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Abstract: The use of acrylonitrile butadiene styrene (ABS) in additive manufacturing applications
constitutes an elucidating example of a promising match of a sustainable material to a sustainable
production process. Lean-and-green datacentric-based techniques may enhance the sustainability of
product-making and process-improvement efforts. The mechanical properties—the yield strength
and the ultimate compression strength—of 3D-printed ABS product specimens are profiled by consid-
ering as many as eleven controlling factors at the process/product design stage. A fractional-factorial
trial planner is used to sustainably suppress by three orders of magnitude the experimental needs
for materials, machine time, and work hours. A Gibbs sampler and a neutrosophic profiler are
employed to treat the complex production process by taking into account potential data uncertainty
complications due to multiple distributions and indeterminacy issues due to inconsistencies owing to
mechanical testing conditions. The small-data multifactorial screening outcomes appeared to steadily
converge to three factors (the layer height, the infill pattern angle, and the outline overlap) with
a couple of extra factors (the number of top/bottom layers and the infill density) to supplement
the linear modeling effort and provide adequate predictions for maximizing the responses of the
two examined mechanical properties. The performance of the optimal 3D-printed ABS specimens
exhibited sustainably acceptable discrepancies, which were estimated at 3.5% for the confirmed mean
yield strength of 51.70 MPa and at 5.5% for the confirmed mean ultimate compression strength of
53.58 MPa. The verified predictors that were optimally determined from this study were (1) the layer
thickness—set at 0.1 mm; (2) the infill angle—set at 0◦; (3) the outline overlap—set at 80%; (4) the
number of top/bottom layers—set at 5; and (5) the infill density—set at 100%. The multifactorial
datacentric approach composed of a fractional-factorial trial planner, a Gibbs sampler, and a neutro-
sophic profiler may be further tested on more intricate materials and composites while introducing
additional product/process characteristics.

Keywords: additive manufacturing; acrylonitrile butadiene styrene; fractional factorial design; Gibbs
sampler; neutrosophic regression; multiparameter screening; yield strength; ultimate compression
strength

1. Introduction

The demand for high-fidelity and low-cost products increased the popularity of an
alternative way to build goods, which is known as additive manufacturing [1,2]. To en-
sure future success, modern production methods need to be sustainable by incorporating
globally-instituted initiatives (Sustainable Development Goals # 9 and 12) [3,4]. The em-
phasis is placed on establishing sustainable production patterns through the adoption of
technological innovation. Additive manufacturing, through its unique facility to print
a product in separate befitting parts or even in its entirety, has been characterized as a
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sustainable process across many different industries [5–7]. Its seamless alignment to the
contemporary Industry 4.0 strategy has created even more opportunities for innovative ap-
plications, rendering 3D-printing apt to resolve many production complexity issues under
the design freedom to accommodate strict mass customization requirements [8–10]. Fur-
thermore, additive manufacturing is distinctive from other methods of production because
it unifies the virtual-solid computer-assisted design with the 2D-layer part-design data
modeling. The simplification step of the 2D-design segmentation is instrumental in feeding
instructions to the 3D-printing equipment so as to create layer-by-layer the manufactured
unit. This whole process integrates product design, process design, and product fabrication
in an environmentally cautious manner that is evidenced by a perceptible reduction in
process waste generation, energy consumption, and gas emissions [11–15]. It is remarkable
that additive manufacturing has been proven to be sustainably potent in both demanding
areas of manufacturing and construction, in which, in both paradigms, it may be valuable
not only to produce in a green engineering fashion but also to be part of broader sustainable
applications [16–18].

The flexibility that additive manufacturing brings to new product development is un-
parallel, but it also initiates new challenges that are akin to designing for sustainability while
simultaneously improving product functional performance [19–22]. There are many types
of additive manufacturing practices, such as binder printing, inkjet printing, laminate object
manufacturing, selective laser sintering, stereolithography, and fused deposition modeling.
In this work, we will concentrate on fused deposition modeling (FDM) because of its great
versatility in its usage and its inherent decreasing ownership cost of equipment [23,24].
Moreover, eco-design efforts become simpler with this environmentally adaptable method
since sustainability improvement projects are susceptible to structured problem solving. A
popular cost-effective 3D-printing technique to manufacture plastic parts is fused filament
fabrication (FFF). In FFF, 3D-product units are deposited layer-by-layer in stands; they are
built by continuous feeding, on a preset layer path, thermoplastic molted threads through
an extruding nozzle. Process parameters in plastic material extrusion are influential in
aspects with regards to product quality and process greenness [25,26]. Additionally, the
material choice that constitutes the extruded filament is of great significance in both stages
of material extrusion and in establishing product/process sustainability [27]. One vital
aspect of using thermoplastic materials in additive manufacturing is that the extruded
waste is recyclable, and this is a sustainable process feature that aids in optimizing termi-
nal product profit [28–31]. Acrylonitrile butadiene styrene (ABS) is a polymer substance
that has appealing properties in FFF applications owing to its high thread formability—a
critical property in material extrusion using narrow-diameter nozzles [32,33]. This is at-
tributed to the fact that the ABS polymer, as a feedstock material, is strong, durable, and
recyclable under wide conditions of use, wherever chemical and thermal resistance are
desirable by design, and, thus, it is considered a sustainable material selection in FFF
manufacturing [34]. Nevertheless, depending on the conditions of ABS production and
utilization, there might be concerns about material anisotropy on FFF-created parts, and
ABS-made part mechanical properties, such as tensile strength and surface roughness,
may be influenced by it [35–37]. To attain optimal quality performance, the mechanical
characteristics of an ABS-made part should be investigated against a score of possible un-
derlying effects in a systematic approach [38]. This is usually accomplished by organizing
a study that implements the design of experiments (DOE). The aim of DOE techniques and
tools is to screen and optimize a group of controlling factors based on the elicited behavior
of one or more mechanical properties [39]. The screening/optimization scheme should
be generalizable enough to extend to enduring aspects, such as the improvement of the
environmental quality of the FFF product/process, while simultaneously attempting to
conduct the perplexing product/process-design optimization phase [40]. Unfortunately, in
the case of extruding ABS material in a FFF process using structured experimentation, there
is limited published research that involves both themes of multi-variate product quality
and sustainability optimization [41]. Mainly, they have been restricted to the examination
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of only a handful of associated parameters, in spite of the necessity to probe deeper for
a broader number of product/process variables. Perhaps it is a practical and economic
issue for most research efforts, given the rapidly mounting number of trials that follow the
consideration of a larger number of factors.

Enhancing sustainability, lean-and-green principles are integrated into state-of-the-art
quality improvement initiatives (Six Sigma) to diagnose, formulate, and resolve difficult
operational problems [42–45]. Lean engineering propounds on the principle of “less of
everything”: less waste, less delays, less work, less materials, less time, less emissions,
less cost, and so forth [46–51]. It is obvious that the lean-and-green engineering goals are
closely aligned and so naturally interwoven in the philosophy of additive manufacturing.
Carrying out sustainability studies in a structured manner may be fulfilled by adopting
the standard toolbox of Green Lean Six Sigma, which primarily consolidates statistical
engineering and lean practices [52–54]. The statistical engineering part is indispensable
to support the scientific validity of the research findings by ascertaining that a quality
improvement intervention in a studied process/product has been accomplished [55–60].
Introducing sustainable innovation and enhancing environmental quality performance
requires new knowledge, which is greatly accelerated by the deployment of DOE methods.
By conceiving quick lean-and-green experimental recipes, fractional factorial designs (FFDs)
simplify any theoretical approach that seeks to discover a cause-and-effect relationship
between controlling factors and process/product characteristics by casting the problem to
an empirical model [61]. Since robust products are also sustainable products, orthogonal ar-
rays (OAs)—a particular family of FFDs—may aid in expediting a robust engineering study,
thus saving development and production costs as well as reducing product design and
manufacturing cycle time [62,63]. OAs also contribute to the sustainability cause in another
way by dramatically curtailing the research expenses while shrinking the experimental
timetable duration. OA-based experiments demand the use of much smaller amounts of
trial materials, reducing personnel work hours, increasing operating equipment availability,
and shortening the time to research project completion.

