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Abstract: Global efforts to build sustainable e-commerce ecosystems through various prediction tools
have suffered due to uncertainty in politics, the economy, and the environment. This paper proposes
a new integrative prediction model to track the sustainable development of e-commerce. Using US
e-commerce data, this study explores the prediction accuracy of the mixed data sampling (MIDAS)
model in combination with the attention mechanism (AM) approach, analyzing the performance
differences between the model’s before and after improvements. More so, the paper evaluates the
performance of the new prediction approach against other competing models using the prediction
accuracy metric, the probability interval test, and the Diebold and Mariann (DM) test methods. The
results indicate that the introduction of the MIDAS and the AM approaches allows the prediction
model to fully utilize the effective information of the mixed-frequency data while simultaneously
capturing the differences in the importance of the variables in terms of their time series and the non-
linear relationship of the learning variables, thereby positively influencing the economic prediction of
the e-commerce industry. Second, the proposed prediction model combines the ability of long-term
and short-term high-precision prediction and performs multi-step probability prediction on the
development of the e-commerce industry. It can better track abnormal changes in macroeconomic
indicators and fit their fluctuation trends. Third, based on the results of the three evaluation indicators,
the MIDAS–AM–Deep autoregressive recurrent neural network (DeepAR) model achieves optimal
prediction accuracy, allowing it to provide more timely, accurate, and comprehensive predictions
for e-commerce management decisions when macroeconomic conditions are undergoing significant
transformations.

Keywords: sustainable development; e-commerce; industrial economy; uncertainty prediction;
mixing frequency data; MIDAS–AM–DeepAR model

1. Introduction

Sustainable development is intricately linked to various forms of uncertainty, which
can significantly impact its progress and implementation. Economic uncertainty, for in-
stance, can hinder sustainable development by affecting economic growth and stability.
Policy uncertainty, particularly in financial and trade policies, plays a critical role, as
it can negatively impact environmental sustainability and innovation activities, a view
supported by empirical findings on economic policy uncertainty (EPU) and its effects on
greenhouse gas emissions and technology innovation [1]. At the industry level, investors’
preferences for sustainable assets are influenced by market conditions and uncertainties,
given that increased market instability triggers a shift towards more sustainable invest-
ments [2]. Additionally, the relationship between sustainable investments and various
uncertainties, including crude oil volatility and cryptocurrency uncertainty, highlights
the complex interplay between market dynamics and sustainability indices [3]. These
rapid changes in the international environment have significantly impacted all enterprises,
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prompting them to adopt green technology innovation (GTI) to enhance their sustainable
development capabilities and cope with external uncertainties [4]. Digital innovations,
(e.g., digital industry and blockchains) offer numerous potential benefits, yet in effect,
they are vulnerable to significant uncertainties. Emerging technologies present risks and
benefits, necessitating robust risk management and prediction frameworks to address these
uncertainties effectively.

