture-level cities. Among the cities in the treatment group, Wuhan was the
last city to lift the CAPs on 8 April, so we treated 7 April as the last day of the CAP
implementation period.
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2.2.3. Meteorological Variables

We used relevant meteorological indicators (the atmospheric pressure (Pa), relative
humidity (%), temperature (◦C), wind speed (m/s), and sunshine duration (hour)) data
recorded by the National Meteorological Information Center (NMIC) [46]. The NMIC is a
public institution directly under the China Meteorological Administration, which integrates
the Meteorological Data Center of the China Meteorological Administration, the National
Meteorological Scientific Data Sharing Center, and the Global Information System Center
of the World Meteorological Organization. The availability of the data is over 99.9%, and
the accuracy rate is close to 100%. The original dataset consists of daily records from



Sustainability 2024, 16, 5969 7 of 22

2169 surface meteorological stations, covering 337 cities at the prefecture level and above.
Since each prefecture-level city has multiple monitoring stations, the same method (i.e.,
the inverse distance weights) used for air quality measurement was used to determine the
meteorological indicator data at the prefecture-level city.

2.2.4. Socio-Economic Status

The eleventh goal (i.e., make cities and human settlements inclusive, safe, resilient, and
sustainable) of the Sustainable Development Goals (SDGs) includes 10 secondary objectives
related to economic, social, cultural, and environmental aspects, and so on [47]. Sustainable
cities and communities (indicators for city services and quality of life) (ISO 37120) includes
19 topics, such as the economy, energy, environment, health, wastewater, and so on [48].
New-type urbanization (an evaluation index system of city quality) (GB/T 39497-2020)
includes five aspects: economic development, social culture, ecological environment, public
services, and residents’ lives [49].

The sources of air pollution can be divided into two main categories: natural factors
(forest fires, volcanic eruptions, etc.) and human factors (such as industrial exhaust gases,
domestic coal burning, and automobile exhaust gases). The latter is the main factor and is
especially caused by industrial production and transportation. The CAPs restricted people’s
travel, but most industrial enterprises, such as urban housing construction and municipal
infrastructure, began to resume work from 9 February to early March. Many industrial
enterprises also operated normally during COVID-19 to ensure the normal life of residents,
such as the heating system in Northern China’s cities, so the level of industrialization of
cities still affected the air quality in the region. In 2020, the number of motor vehicles
reached 372 million in China, an increase of 6.9% over 2019 [50]. However, at the beginning
of the year, due to the severe lockdown policy, the traffic of motor vehicles decreased
significantly. The total emissions of the four pollutants (CO, hydrocarbon (HC), NOx, and
PM from motor vehicles was 15.93 million tons, a decrease of only 0.69% compared with
the previous year. In addition, the impact of emissions from non-road mobile sources (i.e.,
construction machinery, agricultural machinery, small general machinery, ships, aircraft,
and railway locomotives) on air quality cannot be ignored, which emitted 163,000 tons
of SO2 (2.52%), 425,000 tons of HC (−2.30%), 4.782 million tons of NOx (−3.06%), and
237,000 tons of PM (−1.25%), NOx emissions were close to those of motor vehicles.

This study absorbed the connotations of the three evaluation systems, combined with
the current sources of air pollution in China; we explored the socio-economic character-
istics of cities from four dimensions, including the economy, population, environment,
and infrastructure. Regional economic development was measured by GDP per capita
(CNY); secondary industry as a percentage of GDP and the number of industrial enter-
prises; the population was measured by the registered household population at year-end
(10,000 persons); the environment was measured by the volume of industrial wastewater
discharged (10,000 tons), per capita emissions (t/person), and CO2 emissions per GDP
(t/104 RMB); infrastructure was measured by the number of buses and trolley buses under
operation at year-end (unit), electricity consumption (10,000 kwh), and the central heating
system. To explore the heterogeneity, we collected data from the “2020 China City Statisti-
cal Yearbook” [51], carbon emissions data from CEADS (Carbon Emission Accounts and
Datasets) [52], and the “2020 China Population Census Yearbook” [53], which includes the
most recent census data.

3. Results
3.1. The Short-Term Impact of CAPs

We estimated the short-term impact of CAPs on air quality using the Generalized
DiD Model (Equation (1)); full results are shown in Table 1. During the implemented
period, compared with control cities, we found that the policies implementation improved
air quality. In rows (1) to (5) of Panel A, the AQI decreased by 8.398 (p = 0.066), and the
concentrations of PM10, PM2.5, NO2, and SO2 dropped, respectively, by 8.884 µg/m3
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(p = 0.031), 6.951 µg/m3 (p = 0.084), 3.345 µg/m3 (p = 0.010), and 0.357 µg/m3 (p = 0.736).
The main content of the CAPs restricts people’s travel, as well as transportation, so the
associated air pollutants (particulate matter and NO2) were significantly improved after
implementing the policies. SO2, although improved, was not significant. This is probably
because industrial enterprises resumed work and production; according to related surveys,
the resumption rate of large- and medium-sized manufacturing industries reached 85.6% as
of the end of February. On the contrary, O3 and CO increased, respectively, by 5.790 µg/m3

(p = 0.000) and 0.001 mg/m3 (p = 0.984). O3 is formed by photochemical reactions of
nitrogen oxides (NOX) and hydrocarbons in the atmosphere when they are irradiated by
the sun. The positive impact on O3 was probably because of a lower concentration of NO2,
which resulted in constraints on the reaction of NO + O3 [38], or was due to a minor NO
concentration [10,14,17,18,27,32,35]. The CO concentration exhibited an insignificant minor
increase. Although the short-term restrictions on transport travel can reduce CO emissions,
the basic raw material industry and high-tech manufacturing industry maintained growth;
for example, the output of medical protective consumables and daily necessities grew
rapidly, with masks increasing by 127.5% and instant noodles increasing by 11.4%. It is
likely that the above situation occurred due to the effects of both directions. In Panel B,
including meteorological control variables, we obtained similar results, a slight difference
in all the regression coefficients, but no change in significance, which reflects that the
changes in air pollutant concentrations caused by CAPs are not strongly correlated with
meteorological indicators [40].