In this work, we attempt to simultaneously screen/optimize a realistic number of
controlling factors, a total of 11 variables, for an FFF process using a commercially available
ABS material. Under ordinary conditions, such experiments are not feasible—definitely not
sustainable—due to the enormous number of accrued trial runs; there cannot be fewer than
211 (=2048) full-factorial trials at a minimum and in the absence of any replication. The
purpose is to manage to OA profile the most dominant effects with the goal of maximizing
the yield strength and ultimate compression strength for a group of 3D-printed ABS
specimens. There are some qualms that may accompany these types of experiments,
which involve the testing of mechanical characteristics. Measurement uncertainty is of
some concern, and it may be traced to various opportunities that range from equipment
calibration and specimen preparation to gripping and alignment to the testing speed and
the compression measurement itself. Traditionally, any uncertainty that is raised from
such trials, due to the above aspects, is compounded by an unexplainable error. Another
aspect might be the effect of the ABS material anisotropy at the small-diameter thread limit,
which is imperative to FFF processing—within the same ABS brand and across brands.
From a practical standpoint, it is always worth contemplating the measurement precision
of such compression strength tests since, during plastic deformation, an ABS specimen
experiences some amount of lateral bulging, an occurrence that might introduce some
degree of indeterminacy in the mechanical property estimations. Finally, the determination
of the operating endpoints for the examined group of controlling factors might be a fuzzy
process in itself. This is particularly true if there is a lack of previous knowledge on the
factorial relationships among the investigated mechanical properties.

A more general approach would be attempted so as to encompass the inferential
approach of classical statistics [55] with fuzzy-oriented systems [64]. Fuzzy sets extend
the logic of the two-valued classical objects to partial-truth objects, which are functionally
connected by a membership grade between zero and one. From an engineering standpoint,
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it is desirable to include elements of inconsistency-resilient logic systems (paraconsistent
logic) [65]. Hence, the model should be ignorant of the principle of explosion and accept
nondualism. The modeling attempt might be benefited if a system of constructive logic
(intuitionistic number theory) is also introduced, which could widen the analysis path,
oblivious to the law of the excluded middle and the double negation elimination [66,67].
To provide a computability logic to the realizability concerns, neutrosophic statistics have
become an attractive means of embracing the above-mentioned logic systems up to the
level of intuitionistic fuzzy logic [68–72]. The neutrosophic logic has been shown to be
operative in classical inferential methods such as the analysis of variance, correlation, and
regression [73–75]. Furthermore, this computational convenience has been exploited to
resolve complex problems that range from quantifying anisotropy effects in rock mechanical
properties to sustainable biomedical-waste management, sustainable car recycling, white-
blood-cell segmentation, nanoparticle rating, quality evaluation, and opinion mining in
forming perspectives [76–83].

The novelty of this work relies on implementing the versatility of the neutrosophic re-
gression approach to an ‘all-purpose profiler’, which should be capable of being applied to a
multi-response OA-sampled dataset. It would be demonstrated by screening/optimizing a
group of several controlling factors by maximizing the yield and compression strength prop-
erties of 3D-printed ABS specimens. The neutrosophic-based predictions will be compared
to randomized algorithm results, which will be obtained by the Gibbs sampler [84–86].
Gibbs regression is used in Bayesian inference to sample from a conditional distribution by
approximating the marginal distribution of the variables and, hence, to generate an approx-
imate joint distribution when direct sampling from the examined multivariate probability
distribution is not guaranteed. Additionally, the neutrosophic-logic/Gibbs sampler FFD
dataset regression analysis will be compared to the more classical inference methods of
quantile regression for robustness and stepwise regression to detect any prediction dis-
crepancies. The screening/optimization results will be discussed against the confirmation
outcomes in order to assess the success of this research endeavor.

The rest of the paper describes a methodology for setting up and executing the or-
thogonal multifactorial experiments for the maximization of yield strength and ultimate
compression strength responses. In addition, basic information on neutrosophic and Gibbs
sampler regression analysis is presented, which is computationally facilitated by the re-
spective R software modules. The outcomes of the multifactorial profiling are explained
in the Results section. A Discussion section compares the viability of the suggested so-
lutions by comparing the profiling hierarchy status from neutrosophic/Gibbs sampler
regression to more mainstream statistical solvers such as stepwise regression analysis and
the more robust-oriented quantile regression analysis. A conclusion section summarizes
the importance of the findings in this research effort.

2. Materials and Methods
2.1. Experimental Methods
2.1.1. The Experimental Setup

The modeled specimen is a cubic part with a side length of 10 mm [87]. The 3D
CAD Design Software Dassault Systemes Solidworks (version 2017) (Dassault Systemes,
Velizy-Villacoublay, France) was utilized to design the 3D solid structure. It also permitted
establishing the converted coordinates on a 3D using triangles to capture the outer surface
tessellation of the modeled unit. The design information was created as a sequence of
formed triangles that encapsulated the entire modeled specimen volume; it was stored
as a stereolithographic model (STL format) in order to be loaded on the slicer software.
The stored information was the coordinates of the assembled triangle vertices and the
coordinates of the area normal to the vector that exits the cubic specimen surface. The cubic
volume of the specimen was converted to successive 2D horizontal layers via triangular
meshing using the slicing software Simplify3D (version 3.3) (Simplify3D, Cincinnati, OH,
USA), which is suitable to program additive manufacturing applications; it also aided in
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facilitating proper adjustments in order to achieve a satisfactory 3D-printing resolution.
The 3D-printable unit consists of a stack of individually printed platforms. Each platform is
an accumulation of 2D toolpath lines. The required settings for the extruder and the layer
details, the infill patterns, the 3D-printing process temperatures, any raft additions, the
3D-printing process speed selections, the fed filament properties, the G-code, and the other
process scripts were entered in the Simplify3D input menu (Figure 1). The 3D-printing
procedure was translated into a numerical control program (NC files) using G-code, and it
was based on a Cartesian 3D axis system.
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The 3D-printing machine configuration was assigned build volume dimensions of
150 mm × 150 mm × 150 mm with respect to the X, Y, and Z axes, respectively. The
origin offset was set at (0, 0, 0), and the machine type was a Cartesian robot, geared to
deal with a rectangular volume. The temperature instruction was “Heated bed” and the
selected material type was “ABS”. The scheduled batch program allowed three replications
at the preset conditions. The choice “Outside-In” was the preferred outline direction in
the “Layer” requirement because it helped to attain better dimensional precision. The
dimensional adjustment to compensate for horizontal deviations was set at −0.05 mm.

To conduct the fusion-based filament fabrication task, the industrial-grade thermoplas-
tic polymer, acrylonitrile butadiene styrene (ABS), was investigated. Owing to its unique
mechanical properties and its heat resistance capabilities, the ABS polymer is applicable to
both interior and exterior usages. The 3D-printed ABS material was treated in a heated bed,
which was regulated at a temperature range of 80 ◦C to 110 ◦C. The extruder temperature
could vary from 220 ◦C to 260 ◦C. For the particular set of experiments, it was necessary
to attach an enclosure to isolate the 3D-printing area. The blower fan was not turned on
during the experiments.

The ABS filament that was chosen for the extrusion experiments was the Neema3DTM

ABS EVO Ultimate filament (Neema3D, Petroupolis, Greece). Several features rendered its
usage advantageous: (1) its low propensity for cracking; (2) its enhanced warp resistance;
(3) its stable behavior in bed and interlayer adhesion; (4) its more manageable handling
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during production; (5) its low cost; and (6) its additive manufacturability to fabricate larger
items. Generally, ABS materials exhibit favorable tendencies in compression and impact
tests. This particular ABS material type was processed at a standard bed temperature set
at 80 ◦C. The extruder was a modular 3D printer, Anet 3D, model A3-S (Shenzhen Anet
Technology, Longhua, Shenzhen, China). This FFF machine had an available printable
volume of 160 mm × 160 mm × 150 mm, a printing resolution in the range of ±0.1 mm to
0.15 mm, and a layer thickness range of 0.1 mm to 0.4 mm. Furthermore, the maximum
extruder and hotbed temperatures were specified at 250 ◦C and 100 ◦C, respectively. The
movement and printing speed ranges were specified at 10 to 300 mm/s and 40 to 120 mm/s,
respectively. The nozzle size was 0.4 mm, and the filament diameter was 1.75 mm. The
hotbed material was aluminum PCB, and the printer could operate in either online or
offline modes. The printer head was heated up to 245 ◦C, bed leveling was carried out, and
the machine was calibrated with a standard cube (side length of 20 mm). The printer was
conditioned by a ventilator. The printing chamber was isolated by a paper box to stabilize
the internal temperature conditions.