With the global adoption of information technology and the Internet, an international
e-commerce model is emerging, gradually becoming a new driver for developing the world
economy. With its low transaction costs, fast information circulation, high transaction
efficiency, and breaking the time and geography limit, e-commerce has attracted the partici-
pation of many enterprises and individuals worldwide. This growing trend has resulted in
the massive expansion of the e-commerce economy and improved the competitiveness and
innovation capacity of the economic system [5]. The scale of e-commerce transactions has
risen annually since the 21st century, driving rapid national economic development and
foreign trade growth [6]. Figure 1 shows the growth of transaction volume in e-commerce
globally, in China, and in the United States from 2010 to 2023.
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E-commerce is pivotal in global sustainable development because it enhances effi-
ciency, optimizes resource utilization, and fosters innovation. Beyond stimulating economic
growth and creating employment opportunities, e-commerce significantly reduces carbon
emissions and minimizes resource wastage. The implications of sustainable e-commerce
practices extend beyond business operations to encompass social and environmental re-
sponsibilities, including promoting renewable energy adoption, optimizing logistics and
transportation, and advocating for circular economy practices [7]. As the world’s largest
e-commerce enterprise, Amazon’s achievements serve as a microcosm, illustrating the
significant contributions of the e-commerce industry to global sustainable development
goals, as shown in Figure 2.
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Therefore, forecasting models and innovative prediction tools for sustainable strategies
in the e-commerce sector have emerged as a primary interest among researchers and
industry professionals worldwide [8–12]. Thus far, scholars have proposed various tools for
packaging, supply chain management, customer relations, sustainable product initiatives,
recycling, and second-hand transactions. With many e-commerce platforms adopting
different machine-learning models to ensure accurate sales predictions and to optimize
decisions related to sustainable e-commerce [13], the development of innovative prediction
tools for transaction volumes has become a novel research imperative. Undoubtedly, global
e-commerce is susceptible to uncertainties in economic policies and changes in the global
financial and social environment; at the same time, sales volumes are often subject to
interruptions and irregularity [7]. In 2007, the outbreak of the U.S. subprime mortgage
crisis triggered the most severe financial crisis since the Great Depression [14], subsequently
leading to chaos in the credit, stock, and bond markets, Later, the scenario evolved into
a global financial crisis and significantly affected the scale of e-commerce transactions in
various countries. Since 2016, growing trade frictions between the Western countries (the
US and the European Union-EU) and China have instigated tariffs and trade restrictions,
ultimately destabilizing international trade systems, inflows, and outflows. Many countries
have responded through a series of economic adjustment measures, such as tax cuts in the
US, the winding down of quantitative easing policies by the European Central Bank, and
the Chinese government’s policy of stimulating domestic trade. Under the constraints of
such economic policy adjustments and uncertainties, the e-commerce industry in various
countries has also entered a period of adjustment, with significant fluctuations in sales
revenue [15]. Since 2020, the outbreak of COVID-19 has added to the scale of existing
uncertainties in import and export policies. For instance, the US dollar has fallen into a
liquidity crisis, the global economy is facing the risk of recession [16], and the e-commerce
industry shows apparent fluctuations in domestic and foreign trade. Considering the above,
it is crucial to develop robust tools that are capable of accurately predicting the impact
of macroeconomic intermittency and uncertainty on the e-commerce industry economy,
assessing the sustainable development trend of the e-commerce industrial economy on time,
identifying its sudden changes and inflection points, and capturing the global economic
situation to formulate rational industrial policies [17].

Currently, most forecasting models for e-commerce have primarily relied on methods
such as time series analysis, gray prediction models, and artificial neural networks [18–20].
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While these approaches are straightforward and practical, their efficacy is constrained
by human capabilities and limitations in information utilization, necessitating enhanced
prediction accuracy. In the context of sustainable global economic development, achieving
precise forecasts based solely on historical sales data is challenging [21]. As a result, some
scholars have turned to models like recurrent neural networks (RNNs) to identify key
influencing factors, predict complex nonlinear relationships, and improve prediction accu-
racy [22–24]. These models often rely on past outputs for more extended time series, which
may result in memory loss and difficulties handling extended cycles, seasonal variations,
and other complexities. Thus, accurately capturing and balancing temporal correlations in
a diverse environment remains a persistent challenge. Following the rapid development
of information technology and computer science, extensive and multi-source economic
data can be collected and stored. In other words, multiple time series can be sampled
or observed, contributing new insights to economic monitoring and forecasting in the
e-commerce industry [25]. In the same context, considering the complex and ever-changing
uncertainty factors that affect the development of sustainable e-commerce ecosystems
worldwide, the significant randomness and irregularity of sustainable development trends,
and the different sampling frequencies of macroeconomic data collected, the relationships
between different samples have become complex. Moreover, it has become difficult to
evaluate the amount of valid information accurately. Given that exploring complex time
series and non-linear characteristics of mixed-frequency data, as well as capturing anoma-
lous inflection points on time, has become a challenging task, a question persists: how
to accurately and precisely predict the sustainable development trends during uncertain
times, particularly in the e-commerce markets with high transaction volumes, e.g., the US.

To solve the above problems, this study innovatively integrates the mixed data sam-
pling model (MIDAS), attention mechanism (AM), and deep autoregressive recurrent
neural network (DeepAR) models to propose the MIDAS–AM–DeepAR model for predict-
ing the development of the e-commerce industry. This new tri-dimensional model is novel
in maintaining the original data structure to the greatest extent, accurately depicting the
hidden non-linear relationships between variables on mixed-frequency data, automatically
perceiving the time weights of the series, capturing external disturbance factors on time,
and implementing multi-step forward probability prediction to address uncertainty risks
and help make management decisions.