Table 1. The short-term impact of CAPs on air quality.

AQI PM2.5 PM10 SO2 NO2 O3 CO

(Panel A) short_t −8.398 * −6.951 * −8.884 ** −0.357 −3.345 ** 5.790 *** 0.001
(4.541) (4.000) (4.087) (1.059) (1.291) (1.054) (0.048)

Observations 24,401 24,401 24,401 24,401 24,400 24,401 24,401
Adj R-squared 0.458 0.457 0.403 0.567 0.646 0.488 0.519

(Panel B) short_t −7.557 * −5.918 * −8.723 ** −0.371 −3.295 *** 4.705 *** 0.010
(4.073) (3.382) (3.781) (0.850) (0.954) (0.879) (0.039)

Meteorological
control Y Y Y Y Y Y Y

Observations 24,249 24,249 24,249 24,249 24,248 24,249 24,249
Adj R-squared 0.484 0.504 0.421 0.601 0.706 0.612 0.577

Number of cities 249 249 249 249 249 249 249
City fixed effects Y Y Y Y Y Y Y
Date fixed effects Y Y Y Y Y Y Y

Note: The above table can be divided into two parts (Panels A and B). The difference between the two parts
is whether they include meteorological control variables. The meteorological control includes the atmospheric
pressure, relative humidity, temperature, temp2 (temperature’s square), wind speed, and sunshine duration. All
the results of Panel B are detailed in Table A2. *** represents p < 0.01, ** represents p < 0.05, and * represents
p < 0.1, applied to all of the following regression results.

We complemented the short-term impact results with testing for pre-treatment parallel
trends. We adopted Equation (3) to analyze how the concentration of air pollutants between
the experimental and control groups changed before and after the implementation of
CAPs. We found that there was indeed a parallel trend in air pollutant concentration
levels (except for O3) in both groups of cities during the pre-treatment period (Figure 3
and Appendix A Table A8). For most outcome variables, we did not observe systematic
pre-trends between the two groups before the CAPs; none of the estimation coefficients
(k ≤ −2) of the leading terms were statistically significant. The AQI decreased by about
15 percentage points in the two weeks following the CAPs’ implementation, and in the
subsequent periods, the results remained statistically significant. Figure 3B,C,E show
similar results to Figure 3A. Detailed regressions results are shown in Appendix A Table A8.
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Figure 3. Event-study results. Separate regressions were performed for the AQI (Panel (A)) and air
pollutants (Panels (B–G)) using the event-study method, illustrating the estimation coefficients and
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implemented. Meteorological control variables were included in regressions.

3.2. The Medium-Term Impacts of CAPs

There is continuity in the impact of policy implementation, even if they were lifted [1];
for example, the evolution of the urban form has long-term effects on PM2.5 [54]. When
CAPs were loosened in China, although the epidemic was under control, previous habits
were difficult to change in a short period of time. Given some unstable factors, most
individuals still insisted on taking measures to protect themselves, such as avoiding unnec-
essary travel, and life and economic activities did not fully recover, especially in industries
related to people gathering, such as tourism, catering, and entertainment. As a result,
the short-term benefits of the CAPs are likely to persist for the first few months after
the CAPs are canceled. Although the medium-term impacts align with the short-term
impacts, they are insignificant (except for O3) in the post-policy period. Compared to the
estimates, the reduction in air quality became smaller when the policies were loosened (see
Figure 4). The AQI was reduced by 5.281 (p = 0.279); the concentrations of PM2.5, PM10,
SO2, and NO2 reduced, respectively, by 4.655 µg/m3 (p = 0.268), 4.466 µg/m3 (p = 0.320),
0.631 µg/m3 (p = 0.576), and 1.932 µg/m3 (p = 0.136); but O3 and CO increased, respectively,
by 8.50 µg/m3 (p = 0.000), and 0.012 mg/m3 (p = 0.818). Detailed regression results are
shown in Appendix A Table A3. This situation is probably due to the rapid recovery of the
industry after the CAPs were lifted, where industrial production turned from a decrease to
an increase, and the growth rate of the manufacturing industry rebounded significantly in
April 2020. Simultaneously, there was a major shift in how humans traveled, from public
transport to private cars, and the pandemic encouraged travelers to avoid public transport,
thus exacerbating air pollution [55].
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Figure 4. The impacts of CAPs on air quality. Separate regressions were performed for the AQI (Panel
(A)) and air pollutants (Panels (B–G)) using Equation (2), illustrating the estimation coefficients and
their 95% confidence intervals for the short-term (blue) and medium-term effects (red). Meteorological
control variables were included in regressions.