Compression tests—driven to fracture—were carried out on a testing machine Z010
Zwick/Roell (Zwick/Roell, Ulm, Germany), with maximum load capability of 10 kN,
preload at 1000 N, sample size (n) at 3, and test speed at 1 mm/min. The testing machine
was suitable for compression, tensile, shear, flexure, and cyclic tests, furnishing versatile
measurements for metals, plastics, and textile materials. The complete experimental cycle
is shown in Figure 2.
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sion strength trials.

2.1.2. The Selected Controlling Factors, the Mechanical Characteristics, and the
Trial Planner

The proposed additive manufacturing model was based on a multi-factorial linear
design, seeking to accomplish the profiling of potential active effects [87]. The eleven
controlling factors, their experimental settings, and their coded labels that were exam-
ined in this work are tabulated in Table 1. The layer thickness affects the 3D-printing
quality—physical and mechanical properties—the total 3D-printing time and the produc-
tion cost. The number of top/bottom layers is crucial in reinforcing either side with solid
100%-infill-density layers at the beginning and end of the cubic structure, at its two opposite
sides. The number of outline shells strengthens the 3D-printed structure by providing
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external casings at a comparable width to match that of the 3D-printer’s nozzle diame-
ter. The two selected operating endpoints were the practical limits to ensure structure
rigidity (2 shells) and to permit the designed infill generation (10 shells). After a series
of preliminary tests, the selected infill pattern was finalized on the Simplify3D software
package by picking the option “Rectangular”. Therefore, the appropriate settings were as
follows: (1) the rectilinear [0◦] configuration that was examined at the Y-Z level; and (2) the
rectilinear [45◦, −45◦] configuration with alternating layer angle offsets at 45◦ and −45◦

across parallel toolpath lines. Both available external patterns in the Simplify3D software
package were tested in their rectilinear and concentric forms. The outline overlap was
maintained at higher percentages to test the rigidity of the unit when the shell framing and
the infill-pattern bordering frames almost coincided. The experiments were run with no
solid diaphragm (100% infill density layer) and also with a diaphragm—to further enhance
structure rigidity—in every three 3D-printed layers such that they match the configurations
of the pre-selected top/bottom layers (rectilinear/concentric patterns). The printing speed
is an essential parameter that influences the quality of the infill layout and the production
performance of the 3D printing process. The insertion of a raft as a substrate between
the part unit and the bed surfaces in order to enhance adhesion was also tested. The
extruder temperature is pivotal to polymer filament melting, and it is highly dependent
on the material type. Selecting high extruder temperature ranges favors the onset of the
stringing effect and the appearance of failing bridging patterns. On the other hand, a low
extruder temperature reduces the filament flow capability; it interferes with the proper
extruder function by promoting wear and breakdowns while impeding product adhesion
and accelerating delamination. The infill density, expressed in percentages, indicates the
extent of material coverage in a 3D-printed layer. It is correlated to the part unit rigidity and
weight, as well as to the total cost of manufacturing and the total production cycle time.

Table 1. Controlling factor list for the ABS 3D-printing compression strength experiments.

Coded Label Controlling Factors Units Level 1 Level 2

A Layer thickness mm 0.1 0.2
B Number of top/bottom layers 0 5
C Number of outline shells 2 10
D Infill angle degrees 45◦/−45◦ 0◦

E External pattern Rectilinear Concentric
F Outline overlap % 50 80
G Diaphragm (for a number of printed layers) 0 3
H Printing speed mm/min 1800 7200
I Use of raft Yes No
J Extruder temperature ◦C 240 260
K Infill density % 80 100

To effectuate a sustainable experimental plan, the Taguchi-type L12(211) OA was imple-
mented to dramatically condense the number of the necessitated trial runs. The benefit that
is derived from this choice is easily demonstratable. A comprehensive full-factorial sam-
pling scheme would dictate as many as 211 (=2048) trials (without counting the multiplica-
tive effect of making provisions for replicated experiments). Planning for a triplicate trial
schedule, this would forecast massive research work consisting of 3 × 2048 = 6144 trials.
Overall, the sustainable approach that is proposed in this work would reduce the demand
for resources, research time, and manhours by a factor of 2048/12 ≈ 171. These are extraor-
dinary gains, which essentially permit, from a practical standpoint, the realization of such
a project. In Table 2, the experimental plan is completed in saturated form (maximum trial
planner utilization), coded according to the labeled controlling factors from Table 1; the
factorial settings are also included in the table. It is seen that eight factors are numerical
variables and three are categorical variables. The proposed quality characteristics are
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the two mechanical properties of the 3D-printed product unit: the yield strength and the
ultimate compression strength. Both output responses are measured in MPa.

Table 2. The L12(112) OA trial planner for the 3D-printer ABS mechanical property experiments.

Run # A B C D E F G H I J K

1 0.1 0 2 45◦/−45◦ Rectilinear 50 0 1800 NO 240 80
2 0.1 0 2 45◦/−45◦ Rectilinear 80 3 7200 YES 260 100
3 0.1 0 10 0◦ Concentric 50 0 1800 YES 260 100
4 0.1 5 2 0◦ Concentric 50 3 7200 NO 240 100
5 0.1 5 10 45◦/−45◦ Concentric 80 0 7200 NO 260 80
6 0.1 5 10 0◦ Rectilinear 80 3 1800 YES 240 80
7 0.2 0 10 0◦ Rectilinear 50 3 7200 NO 260 80
8 0.2 0 10 45◦/−45◦ Concentric 80 3 1800 NO 240 100
9 0.2 0 2 0◦ Concentric 80 0 7200 YES 240 80
10 0.2 5 10 45◦/−45◦ Rectilinear 50 0 7200 YES 240 100
11 0.2 5 2 0◦ Rectilinear 80 0 1800 NO 260 100
12 0.2 5 2 45◦/−45◦ Concentric 50 3 1800 YES 260 80

2.2. Data Analysis
2.2.1. The Neutrosophic Profiler

A linear OA sampler is selected to condense the experimental control combinations
to a degree much less than what is dictated by a corresponding full factorial design. The
screening design is a predefined matrix that can accommodate an arrangement of numerical
and categorical controlling factors. In sustainable datacentric engineering applications, the
OA sampler is a blueprint for a planner that organizes a few informative trials. The OA
matrix is an n × m array, in which the n rows represent the predefined experimental recipes
and the m columns identify the controlling factor adjustments that are necessary to execute
the trial runs [61–63]. For practical purposes, the OA sampler is assumed to be implemented
in saturation mode (maximum utilization of the sampling capacity). Hence, for a selected
two-level OA, the relationship between the number of rows and columns is n = m +1. The
m controlling factors examined are defined as follows: Xj for 1 ≤ j ≤ m (m ϵ N), and their
respective factor settings are denoted as xij for 1 ≤ i ≤ n (n ϵ N) and 1 ≤ j ≤ m. The multi-
characteristic response matrix Y = {yicd}, with 1≤ i ≤ n, 1 ≤ c ≤ C (C ϵ N), and 1 ≤ d ≤ D
(D ϵ N), is generated by C characteristic responses, Yc; each cth matrix column is replicated
D total times. Since there are a total of D trial replications, then, for each experimental
recipe, i, the dataset may be converted into a neutrosophic interval dataset [68–71], where
only the lower and higher replicate values are retained in the neutrosophic formalism.
In other words, for a given recipe run, i, and a characteristic, c, the replicates {yicd} for
1 ≤ d ≤ D become [yLic, yUic], where yLic = min{yicd} for 1 ≤ d ≤ D, and yUic = max{yicd}
for 1 ≤ d ≤ D. In the symbolic neutrosophic theory, indeterminacy is introduced by
additively splitting a neutrosophic number into a determinate and an indeterminate part.
The indeterminate part may be sampled from a range of [0, 1] proportional to the coefficient
value of the yUic-yLic. This is because in Smarandache‘s neutrosophic logic, there are three
distinct degrees for (1) truth (t), (2) indeterminacy (i), and falsehood (f). The intriguing
feature is that any of the t, i, and f may be standard or non-standard subsets of the non-
standard unit interval [−0, 1+], which means that the totaling of the three subsets is great or
equal to −0 and less or equal to 3+. After the original replicated multi-response datasets
have been transformed in terms of multi-response neutrosophic variables (Table 3), they
may be straightforwardly analyzed using the neutrosophic linear regression method of
Nagarajan et al. [74]. The neutrosophic profiler also returns interval data from the regression
coefficients of the partaking controlling factors. This completes this novel multi-factorial
neutrosophic screening process for the examined quality characteristics.
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Table 3. The OA planner and the neutrosophic interval data output vectors.