This paper proceeds as follows—Section 2 reviews the relevant literature. Section 3
provides a detailed introduction to the research methodology and the specific setup of the
MIDAS–AM–DeepAR model. Section 4 further verifies the model’s advantages through an
empirical analysis of the US e-commerce industry and proposes suggestions regarding the
development strategy of relevant sectors. Lastly, the research’s conclusions and prospects
for further studies are presented.

2. Literature Review

In the 1970s, e-commerce activities in the form of electronic data interchange (EDI)
emerged. In 1990, Thomas Malone [26] proposed the concept of e-commerce business.
As the development of e-commerce has progressed, its role in and contribution to the
world economy has become increasingly significant, attracting considerable scholarly
attention [27]. Researchers [28] agree that, at the micro level, the sustainable development
of e-commerce helps to improve the performance of companies and industries, upgrade
industrial structures, and expand the scope of development. At the macro level, it promotes
organic interaction between global factor markets, product markets, and policy regimes.
The Organisation for Economic Co-operation and Development (OECD) Digital Economy
Outlook 2020 [29] noted that countries should value digital resources represented by
e-commerce and deploy strategies from top to bottom. Past studies on sustainability
development and the evolution of e-commerce have revealed that its process is typically
characterized by multi-directional causality, multi-layer nesting, complex non-linearity,
positive feedback effects, and path dependence [30]. In recent years, following the rise of
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trade protectionism, political polarization, COVID-19, the surge of anti-globalization policy,
and other factors, global economic uncertainty and policy instability have risen sharply,
posing threats to the sustainability development of the e-commerce industry worldwide.
Thus, research has begun to explore methods to monitor and forecast the e-commerce
industry accurately and effectively.

Of the existing literature on the prediction tools for the sustainable development
of the e-commerce sector, some scholars [31–33] focused on the influencing factors of e-
commerce sustainability development and employed mathematical methods to establish
corresponding predictive indicator systems. After observing that the development of
e-commerce was non-linear and closely related to macroeconomic factors, the researchers
called for future research on the role of the external macroeconomic environment and policy
uncertainties. Later, the proponents of the grey systems theory (GST) elucidated those
human limitations in understanding and knowledge that have significantly contributed to
uncertainties in the sustainable development of e-commerce, complicating decision-making
and international collaborations [34]. Qualitative prediction methods, including subjective
probability theory, factor analysis, and the Delphi method as well as quantitative prediction
methods for single models such as time series analysis [20,32], linear regression [35], the
decision tree model [36], the random forest model [37], and the grey prediction model [38]
have strong interpretability. Although these methods can achieve high prediction accuracy,
they cannot accurately predict the uneven (non-linear) development of the e-commerce
industry. Some shortcomings of the above methods/techniques included their inability
to make complex predictions for external uncertainties and non-linear problems, such
as limitations in handling multi-source heterogeneous complex data, fitting exogenous
feature variables and potential relationships with predictive variables, accurately capturing
abnormal economic inflection points, and dealing with uncertainty.

To overcome these limitations, some scholars have introduced strong adaptability
neural networks to account for non-linear relationships into the application and devel-
opment prediction of e-commerce. For example, Jia [39] used the Bayes classification to
predict customers’ purchase behavior. Using neural networks for e-commerce prediction,
many scholars have predicted specific behaviors to promote the sustainable development
of e-commerce, such as customer management, product recommendations, and repur-
chases. That said, these studies provided limited insight into strategies to address external
uncertainties, especially when new hybrid technologies have begun to be applied to the
e-commerce industry [36,40–47]. Fathalla et al. [48] integrated long short-term memory
(LSTM) and convolutional neural network (CNN) architecture to predict the price of
second-hand goods in the e-commerce market while searching for platform optimization
management strategies. Zhao [49] combined the back-propagation neural network (BPNN)
model and the vector autoregressive model to analyze the business conflict of commercial
banks within Internet finance. A BPNN-based deep learning algorithm was used to obtain
the optimal solution for business integration to facilitate the Internet transformation of tra-
ditional financial services in e-commerce. Yu et al. [50] combined long short-term memory
(LSTM) with seasonal autoregressive integral moving average (SARIMA) to predict the
trend of e-commerce export product competitiveness in the machinery industry. Overall,
these studies facilitated the identification and exploration of potential non-linear patterns
between variables. Table 1 provides a summary of recent prediction models proposed for
sustainable decision-making and development in the e-commerce industry.
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Table 1. Summary of selected prediction models proposed for sustainable e-commerce development
and decision-making.