3.3. Heterogeneity

In Figure 5, we measured the heterogeneity effect of the CAPs’ implementation on
air quality across the different types of cities (Equation (4)). For each pair of heterogeneity
analysis, we divided all cities into two groups using the mean of the corresponding indicator,
with those above the average being assigned to the high group (H) and the rest to the
low group (L), except for the central heating system (0 indicates no, 1 indicates yes). The
reference data of this classification are based on the values of various indicators released by
the government in 2019 (except for the population). The Chinese government conducted its
seventh population census in 2020, so the population data are the latest from this census.
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Figure 5. The heterogeneous impacts of CAPs on air quality illustrating the estimation coefficients
(blue diamonds) and their 95% confidence intervals (dashed grey lines). Using a corresponding
subsample, each row of (A–G) corresponds to a separate regression. The yellow horizontal dotted
lines divide the heterogeneity analysis into three sections (from bottom to top): regional economic
development, population, infrastructure, and environment. Meteorological control variables were
included in regressions.
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In the two classifications at the bottom of Figure 5, we examined the impact hetero-
geneity concerning regional economic development and population. This figure shows that
the effect is bigger in cities with a lower GDP per capita, lower secondary industry as a
percentage and number of industrial enterprises, and a lower population. With increasing
industrial activities, the effect is less substantial, probably because industrial production
declined while the production of important materials maintained growth. After 2 Febru-
ary 2020, work and production resumed. At the same time, investment in anti-epidemic
related industries, such as the manufacturing of biological and pharmaceutical products,
maintained growth, and the construction of key epidemic prevention projects was rapidly
promoted. In order to maintain the normal order of life and production, the energy con-
sumption in cities with a large population was still huge, which led to this situation. In
the top section of Figure 5, we analyze the impacts of cities with different environmental
conditions. We obtained similar results, where the larger impact was on the cities with
lower carbon emissions and industrial wastewater discharged.

In the middle section of Figure 5 (the third classification), we compare the heterogeneity
impacts of cities with different infrastructures. The impact of CAPs is greater in cities with
a central heating system and more buses. During the implementation of CAP periods,
cities with this heating system entered the heating season, which is mainly divided into the
“extended heating season” implemented in individual areas (starting in mid-October and
ending in mid-April of the following year) and the “standard heating season” implemented
in most areas (which starts in mid-November and ends in mid-March of the following year).
People rarely visited public places, such as schools, workplaces, and large shopping malls.
The heating in these places was completely turned off, which reduced coal consumption.
At the same time, there was no change in the number of dwellings with central heating in
winter because heating companies in various cities must keep the system up and running
during the heating season. The policies focused on restricting people’s mobility, so the
impact on cities with large passenger volumes was greater.

3.4. Robustness Check

In order to ensure the robustness of the benchmark regression results, we performed
two robustness tests. First, in China, the first case of the new coronavirus infection appeared
in Hubei Province and then spread to neighboring provinces centered on Hubei Province,
which implemented the strictest and longest-lasting CAPs, so we excluded cities in Hubei
Province. As reported in Table 2, compared with Tables 1 and A3, both short-term and
medium-term effects were similar, proving that the results of this study are not driven by
these cities in Hubei. Second, reduced air pollution in experimental groups may affect the
air quality of neighboring cities due to the influence of meteorological control variables,
leading to an underestimation of the treatment effect. In order to solve the spatial spillover
effect, we removed the control group cities adjacent to the experimental group cities,
which could be compared with a group of “clean” control cities. As reported in Table 3,
compared with Tables 1 and A3, which confirms our conjectures that the impacts of CAPs
were underestimated by the spillover issues. For example, in Panel E, the AQI decreased
by 10.312 (p = 0.015), and the concentrations of PM10, PM2.5, NO2, and SO2 dropped,
respectively, by 11.365 µg/m3 (p = 0.005), 8.236 µg/m3 (p = 0.019), 3.982 µg/m3 (p = 0.000),
and 0.665 µg/m3 (p = 0.452). The effect on CO can be positive to negative, but the effect is
still not significant (p = 0.765). In Panel F, in the medium term, the AQI decreased by 6.672
(p = 0.193); the concentrations of PM10, PM2.5, NO2, SO2, and CO dropped, respectively,
by 5.563 µg/m3 (p = 0.243), 5.894 µg/m3 (p = 0.181), 2.596 µg/m3 (p = 0.057), 0.981 µg/m3

(p = 0.399), and 0.003 mg/m3 (p = 0.984); only the medium-term effects of NO2 became
significant; and the effects of other air pollutants remained insignificant. We found similar
results, showing that this spatial spillover effect is small.
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Table 2. The impact of CAPs on air quality (drop cities in Hubei Province).

AQI PM2.5 PM10 SO2 NO2 O3 CO

(Panel C) short_t −8.151 * −6.623 * −10.009 ** −1.132 −3.232 *** 3.991 *** −0.029
(4.766) (3.951) (4.447) (0.969) (1.120) (0.949) (0.042)

Observations 23,173 23,173 23,173 23,173 23,172 23,173 23,173
Adj R-squared 0.484 0.504 0.420 0.602 0.705 0.612 0.583

(Panel D) short_t −8.288 * −6.616 −10.102 ** −1.047 −3.287 *** 3.692 *** −0.022
(4.885) (4.066) (4.525) (0.971) (1.240) (0.978) (0.045)

medium_t −4.127 −4.135 −4.404 −1.401 −2.462 9.247 *** −0.003
(5.503) (4.770) (5.143) (1.284) (1.502) (2.556) (0.059)

Observations 48,333 48,335 48,335 48,335 48,332 48,335 48,335
Adj R-squared 0.480 0.467 0.381 0.520 0.657 0.555 0.567

Number of cities 238 238 238 238 238 238 238
Meteorological
control Y Y Y Y Y Y Y

City fixed effects Y Y Y Y Y Y Y
Date fixed effects Y Y Y Y Y Y Y

Note: The above table can be divided into two parts (Panels C and D). Panel C shows the impact (excluding cities in
Hubei) using Equation (1). Panel D reflects the impacts (excluding cities in Hubei) using Equation (2). The meteo-
rological control includes the atmospheric pressure, relative humidity, temperature, temp2 (temperature’s square),
wind speed, and sunshine duration. Detailed regression results are shown in Tables A4 and A5. *** represents
p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.