Controlling Factors (Input)

run# X1 X2 · · · Xm
1 x11 x12 · · · x1m
2 x21 x22 · · · x2m
· · · .
· · · · · · ·
. . . .
n xn1 xn2 · · · xnm


Interval response data−−−−−−−−−−−−−→

→



run# YN
1 YN

2 · · · YN
C

1 [yL11, yU11] [yL12, yU12] · · · [yL1C, yU1C]
2 [yL21, yU21] [yL22, yU22] · · · [yL2C, yU2C]
· · · .
· · · · · · ·
. . . .
n [yLn1, yUn1] [yLn2, yUn2] · · · [yLnC, yUnC]


2.2.2. Screening a Multifactorial OA Design with a Gibbs Sampler

The Gibbs sampler is a computer-intensive statistical method that may be used to
enable the screening of factorial effects from data that are collected from linear orthogonal
arrays. A great advantage of the method is that it sidetracks the calculation of a joint
probability density function by assembling the behavior of the examined random variables
indirectly from their individual marginal distributions [84–86]. Since linear regression is
required to provide the effect contributions through a linear approximation of the factorial
coefficients, a Gibbs sequence of the random variables is formed by alternating the genera-
tion of conditional probabilities between inputs and outputs in a simple iterative scheme.
Considering that the general linear modeling of a number of m quality characteristics, Y,
and owing to an n number of controlling factors (defined at two endpoint settings), X, then
the coefficients of the regression vector β are simply given by the following:

Y = Xβ + ε with ε ~ N(0, σ2) and β ~ N(µ, σ2) and σ2 ~ Γ−1(α,β)

Therefore, the posterior conditional probabilities, due to the observed data, allow the
estimation of the central tendencies and variabilities of the regression coefficients, which
can then be iteratively created as follows:

p(β, σ2|Y) ∝ N(Xβ, σ2) N(µ, τ2) Γ−1(α,β)

and therefore, the distribution of the coefficients of regression may be approximated
as follows:

β|Y, σ2 ~ N(m, s) with m = (X′X)−1 X′ Y and s = σ2 (X′X)−1

where σ2|Y, β ~ N(Xβ, σ2) Γ−1(α,β) ~ Γ−1(αn,βn), given that αn = a + n/2 and βn = (Y −
Xβ)′ (Y − Xβ)/2, where αn, βn are the shape and rate parameters of the Gamma function
prior, respectively.

2.3. The Methodological Outline

The proposed methodological approach may be summarized in the following steps:

(1) Determine the basic structural characteristics of the 3D-printed ABS specimens and
indicate the mechanical properties that will be monitored—the yield strength and the
ultimate compression strength—as well as their direction of improvement.

(2) Select an extensive group of controlling factors that might influence the output quality
of the 3D-printed ABS product-unit characteristics.
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(3) Determine the operating range for each individual controlling factor from step 2, and
define the factorial end-point settings.

(4) Select an orthogonal trial planner that adjusts all factorial settings, from step 3, in a for-
mulation schedule that requires the least number of recipes in the sampling scheme.

(5) Test replication adequacy, data normality, and correlations among the characteristic
responses.

(6) Perform factorial screening using neutrosophic regression to determine the leading
factorial effects by casting replicated data into interval data.

(7) Implement Gibbs sampling to confirm the leading regressors by computing the poste-
rior conditional distributions in a single dataset that consolidates all replicates.

(8) Determine any factorial prediction discrepancies using more ordinary treatments such
as stepwise regression analysis and the robust quantile regression method.

(9) Propose an optimal solution for the linear approximation study.
(10) Confirm whether the predicted recipe from step 9 might be practically sustainable

before advancing to more sophisticated experimental strategies, if they are needed.

2.4. The Computational Support

The descriptive statistics for the yield strength and the ultimate compression strength
datasets, the normality tests (Kolmogorov–Smirnov and Shapiro–Wilk tests) for the indi-
vidual replicate OA data, as well as in their combined form, the correlation tests between
the two characteristics for each replicate dataset, the linear regression analysis for the two
characteristics for each replicate dataset, the linear regression analysis within each char-
acteristic for all replicate two-way combinations, and finally, the multifactorial stepwise
regression analysis for the combined datasets of the two characteristics were all computed
in the statistical software package IBM SPSS v. 29.

The dedicated computational work was implemented on the statistical freeware plat-
form R (v. 4.3.0) [88]. The basic visual dataset screening of the yield strength and the
ultimate compression strength was conducted using boxplots, beanplots, and Q-Q plots
from the R packages ‘graphics’ (v. 4.3.0), ‘beanplot’ (v. 1.2), and the module ‘qq_conf_plot()’
of the R package ‘qqconf’ (v. 1.3.1), respectively. The L12(211) OA array was constructed
using the module ‘param.design()’ from the R package ‘DOE.base’ (v. 1.2-2). The linear
regression analysis of the neutrosophic interval dataset for yield strength was accomplished
by the module ‘lm()’ in the R package ‘stats’ (v. 4.3.0). Consequently, the factorial effects
from the two neutrosophic interval dataset limits were contrasted using the classical Lenth
test (module ‘LenthPlot()’) from the R package ‘BsMD’ (v. 2020.4.30). The module ‘lm()’ was
also deployed to furnish the graphical line-fitting between the two mechanical properties
for each individual replicate; it also included the 95% confidence interval band. The R
package ‘ntsDists’ (v. 2.0.0) was utilized to test some of the neutrosophic distributions that
were generated from the neutrosophic linear regression procedure. The linear regression
analysis exploiting the Gibbs sampler was performed by the R package ‘lrgs’ (v. 0.5.4) [89].
The module ‘Gibbs.regression()’ was tuned to sample 10,100 times in order to simulate
the marginal distributions; the first 100 points were removed from the data processing as
they were considered part of the burn-in period. The quantile-regression profiling of yield
strength data was verified by the R packages ‘quantreg’ (v. 5.97) and ‘SparseM’ (v. 1.81).

3. Results
3.1. Data Screening for Yield Strength and Ultimate Compression Strength

Conducting the experimental recipes, which are formulated by the L12(211) OA
(Table 2), we 3D-printed 12-triplet specimen cubes (side length of 1 cm); specimens are
arranged per OA run order in Figure 3 (ref. [87]). The yield strength and the ultimate
compression strength triplicate measurements have been tabulated in increasing run order
in Table 4—both in MPa units [87]. The basic descriptive statistics for the three replicated
runs of the yield strength and the ultimate compression strength are listed in Table 5.
Based on the summary statistics, there are three remarks to be made: (1) the yield strength
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measurement means across the three replications are statistically similar; (2) the ultimate
compression strength measurement means across the three replications are also statistically
similar; and (3) the margins of error for the yield strength and the ultimate compression
strength measurements allow the two intervals to overlap for each individual replicate
dataset. It appears that the last remark is statistically significant at a level of α = 0.05 for
all three replicated datasets. Hence, knowing one of the two characteristics, it might be
simple to guess the behavior of the other. Before commenting further on the predictability
between the two characteristics, it is informative to examine the shape statistics as well
as the normality status across the replicated datasets and between the two characteristics.
From Table 5, the skewness values for all replicates are similar at first glance, indicating
data symmetry across all replicates. However, by taking into account their standard error
estimations, asymmetry may not be precluded, leaving it indeterminate which sides the
long tails point to in their respective data distributions.
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Figure 3. The 12-run (three-times) replicated (L12(211) OA) 3D-printed ABS cubic specimens.