Authors
Time Series

Research Focus Prediction Models
Linear Neural Network

Fahmy [20]
√

US consumption in e-commerce ARMA

Qidi J [35]
√

Retail sales in the e-commerce market LR

Liu et al. [36]
√

E-commerce platform repurchase customer DT

Feng [37]
√

Cross-border e-commerce industry RF

Peng, Li and Yang [38]
√

Circular economy of the e-commerce market GM

Jia et al. [39]
√

E-commerce purchase behavior BC

Zhang [46]
√

Sales performance in e-commerce ANN

Yuan et al. [47]
√

Community trend in e-commerce RNN

Suglia et al. [40]
√

User recommendation DNN

Zhang et al. [24]
√

Recommendation for multimodal microblog CNN

Feng and Zeng [41]
√

Amazon rating and recommendation RNN + AM

Fathalla et al. [48]
√

Second-hand items LSTM + CNN

Zhao [49]
√

Internet financial enterprise risk BPNN

Yu et al. [50]
√

Competitiveness of export products LSTM + RNN

Su et al. [51]
√

Production planning in e-commerce GP-U-MIDAS

Note: ARMA = Autoregressive Moving Average; LR = Linear Regression; DT = Decision Tree; RF = Random
Forest; GM = Grey Model; BC = Bayesian Classification; ANN = Artificial Neural Network; DNN = Deep Neural
Network; CNN = Convolutional Neural Network; RNN = Recurrent Neural Network; AM = Attention Mechanism;
LSTM = Long Short-Term Memory; CNN = Convolutional Neural Network; BPNN = Back-propagation Neural
Network; GP = Gaussian Process; U = Uncertainty; PR = Penalized regression; MFDSM = Mixed-frequency Data
Sampling Methods.

As seen above, the diverse integrative approaches listed above highlight the impor-
tance of combining various machine learning techniques and data pre-processing methods
to achieve accurate and reliable sales predictions in the e-commerce industry and aid
sustainable decision-making for marketing, inventory management, customer relation-
ships, and supply-chain management strategies. Nevertheless, a predominant reliance on
historical data and using data with synchronized frequencies have raised serious concerns.
For instance, in an uncertain external environment, particularly within a macroeconomic
context characterized by temporal inflection points, external multi-source data presents
issues such as the inconsistency of observation frequencies and difficulties in effectively
using essential information. This methodological issue makes it challenging to integrate
the mixed-frequency data into the neural network model. Frequency synchronization
processing must be performed on mixed-frequency data. Andreou et al. [52] propose a
hypothesis of aggregating the mixed-frequency data with equal weights into the regression
model. Based on a weighted approach to low-frequency data processing and employ-
ing Monte Carlo simulation, the authors overturned the above hypothesis, verifying the
validity of weighting mixed-frequency data series. Guérin and Marcellino [53] linearly
interpolated low-frequency variables into some common high-frequency variables as other
variables for predicting economic activity in the US. Alternatively, Asimakopoulos et al. [54]
considered that substituting quarterly fiscal data for annual frequencies would result in
more accurate results. Some scholars have also pointed out that during the aggregation
process of mixed-frequency data, there may be issues such as loss of important infor-
mation in high frequencies, increased impact of measurement errors on high-frequency
variables, and significant computational burden. Ghysels et al. [55] proposed the MIDAS
model to model and analyze the raw mixed-frequency data directly, asserting that such
an approach can enhance the adequacy of high-frequency information utilization, address
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parameter diffusion, and improve the timeliness of prediction via low-frequency response
variables. These properties have resulted in the MIDAS method’s successful application
in many fields, especially in predicting macroeconomic development and inflation. The
same method has helped researchers to predict development trends in financial markets
and consumption [56].