Table 3. The impact of CAPs on air quality (drop cities neighboring treatment cities).

AQI PM2.5 PM10 SO2 NO2 O3 CO

(Panel E) short_t −10.312 ** −8.236 ** −11.365 *** −0.665 −3.982 *** 5.928 *** −0.012
(4.211) (3.485) (3.975) (0.882) (0.994) (0.948) (0.040)

Observations 19,897 19,897 19,897 19,897 19,896 19,897 19,897
Adj R-squared 0.478 0.504 0.407 0.594 0.705 0.614 0.578

(Panel F) short_t −9.739 ** −7.584 ** −10.683 *** −0.536 −3.953 *** 5.536 *** −0.003
(4.352) (3.624) (4.086) (0.896) (1.110) (0.964) (0.042)

medium_t −6.672 −5.894 −5.563 −0.981 −2.596 * 10.461 *** −0.001
(5.105) (4.393) (4.747) (1.161) (1.354) (2.345) (0.053)

Observations 42,069 42,070 42,070 42,070 42,069 42,070 42,070
Adj R-squared 0.471 0.463 0.367 0.509 0.660 0.552 0.566

Number of cities 204 204 204 204 204 204 204
Meteorological
control Y Y Y Y Y Y Y

City fixed effects Y Y Y Y Y Y Y
Date fixed effects Y Y Y Y Y Y Y

Note: The above table can be divided into two parts (Panels E and F). Panel E shows the impact (dropping the
neighboring cities of treatment cities) using Equation (1). Panel F reflects the impacts (dropping the neighboring
cities of treatment cities) using Equation (2). The meteorological control includes the atmospheric pressure, relative
humidity, temperature, temp2 (temperature’s square), wind speed, and sunshine duration. Detailed regression
results are shown in Tables A6 and A7. *** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1,
applied to all of the following regression results.

4. Discussion

In this study, we examined the impact of the CAP implementation in prefecture-level
cities in China on air quality in early 2020. Our study shows that CAPs create short-term
benefits for air quality, and although they have a medium-term effect, this benefit is not
significant; even though spatial spillovers are excluded, they only have a medium-term
significant effect on NO2 concentrations. The concentration of O3 did not improve during
the implementation of the policies and in the short term after they were lifted but became
more severe instead, and the impact in the medium term was even greater than the impact
of the short-term content. Next, we discuss our findings in depth.
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First, our findings suggest that CAPs in China inadvertently create considerable
environmental benefits. The treatment cities substantially improved the air quality, which
led to greater health benefits, which is an important part of assessing the benefits of such
policies. Our findings provide a benchmark for understanding the wider consequences of
the CAPs.

Second, while the treatment cities featured drastically reduced air pollutant con-
centrations during the CAP implementation period, the impacts were not significantly
long-lasting after the policies were lifted. In addition, the heterogeneity analysis reflects that
the CAPs’ impact on air quality is smaller in cities with a higher income, larger population,
secondary sector activities, and buses, without central heating systems. Combined with a
cost–benefit analysis, the high economic costs of such policies make them unsustainable
options for tackling pollution problems.

Finally, different policies should be adopted for different air pollutants, but at the
same time, the interaction between different pollutants should be considered. The O3
concentration was unaffected by the policies; whether there is a policy in place or not, this
concentration is more due to meteorological and climatic conditions. According to the
parallel trend test, the effect was significant before the intervention but not after the inter-
vention (see Figure 3F and Table A8), and the effect in the medium term was significantly
greater than the impact in the short term. This is probably because this difference in O3
concentrations between the two groups of cities before the intervention already existed,
and the effect of policy interventions or changes during the CPAs’ implementation was due
not to the intervention but to seasons [30]. The total emissions of anthropogenic sources,
natural sources of VOCs, and NOx in China were all above 2100 × 104 t, representing the
main internal cause of O3 pollution in China [56]. The results show that the generation of
secondary pollutants (e.g., O3) is affected by many factors [34]. Although the CAPs have
more of a short-term impact on the environment, they are not without merit and once again
proved that environmental governance is a comprehensive project, not just the treatment of
specific pollutants.

Finally, we summarized some limitations of the study. First, data related to air quality
and climate indicators at the smaller regional level (such as counties) are not available
for the time being in China, and the impact cannot be more accurately measured because
the policies in the later stage of the pandemic were specific to a town or even a small
district. Second, the implementation time of the policy is based on the relevant policy
documents issued by the government. Still, the relevant measures had been implemented
sometime before the policy was promulgated. How to define the timing and extent of
the implementation of the policies is a difficult point in research. Follow-up studies can
quantify the extent of lockdowns by adding new cases every day and define the strictness
of the policies according to the variables of new cases in the city because cities with a larger
number of COVID-19 cases are more likely to enforce the APs [1]. For example, from the
day a case of infection is discovered, the city will be closed and quarantined for 7 days,
and if there are no new local cases within 7 days, it will slowly return to normal. Third, we
focused on changes in air quality, and further research could expand the scope of the study,
for example, measuring the changes in water quality during the special period. Finally,
the scope of our study is limited to one country, similar to the currently existing research,
and future research comparing the differences between countries or regions with different
development models and atmospheric environmental conditions is necessary.