Table 4. Yield strength (YS) and ultimate compression strength (UCS) measurements (in MPa) for the
L12(211) OA-replicated trials (Table 2).

Run # YS1 UCS1 YS2 UCS2 YS3 UCS3

1 37.79 40.72 38.71 41.12 37.52 39.82
2 50.30 53.88 41.87 46.13 48.88 52.27
3 45.00 48.95 45.23 48.51 41.54 46.55
4 49.12 54.03 52.36 54.81 48.19 52.17
5 47.36 51.79 47.95 50.55 49.09 52.11
6 49.68 52.49 49.17 51.81 47.71 50.54
7 38.40 41.73 42.09 44.73 40.16 43.11
8 43.27 46.73 41.15 46.40 42.63 47.12
9 40.88 40.88 42.20 44.19 43.86 45.18

10 39.90 44.27 39.58 44.26 40.52 44.90
11 49.40 51.79 51.49 52.78 48.54 50.97
12 36.98 40.80 35.29 39.52 36.99 41.43

Similarly, kurtosis estimates are indeterminate for all six datasets because their stan-
dard errors permit all three typical kinds of tail patterns to be manifested (platykurtic,
mesokurtic, or leptokurtic). However, the kurtosis point estimates approximately match
both characteristics for each separate replicated dataset. Testing the six collected datasets
for normality using the Kolmogorov–Smirnov and Shapiro–Wilk methods (Table 6), we ob-
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serve that all but the first replicate dataset for the ultimate compression strength appear to
agree with a random structure at a level of significance of α = 0.05. Still, this only-exception
finding is actually a split decision between the two utilized goodness-of-fit tests, as the
p-value of 0.046, which is obtained from the Shapiro–Wilk test, may be construed as a
marginal departure from normality.

Table 5. Descriptive statistics for yield strength (YS) and ultimate compression strength (UCS)
replicated trials (IBM SPSS v. 29).

Property/Replicate
N Mean Skewness Kurtosis

Statistic Std. Error Statistic Std. Error Statistic Std. Error

YS1 12 44.01 1.47 −0.08 0.64 −1.80 1.23
UCS1 12 47.34 1.57 −0.10 0.64 −1.90 1.23
YS2 12 43.92 1.54 0.24 0.64 −0.89 1.23

UCS2 12 47.07 1.36 0.11 0.64 −0.85 1.23
YS3 12 43.80 1.31 −0.15 0.64 −1.60 1.23

UCS3 12 47.18 1.27 −0.27 0.64 −1.31 1.23

Table 6. Replicate dataset (dual) normality tests for yield strength (YS) and ultimate compression
strength (UCS) (IBM SPSS v. 29).

Tests of Normality

Property/Replicate
Kolmogorov–Smirnov a Shapiro–Wilk

Statistic DF Sig. Statistic DF Sig.

YS1 0.175 12 0.200 * 0.889 12 0.114
UCS1 0.210 12 0.150 0.858 12 0.046
YS2 0.210 12 0.150 0.950 12 0.642

UCS2 0.140 12 0.200 * 0.969 12 0.897
YS3 0.222 12 0.106 0.887 12 0.108

UCS3 0.193 12 0.200 * 0.912 12 0.226
* This is a lower bound of the true significance. a Lilliefors significance correction.

On the other hand, in the boxplot screening of the six replicate datasets (Figure 4), the
extent of asymmetry in the second and third specimen replications, for both mechanical
characteristics (YS and UCS), is more pronounced than that of the ultimate compression
strength measurements from the first replication. Incidentally, the behavior of the UCS
data from the second specimen replication appear more unbalanced in comparison to the
other two replicated datasets. Visually, the boxplot for the second replication dataset of
YS depicts a noticeable asymmetry, which is rather not supported by either of the two
goodness-of-fit performances of Table 6—p-values of 0.15 and 0.64, respectively.

Those disagreements between graphical and statistical results prompt additional
rounds of data screening. Beanplot screenings (Figure 5) of the three replications do
not hint at any skewness for either of the two mechanical characteristic datasets that are
related to the second replication. Nevertheless, the pair of beanplots that relate to the
first replication might suggest a trace of bimodality in the data, a trend that might also be
extended to the yield strength response in the third replication of the experiments. Finally,
a QQ-plot screening of the three replications is provided in Figure 6. Two remarks may be
made: (1) the band expansion around the trend line is substantial, and this may influence
the precision of mechanical property predictions; and (2) there is a lopsidedness in the
accumulation of the data points around the QQ-plot trend line, which is accentuated as
a “half-banded” irregularity in the QQ-plots of the observations of the second replication
of the yield strength and the second and third replication observations of the ultimate
compression strength.
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3.2. Testing Correlations for Yield Strength and Ultimate Compression Strength Response Data

To decide whether to include both mechanical properties in the multifactorial screening
process, a correlation analysis between the yield strength and the ultimate compression
strength was attempted for each replicated dataset separately. From Table 7, it is evident that
there is a high positive correlation between the two mechanical properties; the correlation
coefficient estimates are maintained high in all three independent replications. Furthermore,
the range of the coefficients of correlation was narrow, and their values varied between
0.970 and 0.979. The upper and lower bounds for the correlation coefficients, according to
their 95% confidence intervals, were as high as 0.994 and no lower than 0.894, respectively.
Next, it was enquired how well the prediction results could apply to both characteristics
while retaining only one of the two characteristics in the factorial analysis that would follow.
For instance, to check the redundancy of the ultimate compression strength response in
the screening phase, a regression analysis was carried out between the yield strength
and the ultimate compression strength data (Table 8). The standardized linear regression
coefficients were sufficiently close to one for all three replications; they ranged from
0.97 to 1.04. However, the second replication dataset produced an intercept value in the
unstandardized fittings that was statistically significant at a level of 0.05.

Table 7. Correlation analysis for yield strength (YS) and ultimate compression strength (UCS)
replicated trials—C.I. level: 95.0% (IBM SPSS v. 29).

Variable #1 Variable #2 Correlation Count Lower C.I. Upper C.I.

UCS1 YS1 0.973 12 0.903 0.993
UCS2 YS2 0.979 12 0.924 0.994
UCS3 YS3 0.970 12 0.894 0.992

Table 8. Regression analysis between yield strength (YS) and ultimate compression strength (UCS)
replicated trials (IBM SPSS v. 29).

Standardized Coefficients p-Value Intercept
p-Value Adj. R2 Durbin–Watson

UCS1-YS1 1.04 p < 0.001 0.647 0.941 2.57
UCS2-YS2 0.98 p < 0.001 0.005 0.954 3.12
UCS3-YS3 0.97 p < 0.001 0.101 0.936 2.44

This behavior was matched to a higher Durbin–Watson test statistic score, which was
estimated at a value of 3.12; it might signify a negative autocorrelation in the successive
error terms. However, the adjusted coefficients of determination were fairly consistent
among the three replications, and they ranged from 0.936 to 0.954.

3.3. Testing Replication Adequacy for Yield Strength and Ultimate Compression Strength Data

A practical way to test replication adequacy for yield strength and ultimate com-
pression strength in saturated OA-generated datasets might be to apply cross-regression
between all replicated dataset pairs. In Table 9, the linear regression analysis results are
tabulated for the six replication pairings of the two mechanical characteristic responses
(IBM SPSS v. 29). The general observation is that all six coefficients of regression are
statistically significant at a level of 0.05. No intercept values were statistically significant
for the yield strength data. Moreover, the intercept estimations for the two out of the three
tested pairs of the ultimate compression strength were not statistically significant (α = 0.05);
the intercept estimate for the tested pair of the first and third replications was found to
be statistically significant, though. For the yield strength, the slopes ranged from 0.69 to
0.85, which may be viewed as a rather satisfactory outcome, given the complexity and the
committed resource limitations of the selected experimental design. Similarly, the ultimate
compression strength slopes ranged from 0.75 to 0.80, which may be viewed as adequate.
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Table 9. Linear regression analysis for yield strength (YS) and ultimate compression strength (UCS)
replicated trials (IBM SPSS v. 29).