Given that it is challenging for machine learning models to process mixed-frequency
input data directly and that the sampling models cannot handle non-linear model fitting,
some scholars have attempted to integrate multiple models in a unified framework for
prediction. For instance, Xu et al. [57] developed a portfolio investment model containing
conditional skewness based on the MIDAS quantile regression model to reduce investment
risks. Guo et al. [58] developed the Markov-switching mixed data sampling (MS-MIDAS)
model by integrating monthly and quarterly data to analyze economic cycle regime moni-
toring timeliness in China. Götz et al. [59] proposed a method for testing the non-linear
Granger causality of mixed-frequency data to study the potential causal relationship be-
tween China’s economic growth and consumer confidence. Xu et al. [60] established an
artificial neural network (ANN–MIDAS) model for sampling mixed-frequency data. The
authors introduced the MIDAS method into the ANN framework to process non-linear
mixed-frequency data using monthly macroeconomic variables and daily financial market
variables to predict monthly inflation. The model outputs significantly improve the accu-
racy of economic forecasting, even though the model ignores the time information (within
datasets) and the temporal volatility with factors of uncertainty, such as external political
and social factors, technological innovation, and market competition over time. Despite
strengths, such a shortcoming makes it difficult to accurately predict inflection points in
the economic development trajectory on time.

In view of the above, scholars are now considering dynamic prediction from the
perspective of time series. Of some noteworthy advancements, Clements and Galvão’s [61]
AR–MIDAS model fully considered the role of autoregressive terms. Jardet and Meu-
nier [62] have integrated the compression characteristics of the Lasso algorithm to construct
a Lasso–MIDAS model for predicting international crude oil returns. Although this model
has improved prediction capacity, it still has shortcomings: (i) dealing with mixed-frequency
time series problems; (ii) providing sufficient information about the interdependence be-
tween multiple economic exogenous variables within the same time period; (iii) offering
insight into the dependency relationships across time steps and series. The AM approach
provided a robust solution to this problem by effectively capturing the dynamic changes in
mixed-frequency data [63], assigning different weights to different economic time series,
and weighting time nodes to enhance the ability to learn external variable fluctuations
and improve the timeliness of capturing abnormal economic inflection points. It has been
successfully applied in economic forecasting [64].

Therefore, this study incorporates MIDAS and AM approaches into the DeepAR
framework and develops a new deep autoregressive neural network model (referred to as
MIDAS–AM–DeepAR) for mixed-frequency data, which could help answer the following
question: how to predict the development of sustainable e-commerce under conditions of
uncertainty, precisely and accurately?

3. Research Methodology and Modelling

Recently, e-commerce trading volumes are highly susceptible to macroeconomic fac-
tors, e.g., politics, the economy, societal trends, and technological advancements. Ad-
ditionally, public demand for sustainable development introduces further uncertainty
and abnormal fluctuations. Deep learning models must incorporate a broader array of
macro-environmental data to enhance prediction accuracy, enabling the capture of nuanced
information from an external environment characterized by high-frequency variability.
Moreover, considering the inherent uncertainty of these external factors, it is crucial to
integrate time-based external feature covariates. Therefore, this study constructs a novel
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MIDAS–AM–DeepAR model to address data and time-related issues. The advantages of
the three distinct models are discussed hereafter.

DeepAR is a powerful forecasting approach, particularly suited for scenarios involving
time series data [65]. The method employs a recurrent neural network (RNN) architecture
that captures temporal dependencies in the data while simultaneously enabling efficient
handling of complex and non-linear relationships. DeepAR facilitates the prediction of fu-
ture values by conditioning on past observations and covariates and can efficiently compute
global patterns across alltime series and the local variations specific to each time series. The
basic structure of the DeepAR model consists of multiple components: (i) autoregressive
recurrent network architecture; (ii) encoder and decoder structure; (iii) gated recurrent
units (GRUs); (iv) probabilistic generation methods; (v) embedded categorical features;
(vi) long short-term memory mechanisms; (vii) quantile loss training.