5. Conclusions

To improve COVID-19 prevention and control, we studied the externality of city
anti-contagion policies (CAPs) and measured their impact on air pollutant concentrations.
This study’s contribution is that it measured not only the short-term (during the CAPs’
implementation, 1 January to 7 April 2020) impact but also the medium-term (post-CAP
implementation, 8 April to 31 July 2020) impact. We found that during the implementation
period, air quality was improved significantly, but after the policies were lifted, the effect
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was insignificant. The impact of such policies on quality is not sustainable. In addition,
in the short term, while the concentrations of most air pollutants (i.e., PM2.5, PM10, and
NO2) decreased significantly, there were still pollutant concentrations (i.e., O3) that were
on the rise. At the same time, these impacts also varied between different types of cities.
Our findings show that such policies can only alleviate air pollution in the short term; the
impact of such policies is not continuous. Urban air quality management is a complex
project, and the formulation of policies should fully consider the types of pollutants and
the related cities’ characteristics.

Author Contributions: Conceptualization, Z.Y. and Y.Y.; methodology, Z.Y. and Y.Y.; software, Z.Y.;
validation, Z.Y. and Y.Y.; formal analysis, Z.Y.; investigation, Z.Y.; resources, Z.Y.; data curation, Z.Y.;
writing—original draft preparation, Z.Y.; writing—review and editing, Y.Y.; visualization, Z.Y. and
Y.Y.; supervision, Y.Y.; funding acquisition, Z.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by [Public Management (Department of Health Management and
Health Policy) Construction Project] grant number [DC2400001089] and [Natural Science Foundation
of Inner Mongolia Autonomous Region] grant number [2022MS07001].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The start time of CAPs’ implementation.

City Province CAPs City Province CAPs

Fuzhou Fujian 6 February 2020 Fuzhou Jiangxi 4 February 2020
Anshun Guizhou 5 February 2020 Jingdezhen Jiangxi 4 February 2020

Qinhuangdao Hebei 25 January 2020 Ganzhou Jiangxi 6 February 2020
Tangshan Hebei 28 January 2020 Jiujiang Jiangxi 6 February 2020

Zhengzhou Henan 4 February 2020 Yingtan Jiangxi 6 February 2020
Zhumadian Henan 4 February 2020 Chaoyang Liaoning 5 February 2020

Xinyang Henan 6 February 2020 Dalian Liaoning 5 February 2020
Harbin Heilongjiang 4 February 2020 Dandong Liaoning 5 February 2020

Huanggang Hubei 23 January 2020 Fushun Liaoning 5 February 2020
Wuhan Hubei 23 January 2020 Fuxin Liaoning 5 February 2020

Huangshi Hubei 24 January 2020 Shenyang Liaoning 5 February 2020
Jingmen Hubei 24 January 2020 Tieling Liaoning 5 February 2020
Jingzhou Hubei 24 January 2020 Bayannur Inner Mongolia 12 February 2020
Shiyan Hubei 24 January 2020 Ordos Inner Mongolia 12 February 2020

Xianning Hubei 24 January 2020 Hohhot Inner Monglia 12 February 2020
Xiaogan Hubei 24 January 2020 Ulanqab Inner Mongolia 12 February 2020
Yichang Hubei 24 January 2020 Yinchuan Ningxia 31 January 2020

Xiangyang Hubei 28 January 2020 Dongying Shandong 30 January 2020
Changzhou Jiangsu 4 February 2020 Jining Shandong 3 February 2020

Nanjing Jiangsu 4 February 2020 Linyi Shandong 4 February 2020
Nantong Jiangsu 4 February 2020 Wenzhou Zhejiang 4 February 2020
Xuzhou Jiangsu 4 February 2020 Hangzhou Zhejiang 4 February 2020

Yangzhou Jiangsu 5 February 2020 Ningbo Zhejiang 4 February 2020
Wuxi Jiangsu 9 February 2020
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Table A2. The short-term impact of CAPs on air quality (includes meteorological control variables).

AQI PM2.5 PM10 SO2 NO2 O3 CO

short_t −7.557 * −5.918 * −8.723 ** −0.371 −3.295 *** 4.705 *** 0.010
(4.073) (3.382) (3.781) (0.850) (0.954) (0.879) (0.039)

wind −3.813 *** −4.111 *** −3.336 *** −0.975 *** −3.165 *** 2.940 *** −0.047 ***
(0.393) (0.341) (0.432) (0.102) (0.159) (0.258) (0.005)

airpressure 0.782 *** 0.552 *** 0.696 *** −0.159 *** −0.252 *** 0.780 *** −0.009 ***
(0.155) (0.136) (0.160) (0.041) (0.053) (0.088) (0.002)

temperature 0.669 *** 0.462 *** 0.692 *** −0.278 *** −0.271 *** 1.119 *** −0.008 ***
(0.180) (0.158) (0.203) (0.049) (0.064) (0.100) (0.003)

temper2 0.053 *** 0.0435 *** 0.0639 *** 0.014 *** 0.020 *** 0.021 *** 0.0003 ***
(0.008) (0.007) (0.008) (0.002) (0.002) (0.003) (8.04 × 10−5)

humidity 0.216 *** 0.371 *** −0.122 −0.030 *** 0.008 −0.161 *** 0.005 ***
(0.063) (0.048) (0.096) (0.008) (0.013) (0.024) (0.0005)

sunduration −0.725 *** −0.454 *** −1.088 *** 0.020 −0.023 0.938 *** 0.0004
(0.161) (0.118) (0.293) (0.026) (0.037) (0.06) (0.0014)