Relationship Coefficient S.E. p-Value Adj. R2

YS2 vs. YS1
Intercept 6.33 8.45 0.47 0.63

Slope 0.85 0.19 0.0012
YS3 vs. YS1

Intercept 7 4.31 0.14 0.87
Slope 0.84 0.097 6.33 × 10−6

YS3 vs. YS2
Intercept 13.33 6.92 0.083 0.63

Slope 0.69 0.16 0.0013
UCS2 vs.

UCS1
Intercept 11.8 6.66 0.11 0.71

Slope 0.75 0.14 0.0003
UCS3 vs.

UCS1
Intercept 10.73 3.82 0.019 0.89

Slope 0.77 0.08 2.33 × 10−6

UCS3 vs.
UCS2

Intercept 9.35 7.16 0.22 0.71
Slope 0.8 0.15 0.00035

Based on the adjusted coefficients of determination scores for the yield strength,
the presence of the dataset that is associated with the second replication tends to lower
the adjusted R2 estimation to a marginal value of 0.63; it probably provides additional
evidence for amplified variability concerns that are tagged to the second replication. This
behavior is also consistent with the linear regression outcomes for the ultimate compression
strength data. In this case, the fitting performance, according to the adjusted coefficient of
determination estimate, improves to 0.71.

Finally, a graphical representation furnishes additional information about the replica-
tion trends between the different pairs. In Figure 7, the fitted line plots are shown for all
six combinations of the three replications and for both mechanical characteristics. The main
observation is that in all graphs, several points may be found outside the 95% confidence
interval band. This manifestation may not explain how additional replications would have
improved on this behavior, i.e., to better confine the data points within the confidence
interval bounds.
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presence of the dataset that is associated with the second replication tends to lower the 
adjusted R2 estimation to a marginal value of 0.63; it probably provides additional evi-
dence for amplified variability concerns that are tagged to the second replication. This 
behavior is also consistent with the linear regression outcomes for the ultimate compres-
sion strength data. In this case, the fitting performance, according to the adjusted coeffi-
cient of determination estimate, improves to 0.71. 

Finally, a graphical representation furnishes additional information about the repli-
cation trends between the different pairs. In Figure 7, the fitted line plots are shown for all 
six combinations of the three replications and for both mechanical characteristics. The 
main observation is that in all graphs, several points may be found outside the 95% confi-
dence interval band. This manifestation may not explain how additional replications 
would have improved on this behavior, i.e., to better confine the data points within the 
confidence interval bounds. 
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3.4. Neutrosophic Multifactorial Profiling of the Yield Strength Response

The results from the previous sub-sections imply that, in addition to stochastic un-
certainty, indeterminacy should probably be included in the progressive analysis of the
multi-factorial datacentric model. From the completed correlation analysis, we infer that
the design problem may be reducible to a single characteristic. Thus, the yield strength
response is selected to solely represent the output signature in the data treatment that
ensues. The original replicated dataset of the yield strength (Table 4) is cast in terms of
interval data (YSnv), and next it is easily transformed into a single neutrosophic variable
(YSI

nv) in Table 10. The neutrosophic variable has a determinate part and an indeterminate
part. In all 12 cases, it holds that the indeterminate part is formed by considering that
I ϵ [0, 1].

The transformed model requires executing the multi-factorial linear regression analy-
sis twice [74]—each for either of the two bounds. However, the problem is now reduced to
treating two unreplicated–saturated OA datasets. This development requires first estimat-
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ing twice the regression coefficients at the two bounds and then deciding on their statistical
significance by utilizing a specialized technique that converts the unreplicated–saturated
OA design datasets.

Table 10. The replicated yield strength (YS) dataset expressed as a neutrosophic characteristic
response (MPa).

YSnv YSI
nv

[37.52, 38.71] 37.52 + 1.19I
[41.87, 50.30] 41.87 + 8.43I
[41.54, 45.23] 41.54 + 3.69I
[48.19, 52.36] 48.19 + 4.17I
[47.36, 49.09] 47.36 + 1.73I
[47.71, 49.68] 47.71 + 1.97I
[38.40, 42.09] 38.40 + 3.69I
[41.15, 43.27] 41.15 + 2.12I
[40.88, 43.86] 40.88 + 2.98I
[39.58, 40.52] 39.58 + 0.94I
[48.54, 51.49] 48.54 + 2.95I
[35.29, 36.99] 35.29 + 1.70I

In Table 11, the neutrosophic regression coefficients results are listed in both forms
as interval data bounds ([Cys,L, Cys,U]) and as a single neutrosophic variable (CI

ys) for
I ϵ [0, 1]. It is quickly noticed that factors C (number of outline shells), E (external pat-
tern), G (diaphragm), and J (extruder temperature) are weak. The rest of them may
be considered for further exploration. The controlling factors that seem to lead to the
strength hierarchy are as follows: (1) D (infill angle): 3.75 + 0.56I (MPa); (2) F (outline
overlap): 2.25 + 0.40I MPa/% (3) I (use of raft): −2.38 + 0.64I MPa; (4) A (layer thickness):
−1.70 − 0.56I MPa/mm; (5) B (number of top/bottom layers): 2.11 − 0.72I MPa; and (6) K
(infill density): 1.14 + 0.76I MPa/%. Out of the six controlling factors, the opposing influ-
ence on improving yield strength performance is identified as smaller layer thickness and
the absence of a raft. To supplement the neutrosophic profiler with a statistical comparison
of the effects, the Lenth test is employed for practical levels of significance set at α = 0.10,
0.20, and 0.40. From Figure 8, a clearer profile is observed when the significance level is set
at α = 0.40. Considering the performances from both neutrosophic regression coefficient
bounds, factors D, F, and A are exceeding the margin of error (ME) mark. Factors B and I
join the list when restricted to the lower bound estimations. On the other hand, the upper
bound estimation may suggest replacing the I to K effect. It is interesting that at levels of
significance set at α = 0.10 and 0.20, only the controlling factor D (infill angle) is identified
as the predominant strong effect.

Table 11. Neutrosophic regression coefficient results for the eleven controlling factors against the
yield strength (YS).

Coefficients [Cys,L, Cys,U] (MPa) CI
ys (MPa)

Intercept [41.59, 44.18] 41.59 + 2.59I
A [−1.70, −2.26] −1.70 − 0.56I
B [2.11, 1.39] 2.11 − 0.72I
C [0.29, −0.32] 0.29 − 0.61I
D [3.75, 4.31] 3.75 + 0.56I
E [0.13, −0.33] 0.13 − 0.46I
F [2.25, 2.65] 2.25 + 0.40I
G [−0.23, 0.48] −0.23 + 0.71I
H [0.38, 1.07] 0.38 + 0.69I
I [−2.38, −1.74] −2.38 + 0.64I
J [−0.17, 0.57] −0.17 + 0.74I
K [1.14, 1.90] 1.14 + 0.76I
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4. Discussion

The results from the previous section necessitate further probing using different tactics,
since the application of neutrosophic screening in the FFD-planned dataset is novel. A naïve
first move is to assemble all 36 observations in a single dataset and analyze it accordingly.
After repeating the application of the two tests of normality and removing the replication
identity from the datasets, we estimated the Kolmogorov–Smirnov and Shapiro–Wilk
test statistic scores in Table 12. This time, both goodness-of-fit test results agree that the
behavior of the ultimate compressive strength dataset may deviate from normality at a
level of significance of α = 0.05. There is a split decision on the yield strength dataset,
in which the Shapiro–Wilk test outcome may indicate that the normality hypothesis is
marginally accepted. By employing graphical means (Figure 9), a boxplot screening for
both mechanical properties detects data asymmetry for both characteristics. Moreover,
beanplot screening reveals that there might be, to some extent, a bimodal motif that is
shared by both datasets. A QQ-plot screening seems to accentuate this asymmetry by
exposing how datapoints frequent more often one half of the confidence interval band; they
are persistently situated above the center line for both datasets.