Observations 24,249 24,249 24,249 24,249 24,248 24,249 24,249
Adj R-squared 0.484 0.504 0.421 0.601 0.706 0.612 0.577
Number of cities 249 249 249 249 249 249 249
City fixed effects Y Y Y Y Y Y Y
Date fixed effects Y Y Y Y Y Y Y

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.

Table A3. The short-term and medium-term impacts of CAPs on air quality.

AQI PM2.5 PM10 SO2 NO2 O3 CO

(Panel C) short_t −8.192 * −6.874 * −8.808 ** −0.570 −3.675 *** 6.105 *** 0.001
(4.681) (4.132) (4.222) (1.085) (1.342) (1.157) (0.050)

medium_t −6.727 −6.368 −5.782 −0.666 −2.259 11.109 *** 0.002
(5.401) (4.862) (4.826) (1.444) (1.560) (2.500) (0.060)

Observations 53,029 53,031 53,031 53,031 53,028 53,031 53,031
Adj R-squared 0.447 0.426 0.360 0.461 0.599 0.452 0.510

(Panel D) short_t −7.086 * −5.403 −8.158 ** −0.284 −3.323 *** 4.424 *** 0.017
(4.219) (3.524) (3.910) (0.870) (1.073) (0.898) (0.041)

medium_t −5.281 −4.655 −4.466 −0.631 −1.932 8.509 *** 0.012
(4.873) (4.194) (4.480) (1.126) (1.291) (2.218) (0.051)

wind −2.180 *** −2.742 *** −1.733 *** −0.772 *** −3.049 *** 2.245 *** −0.039 ***
(0.281) (0.233) (0.369) (0.088) (0.153) (0.277) (0.003)

airpressure 0.934 *** 0.755 *** 0.901 *** −0.037 0.069 0.283 *** −0.003 **
(0.128) (0.117) (0.133) (0.042) (0.044) (0.097) (0.001)

temperature 0.081 −0.067 0.085 −0.358 *** −0.138 *** 1.345 *** −0.007 ***
(0.152) (0.132) (0.167) (0.047) (0.051) (0.153) (0.002)

temper2 0.052 *** 0.041 *** 0.054 *** 0.012 *** 0.013 *** 0.036 *** 0.0004 ***
(0.006) (0.005) (0.007) (0.002) (0.002) (0.004) (6.98 × 10−5)

humidity 0.038 0.207 *** −0.247 *** −0.036 *** −0.021 * −0.054 0.004 ***
(0.040) (0.033) (0.061) (0.009) (0.012) (0.034) (0.0004)

sunduration −0.496 *** −0.415 *** −0.965 *** −0.007 −0.060 * 0.679 *** −0.0004
(0.106) (0.087) (0.202) (0.023) (0.032) (0.097) (0.001)

Observations 50,671 50,673 50,673 50,673 50,670 50,673 50,673
Adj R-squared 0.481 0.469 0.384 0.519 0.658 0.558 0.566

Number of cities 249 249 249 249 249 249 249
City fixed effects Y Y Y Y Y Y Y
Date fixed effects Y Y Y Y Y Y Y

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.
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Table A4. The robustness check (drop cities in Hubei Province) (1).

AQI PM2.5 PM10 SO2 NO2 O3 CO

short_t −8.151 * −6.623 * −10.01 ** −1.132 −3.232 *** 3.991 *** −0.0285
(4.766) (3.951) (4.447) (0.969) (1.120) (0.949) (0.0423)

wind2 −3.847 *** −4.162 *** −3.371 *** −0.990 *** −3.223 *** 2.973 *** −0.0470 ***
(0.410) (0.356) (0.449) (0.106) (0.166) (0.268) (0.005)

airpressure 0.766 *** 0.546 *** 0.656 *** −0.163 *** −0.266 *** 0.769 *** −0.008 ***
(0.158) (0.139) (0.161) (0.0413) (0.0541) (0.0897) (0.002)

temperature 0.609 *** 0.416 *** 0.627 *** −0.285 *** −0.280 *** 1.118 *** −0.009 ***
(0.180) (0.157) (0.204) (0.0494) (0.0649) (0.102) (0.003)

temper2 0.0527 *** 0.0427 *** 0.0631 *** 0.0137 *** 0.0207 *** 0.0196 *** 0.0002 ***
(0.00783) (0.00687) (0.00753) (0.00196) (0.00214) (0.00302) (8.03 × 10−5)

humidity 0.219 *** 0.375 *** −0.123 −0.0321 *** 0.00790 −0.154 *** 0.005 ***
(0.0641) (0.0483) (0.0981) (0.00854) (0.0127) (0.0240) (0.0005)

sunduration −0.745 *** −0.469 *** −1.125 *** 0.00827 −0.0178 0.941 *** −0.0001
(0.168) (0.123) (0.308) (0.0270) (0.0390) (0.0652) (0.002)

Observations 23,173 23,173 23,173 23,173 23,172 23,173 23,173
Adj R-squared 0.492 0.511 0.428 0.608 0.709 0.617 0.589

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.

Table A5. The robustness check (drop cities in Hubei Province) (2).

AQI PM2.5 PM10 SO2 NO2 O3 CO

short_t −8.288 * −6.616 −10.10 ** −1.047 −3.287 *** 3.692 *** −0.022
(4.885) (4.066) (4.525) (0.971) (1.240) (0.978) (0.045)

medium_t −4.127 −4.135 −4.404 −1.401 −2.462 9.247 *** −0.003
(5.503) (4.770) (5.143) (1.284) (1.502) (2.556) (0.059)

wind2 −2.225 *** −2.798 *** −1.754 *** −0.781 *** −3.071 *** 2.253 *** −0.039 ***
(0.289) (0.239) (0.382) (0.0901) (0.159) (0.287) (0.003)

airpressure 0.916 *** 0.743 *** 0.877 *** −0.0427 0.0687 0.266 *** −0.003 **
(0.130) (0.118) (0.135) (0.0421) (0.0450) (0.0982) (0.001)

temperature 0.0333 −0.107 0.0418 −0.362 *** −0.136 *** 1.343 *** −0.007 ***
(0.153) (0.133) (0.170) (0.0475) (0.0519) (0.155) (0.002)

temper2 0.0521 *** 0.0408 *** 0.0533 *** 0.0115 *** 0.0130 *** 0.0368 *** 0.0004 ***
(0.00613) (0.00514) (0.00743) (0.00162) (0.00152) (0.00359) (7.11 × 10−5)

humidity 0.0367 0.205 *** −0.249 *** −0.0378 *** −0.0191 −0.0478 0.004 ***
(0.0410) (0.0340) (0.0625) (0.00919) (0.0123) (0.0348) (0.0004)

sunduration −0.509 *** −0.428 *** −0.985 *** −0.00965 −0.0487 0.663 *** −0.0005
(0.112) (0.0904) (0.212) (0.0238) (0.0327) (0.101) (0.001)

Observations 48,333 48,335 48,335 48,335 48,332 48,335 48,335
Adj R-squared 0.484 0.472 0.387 0.525 0.660 0.559 0.571

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.

Table A6. The robustness check (drop cities neighboring lockdown cities) (1).

AQI PM2.5 PM10 SO2 NO2 O3 CO

short_t −10.31 ** −8.236 ** −11.36 *** −0.665 −3.982 *** 5.928 *** −0.012
(4.211) (3.485) (3.975) (0.882) (0.994) (0.948) (0.040)

wind2 −3.855 *** −4.165 *** −3.210 *** −0.897 *** −3.116 *** 3.064 *** −0.046 ***
(0.431) (0.339) (0.490) (0.0989) (0.170) (0.268) (0.004)

airpressure 0.649 *** 0.421 *** 0.609 *** −0.169 *** −0.289 *** 0.848 *** −0.009 ***
(0.173) (0.151) (0.183) (0.0431) (0.0573) (0.104) (0.002)

temperature 0.745 *** 0.494 *** 0.774 *** −0.276 *** −0.258 *** 1.130 *** −0.008 ***
(0.182) (0.159) (0.219) (0.0527) (0.0686) (0.114) (0.003)

temper2 0.0456 *** 0.0380 *** 0.0564 *** 0.0135 *** 0.0185 *** 0.0231 *** 0.0002 ***
(0.00754) (0.00660) (0.00770) (0.00221) (0.00221) (0.00354) (8.16 × 10−5)

humidity 0.175 ** 0.335 *** −0.169 −0.0298 *** 0.00164 −0.154 *** 0.005 ***
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Table A6. Cont.

AQI PM2.5 PM10 SO2 NO2 O3 CO

(0.0698) (0.0521) (0.109) (0.00909) (0.0131) (0.0271) (0.0005)
sunduration −0.880 *** −0.565 *** −1.319 *** 0.00975 −0.0333 0.979 *** −0.001

(0.181) (0.129) (0.343) (0.0300) (0.0396) (0.0716) (0.002)
Constant −563.1 *** −377.3 ** −503.4 *** 178.0 *** 308.6 *** −771.3 *** 9.709 ***

(167.9) (147.0) (173.1) (41.60) (55.72) (100.8) (1.760)
Observations 19,897 19,897 19,897 19,897 19,896 19,897 19,897
Adj R-squared 0.486 0.511 0.416 0.600 0.710 0.620 0.584

*** represents p < 0.01, ** represents p < 0.05, applied to all of the following regression results.

Table A7. The robustness check (drop cities neighboring lockdown cities) (2).

AQI PM2.5 PM10 SO2 NO2 O3 CO

short_t −9.739 ** −7.584 ** −10.68 *** −0.536 −3.953 *** 5.536 *** −0.003
(4.352) (3.624) (4.086) (0.896) (1.110) (0.964) (0.042)

medium_t −6.672 −5.894 −5.563 −0.981 −2.596 * 10.46 *** −0.001
(5.105) (4.393) (4.747) (1.161) (1.354) (2.345) (0.053)

wind2 −2.060 *** −2.641 *** −1.463 *** −0.746 *** −3.006 *** 2.235 *** −0.038 ***
(0.320) (0.248) (0.419) (0.0933) (0.169) (0.293) (0.003)

airpressure 0.915 *** 0.734 *** 0.895 *** −0.0435 0.0528 0.394 *** −0.003 **
(0.145) (0.132) (0.151) (0.0455) (0.0490) (0.104) (0.002)