Table 12. Combined dataset (double) normality tests for the yield strength (YS) and the ultimate
compression strength (UCS) (IBM SPSS v. 29).

Kolmogorov–Smirnov a Shapiro–Wilk

Statistic Df Sig. Statistic Df Sig.

YS 0.150 36 0.039 0.941 36 0.054
UCS 0.149 36 0.042 0.930 36 0.025

a Lilliefors significance correction.

A convenient way to attempt to estimate a factorial hierarchy without making explicit
assumptions about the multiple distributional tendencies of the dataset is to adopt the
Gibbs sampler approach. In Figure 10, the twelve generated posterior distributions are tiled
in terms of the Gibbs sampling regression histograms for the yield strength characteristic.
The posterior distribution landscape is necessary to be formed in order to proceed to
estimate the central tendencies for each of the coefficients of regression (including the fixed
term). In Table 13, the estimated coefficient means resulting from the Gibbs regression are
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listed along with their standard errors. The strength hierarchy, expressed in decreasing
order, suggests the following six controlling factors: D, F, A, I, B, and K. The last three
controlling factors are fairly close to each other, judging by the size of their mean coefficient
magnitudes. From this active group, it is the A-factor (layer thickness) and the I-factor (use
of raft) that negatively influence the yield strength response. It is remarked that the Gibbs
regression screening results of the yield strength response agree both on the combination
of the active effects as well as on the regression coefficient predictions with regards to the
neutrosophic profiler outcomes (Table 11). The three controlling factors that stood out
according to the Lenth test outcomes on the lower and upper neutrosophic yield-strength
limits are also predicted in the same order by the Gibbs regression, i.e., D (infill angle), F
(outline overlap), and A (layer thickness).
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Table 13. Gibbs sampler regression coefficients for all three replicates of the yield strength response.

Factor Coefficient Mean Coefficient S.E.

Constant Term 42.88 0.007
A −2.06 0.003
B 1.61 0.003
C −0.001 0.003
D 3.84 0.007
E −0.15 0.007
F 2.5 0.003
G 0.21 0.003
H 0.68 0.003
I −1.64 0.007
J 0.34 0.003
K 1.59 0.003
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The next question is whether a more standard regression analysis approach could
approximate the predictions in congruence with the neutrosophic profiler solution. The
results from the stepwise multifactorial regression analysis (IBM SPSS v. 29) of the yield
strength response are tabulated in Table 14. The progressive inclusion of the active factorial
terms is detailed in Table 15. From Table 14, the statistically important controlling factors
are as follows: A, B, D, F, H, I, and K, and the model has a constant term (α = 0.05). If
a Bonferroni family-wise error rate (α = 0.0042) is used to compensate for the multiple
comparison problem, then the predictors H and I might be removed from the list. This
last solution does not agree with the stepwise regression screening line-up, in which, in
decreasing potency, the effects become F, A, D, B, K, I, and H (Table 15). From Table 14, it
appears that there is no issue of multicollinearity in the stepwise regression treatment; the
variance inflation factor for all predictors is uniform at an estimated value of 1.0. From
Table 15, the adjusted R2 was estimated at 0.864, which is a satisfactory performance for
this type of complex problem. Additionally, from the same table, the Durbin–Watson
test statistic was estimated at 2.374, which implies that there is no autocorrelation at lag
1 between the regression residuals. In conclusion, the core predictors (F, A, and D) are
alike, according to all three techniques that were employed up to this stage. It is contested,
though, whether the remaining four predictors (B, K, I, and H) should all be retained
on the active list. Therefore, a quantile regression analysis was also employed to screen
the yield strength response by probing deeper into the regressor hierarchy against the
previous predictions. From Table 16, the statistically significant regressors are A and F if
the Bonferroni family-wise error rate (α = 0.0042) is applied to the estimated p-values.
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Table 14. Stepwise multifactorial regression coefficients for the combined dataset of the yield strength
response (IBM SPSS v. 29).

Unstandardized Coefficients
T Sig. VIF

B Std. Error

(Constant) 42.884 0.623 68.808 <0.001
A −2.059 0.312 −6.609 <0.001 1.000
B 1.607 0.312 5.156 <0.001 1.000
C 0.002 0.312 0.005 0.996 1.000
D 3.847 0.623 6.172 <0.001 1.000
E −0.146 0.623 −0.234 0.817 1.000
F 2.502 0.312 8.028 <0.001 1.000
G 0.213 0.312 0.685 0.500 1.000
H 0.684 0.312 2.195 0.038 1.000
I −1.647 0.623 −2.642 0.014 1.000
J 0.342 0.312 1.098 0.283 1.000
K 1.587 0.312 5.093 <0.001 1.000

Table 15. Stepwise regression performance for selecting contributing factors—combined dataset of
the yield strength response (IBM SPSS v. 29).

Model R R2 Adjusted R2 PRESS Durbin–Watson Test Statistic

1 0.522 a 0.273 0.251
2 0.676 b 0.458 0.425
3 0.787 c 0.619 0.583
4 0.855 d 0.731 0.697
5 0.917 e 0.841 0.815
6 0.933 f 0.871 0.844
7 0.944 g 0.891 0.864 148.685 2.374

a Predictors: (constant), F. b Predictors: (constant), F, A. c Predictors: (constant), F, A, D. d Predictors: (constant), F,
A, D, B. e Predictors: (constant), F, A, D, B, K. f Predictors: (constant), F, A, D, B, K, I. g Predictors: (constant), F, A,
D, B, K, I, H.

Table 16. Quantile multifactorial regression coefficients for the combined dataset of the yield strength
response.

Factorial Term Coefficient SE t-Value p-Value

Intercept 42.88 1.17 36.55 0.0000
A −2.22 0.61 −3.622 0.0014
B 1.32 0.71 1.86 0.075
C 0.037 0.7 0.053 0.96
D 3.49 1.46 2.39 0.025
E −0.24 1.17 −0.2 0.84
F 2.61 0.68 3.84 0.0008
G 0.39 0.6 0.65 0.52
H 0.6 0.6 1.01 0.32
I −0.82 1.1 −0.75 0.46
J 0.63 0.67 0.94 0.36
K 1.72 0.68 2.51 0.019

Irrespective of the employed method, the strength of the contributions from the three
more dominant factors is statistically approximated by the same regression coefficient
values in the case of yield strength. For completeness, the stepwise regression analysis
results for the ultimate compression strength are listed in Table 17. They confirm that the
magnitudes of the regression coefficients align with those from the previous treatments
for the yield strength, thus solidifying the correlation between the response behaviors
of the yield strength and the ultimate compression strength. Similarly, in this case, the
variance inflation factor is unity for all regressors, which assures that there might not be
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a multi-collinearity condition in the model. Moreover, the Durbin-Watson test statistic
returns a value close to 2, which indicates that there is no autocorrelation at lag 1 between
the regression residuals (Table 18). The stepwise regression screening of the ultimate
compression strength response retains the same seven predictors as those found in the
corresponding yield strength response model. The only noticeable difference is that factor
D (infill angle), which usually joined the group of “upper-class” active regressors in the
previous profiling outcomes, now enters the model in later rounds as a weaker influence
(Table 18). The adjusted coefficient of determination, including the seven predictors, is
estimated at 0.860, which is reasonable for this type of complex problem (Table 18).

Table 17. Stepwise multifactorial regression coefficients for the combined dataset of the ultimate
compression strength response (IBM SPSS v. 29).

Model
Unstandardized Coefficients

T Sig. VIF
B Std. Error

(Constant) 46.366 0.541 85.637 <0.001
A −2.152 0.271 −7.948 <0.001 1.000
B 1.750 0.271 6.464 <0.001 1.000
C 0.391 0.271 1.443 0.162 1.000
D 2.856 0.541 5.274 <0.001 1.000
E 0.244 0.541 0.451 0.656 1.000
F 2.116 0.271 7.817 <0.001 1.000
G 0.566 0.271 2.089 0.047 1.000
H 0.637 0.271 2.354 0.027 1.000
I −1.440 0.541 −2.660 0.014 1.000
J 0.449 0.271 1.658 0.110 1.000
K 2.056 0.271 7.593 <0.001 1.000

Table 18. Stepwise regression performance for selecting contributing factors—combined dataset of
the ultimate compression strength response (IBM SPSS v. 29).

Model R R2 Adjusted R2 PRESS Durbin-Watson

1 0.461 a 0.212 0.189
2 0.646 b 0.418 0.382
3 0.782 c 0.611 0.575
4 0.867 d 0.752 0.720
5 0.919 e 0.845 0.820
6 0.932 f 0.869 0.842
7 0.942 g 0.888 0.860 145.659 2.037

a Predictors: (constant), A. b Predictors: (constant), A, F. c Predictors: (constant), A, F, K. d Predictors: (constant),
A, F, K, B. e Predictors: (constant), A, F, K, B, D. f Predictors: (constant), A, F, K, B, D, I. g Predictors: (constant), A,
F, K, B, D, I, H.

Even though the L12(211) OA is a linear screening design, it is perhaps worthwhile
to inspect the response table of the two mechanical properties in terms of their opti-
mal outputs. From Table 19, it is seen that the location of the maximum output for the
yield strength is (1) 45.97 MPa (median = 47.83 MPa) for predictor A1 (layer thickness
set at 0.1 mm), (2) 45.83 MPa (median = 46.47 MPa) for predictor D2 (infill angle set at
0◦), (3) 46.41 MPa (median = 47.83 MPa) for predictor F2 (outline overlap set at 80%),
(4) 45.52 MPa (median = 48.07 MPa) for predictor B2 (number of top/bottom layers set at
5), and (5) 45.50 MPa (median = 45.11 MPa) for predictor K2 (infill density set at 100%).

Furthermore, from Table 19, it is seen that the mean location of the maximum output
for the ultimate compression strength is (1) 49.35 MPa (median = 51.17 MPa) for predictor
A1 (layer thickness set at 0.1 mm), (2) 48.62 MPa (median = 49.75 MPa) for predictor
D2 (infill angle set at 0◦), (3) 49.31 MPa (median = 47.83 MPa) for predictor F2 (outline
overlap set at 80%), (4) 48.95 MPa (median = 51.38 MPa) for predictor B2 (number of
top/bottom layers set at 5), and (5) 49.25 MPa (median = 48.73 MPa) for predictor K2 (infill
density set at 100%). The grand mean for the ultimate compression strength dataset is
47.20 MPa (median = 46.64 MPa), and the standard error estimate is 0.80 MPa. Therefore,
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a predicted ultimate compression strength response is calculated at 56.68 MPa. Based
on the optimal controlling factors for the 10 confirmation runs (Figure 11), the mean
ultimate compression strength from the confirmation trials was estimated at 53.58 MPa
(standard error = 0.29 MPa); this indicates a successful prediction since the difference
between prediction and confirmation estimates is only 5.5%.

Table 19. Response table for yield strength (YS) and ultimate compression strength (UCS)—normal
and robust location and dispersion estimations.

Property
(MPa)

Factor
Level Mean SE Median IQR Property

(MPa)
Factor
Level Mean SE Median IQR

YS A UCS A
1 45.97 1.08 47.83 7.34 1 49.35 1.10 51.17 5.88
2 41.85 1.02 41.02 4.13 2 45.04 0.90 44.50 5.17
B B
1 42.30 0.82 41.98 4.35 1 45.45 0.92 45.66 5.89
2 45.52 1.31 48.07 9.41 2 48.95 1.16 51.38 7.98
C C
1 43.91 1.38 43.03 11.47 1 46.80 1.38 45.66 11.54
2 43.91 0.89 42.95 7.34 2 47.59 0.80 46.93 6.25
D D
1 41.99 1.13 40.84 9.78 1 45.77 1.12 45.52 9.82
2 45.83 1.00 46.47 7.28 2 48.62 1.04 49.75 7.66
E E
1 43.98 1.22 41.98 9.87 1 47.07 1.15 45.52 9.16
2 43.84 1.10 43.56 6.93 2 47.32 1.11 46.92 8.37
F F
1 41.41 1.12 40.03 7.33 1 45.08 1.14 44.27 7.58
2 46.41 0.84 47.83 6.71 2 49.31 0.86 50.76 5.82
G G
1 43.70 1.05 43.03 8.28 1 46.63 1.04 45.86 7.75
2 44.12 1.26 42.95 9.41 2 47.76 1.20 46.92 9.56
H H
1 43.23 1.24 42.95 10.98 1 46.56 1.13 46.92 10.14
2 44.59 1.05 43.03 8.50 2 47.83 1.11 45.66 7.95
I I
1 44.73 1.19 45.31 9.30 1 47.92 1.19 48.83 9.36
2 43.09 1.10 42.03 8.18 2 46.48 1.05 45.66 7.36
J J
1 43.57 1.09 42.42 8.60 1 46.75 1.14 45.79 8.48
2 44.25 1.22 45.11 9.21 2 47.64 1.12 48.73 9.11
K K
1 42.32 1.17 41.48 10.05 1 45.14 1.16 43.65 10.00
2 45.50 1.01 45.11 7.75 2 49.25 0.85 48.73 6.07
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5. Conclusions

Lean-and-green datacentric-based experimentation may aid in accelerating the study
of the mechanical properties of popular materials in modern production environments
that seek to promote sustainability in product/process development/improvement. An
assortment of an orthogonal trial planner with a Gibbs sampler and a neutrosophic profiler
was devised to assist an additive manufacturing process to conform to sustainable research
practices. The working thermoplastic material—acrylonitrile butadiene styrene (ABS)—was
selected because of its wide applicability and its high recyclability. A low-cost, easily
accessible 3D printer was programmed to transform ABS EVO (NEEMA 3D) filament into
cubic specimens (side length of 1 cm). To examine the relevance of the product development
controls to yield a sustainable unit, specimens were created by an L12(211) orthogonal
trial planner, which permitted the preset manipulation of all controlling factors in the
recipes while sustaining the number of 3D-printer runs and their scheduled replications to
affordably low levels. This was a crucial issue because as many as eleven controlling factors
were synchronously investigated. The experimental output was the two basic characteristic
measurements of the 3D-printed unit, i.e., the yield strength and the ultimate compression
strength responses of the ABS specimens. The trial recipes were replicated three times
to ensure the viability of the screened results. The study considered the potential multi-
distributional data effects, not dismissing indeterminacy issues due to the complicated
physics of the mechanical tests. It was found that the yield strength and the ultimate
compression strength were correlated on a replicate basis. Therefore, the factorial screening
analysis that ensued was greatly simplified by focusing only on yield strength. This
occurrence simplified the overall statistical engineering formulation since it reduced the
initial two-response problem to a more manageable single-response case. Consequently,
the neutrosophic regression approach was employed to provide the multifactorial profiling
outcomes. To assess the sustainability potential of the predicted product characteristics, the
screening recommendations were also interpreted by evoking the marginal, conditional,
and posterior distribution features of the Gibbs sampler. Furthermore, the predictions were
compared to other more ordinary multifactorial treatments, such as stepwise regression
analysis and robust quantile regression. Overall, it was found that the layer thickness, the
infill angle, and the outline overlap were the more dominant influences in maximizing the
yield strength and the ultimate compressive strength. However, the number of top/bottom
layers and the infill density could also contribute to improved performance. Even though
it was a designed study that sought to identify any linear effects for screening purposes,
the collected information was exploited further to test how repeatable the predictions
could have been. Thus, the confirmation runs were conducted by choosing the optimal
settings for the predictors, which were determined from this study: (1) the layer thickness
was set at 0.1 mm, (2) the infill angle was set at 0◦, (3) the outline overlap was set at
80%, (4) the number of the top/bottom layers was set at 5, and (5) the infill density was
set at 100%. The performance of the optimal 3D-printed ABS specimens was adequately
predictable to support the sustainability of the obtained screening solution; discrepancies
were estimated at 3.5% for a confirmed mean yield strength of 51.70 MPa and at 5.5% for
a confirmed mean ultimate compression strength of 53.58 MPa. Future research could
involve a more complicated product-unit structure, possibly incorporating more advanced
materials and composites, while monitoring additional product characteristics such as
geometrical dimensions and so forth.
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