temperature 0.182 −0.000457 0.140 −0.364 *** −0.108 ** 1.434 *** −0.007 ***
(0.158) (0.140) (0.177) (0.0516) (0.0520) (0.168) (0.002)

temper2 0.0445 *** 0.0360 *** 0.0453 *** 0.0117 *** 0.0117 *** 0.0352 *** 0.0003 ***
(0.00626) (0.00529) (0.00801) (0.00183) (0.00158) (0.00380) (7.57 × 10−5)

humidity 0.0192 0.193 *** −0.267 *** −0.0374 *** −0.0203 * −0.0462 0.004 ***
(0.0424) (0.0336) (0.0684) (0.00876) (0.0117) (0.0373) (0.0004)

sunduration −0.547 *** −0.454 *** −1.071 *** −0.0171 −0.0661 ** 0.667 *** −0.0013
(0.117) (0.0911) (0.235) (0.0245) (0.0323) (0.105) (0.0011)

Constant −827.1 *** −682.8 *** −786.0 *** 57.48 −21.21 −350.8 *** 3.879 **
(140.1) (127.5) (142.3) (44.00) (47.36) (101.4) (1.531)

Observations 42,069 42,070 42,070 42,070 42,069 42,070 42,070
Adj R-squared 0.476 0.468 0.373 0.514 0.664 0.556 0.570

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.

Table A8. The event-study estimation results.

AQI PM2.5 PM10 SO2 NO2 O3 CO

Lead_D5 −5.549 −4.570 −3.712 1.020 4.249 ** −8.092 *** 0.062
(5.958) (5.051) (5.782) (1.327) (1.719) (2.100) (0.074)

Lead_D4 −5.732 −4.660 −3.154 −0.780 2.489 * −8.857 *** 0.007
(4.392) (3.680) (4.301) (0.591) (1.430) (1.674) (0.042)

Lead_D3 −7.197 −5.746 −4.724 −0.551 1.871 −6.721 *** −0.014
(5.459) (4.615) (5.371) (0.743) (1.271) (1.245) (0.045)

Lead_D2 −4.893 −3.240 −0.991 0.0630 −0.249 −4.183 *** −0.023
(5.802) (5.297) (5.978) (1.095) (1.019) (1.187) (0.043)

D0 −14.671 *** −12.611 *** −12.291 *** −1.196 * −2.621 *** −0.032 −0.079 **
(4.291) (3.519) (4.060) (0.620) (0.853) (0.955) (0.039)

D1 −7.581 * −6.707 ** −5.038 0.197 −1.322 −1.379 −0.010
(4.280) (3.404) (4.398) (0.861) (0.939) (1.351) (0.037)

D2 −15.856 *** −12.207 *** −14.56 *** −0.476 −1.466 −2.921 *** 0.015
(3.884) (3.006) (3.821) (0.614) (0.940) (1.068) (0.032)

D3 −12.771 *** −8.978 *** −12.61 *** 0.057 −1.740 ** −0.617 0.016
(3.918) (3.165) (3.709) (0.748) (0.859) (1.411) (0.037)
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Table A8. Cont.

AQI PM2.5 PM10 SO2 NO2 O3 CO

D4 −11.930 *** −7.589 ** −15.75 *** −0.964 −2.658 ** 0.455 0.032
(3.575) (2.936) (3.725) (0.767) (1.276) (1.323) (0.046)

D5 −11.855 *** −9.611 *** −11.33 *** −1.132 −2.661 ** −0.840 0.050
(3.994) (3.192) (3.602) (0.836) (1.277) (1.403) (0.045)

D6 −9.897 ** −7.569 ** −8.539 ** 0.052 −1.349 0.481 0.037
(4.110) (3.402) (3.765) (0.808) (1.369) (1.527) (0.046)

wind2 −3.792 *** −4.094 *** −3.315 *** −0.972 *** −3.160 *** 2.953 *** −0.046 ***
(0.392) (0.339) (0.431) (0.102) (0.159) (0.260) (0.005)

airpressure 0.797 *** 0.564 *** 0.708 *** −0.158 *** −0.250 *** 0.782 *** −0.008 ***
(0.156) (0.137) (0.160) (0.041) (0.053) (0.089) (0.002)

temperature 0.669 *** 0.461 *** 0.690 *** −0.279 *** −0.268 *** 1.118 *** −0.008 ***
(0.179) (0.157) (0.203) (0.050) (0.064) (0.100) (0.003)

temper2 0.053 *** 0.044 *** 0.0640 *** 0.0141 *** 0.020 *** 0.021 *** 0.0003 ***
(0.008) (0.00684) (0.008) (0.002) (0.002) (0.003) (8.08 × 10−5)

humidity 0.219 *** 0.374 *** −0.120 −0.030 *** 0.008 −0.158 *** 0.005 ***
(0.063) (0.0480) (0.096) (0.008) (0.012) (0.024) (0.0004)

sunduration −0.726 *** −0.453 *** −1.091 *** 0.020 −0.024 0.938 *** 0.0004
(0.161) (0.118) (0.294) (0.026) (0.037) (0.064) (0.001)

Observations 24,249 24,249 24,249 24,249 24,248 24,249 24,249
Adj R-squared 0.485 0.504 0.421 0.602 0.706 0.617 0.578

*** represents p < 0.01, ** represents p < 0.05, and * represents p < 0.1, applied to all of the following regression results.
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