On the other hand, the MIDAS model is a method for processing time-series data sampled
at different frequencies [66]. Although MIDAS is frequently used when the explanatory
variable is high-frequency data, the response variable is sampled at a lower frequency. The AM
approach is a mechanism containing filters and is usually used to solve the dynamic correlation
and time sensitivity of time series with different explanatory variables [67]. Combining the two
techniques provides new ideas for predicting abnormal inflection points of response variables.
The basic framework of the model is shown in Figure 3. To create the MIDAS–AM–DeepAR
model, the high-frequency explanatory variables are first converted into data with the same
frequency as the low-frequency response vector through the MIDAS model and parameter
function constraints, ensuring data frequency consistency and preventing parameter diffusion.
The valid information of the data is subsequently perceived through the AM approach. The
prediction weights are allocated based on sensitivity to time, which can output multi-step
forward prediction results.
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3.1. Model Setup

The traditional AM approach only selects information related to the current time step;
a design suitable for tasks that contain one piece of information at each time step. If there
are multiple variables per time step, variables with noise in predictive utility cannot be
ignored. As the conventional AM approach averages information over multiple time steps,
it cannot detect functional temporal patterns for prediction. To examine the temporal
correlation patterns between mixed-frequency data, this study constructs a MIDAS–AM–
DeepAR model by integrating the AM approach proposed by Shih et al. [68], which
includes information spanning multiple time steps and a neural network with a sampling
of mixed-frequency data. The model consists of the following five parts:



Sustainability 2024, 16, 6029 9 of 24

3.1.1. Input Layer

External multi-source data information is sampled at different frequencies, resulting in a
mismatch in the collected data. However, the original neural network model could not directly
fit the frequency mismatch between high-frequency explanatory variables and low-frequency
response variables into the input layer. Therefore, to avoid latent data processes before they
are integrated into the model and to make the best use of high-frequency information, the
MIDAS method, a technique widely used in econometrics for mixed frequency time series
data, is adopted and integrated into the neural network input layer.

3.1.2. Mixed-Frequency Data Sampling Layer

Assuming that the frequency mismatch between the low-frequency response vari-
able {yt}T

t=1 and the high-frequency explanatory variable {xτi}
I
i=1 is {mi}I

i=1, frequency
alignment is achieved for each input variable xτi−hsi

based on the corresponding maxi-
mum lag order Li. That is, each high-frequency explanatory variable xτi−hsi

is converted
into a low-frequency response variable (xi,t−hsi

, xi,t−1/mi−hsi
, . . . , xi,t−Li/mi−hsi

)T. To re-
duce the number of parameters to be estimated and to ensure concise specification, the
frequency-aligned vectors are weighted to obtain a low-frequency variable xi,t−hsi

of the
same frequency as the output yt(θ).

xi,t−hsi
= ∑Li

l=0 wi(δ; l)xi,t− l
mi
−hsi

, (1)

where wi(δ; l) denotes the weighting scheme; hsi represents the prediction range related
to high-frequency explanatory variables {xτi}

I
i=1; t = q, q + 1, . . . , T; and q is the smallest

integer, such that q− Li/mi − hsi ≥ 0.
Following Ghysels et al. [66] and Gagliardini et al. [69], wi(δ; l) is specified as the exponen-

tial Almon lag polynomial of two parameters (δ = (δ1, δ2)
T), i.e. wi(δ; l) =

exp(δ1l+δ2l2)

∑
Li
l=0 exp(δ1l+δ2l2)

,

where l denotes the lag of period l. Meanwhile, when calculating the input gates Zr
i (θ),

σ(x) = 1
1+e−x the information saved from the previous moment (the input at that moment

xi,t−hsi
, the hidden state at the previous moment hi,t−hsi−1, and the weight matrix Wr(θ)

and bias term br(θ) of the input gate) are converted into the control signal of the input gate
based on the sigmoid function, which is then inserted into the time correlation layer along
with the MIDAS-processed matrix.

Zr
i (θ) = σ

(
Wr(θ)

[
xi,t−hsi

, hi,t−hsi−1
]
+ br(θ)

)
, (2)

3.1.3. Time Correlation Layer

To avoid gradient vanishing and gradient explosion in recurrent neural network
(RNN) models, the LSTM model is used for temporal correlation learning. LSTM is a
crucial network structure in the DeepAR model, consisting of memory cells, update gates,
forget gates, and output gate units, which can capture long-term temporal correlation. By
integrating various external sustainable development features, long short-term memory
(LSTM) networks can improve the predictive model’s ability to utilize historical data,
thereby enhancing the learning of long-term dependencies [70].

First, calculate the control signal of the forget gate fi(θ), then calculate the unit state
at the current time C′i(θ), obtain the correlation layer node Cj(θ) at time j, and obtain the
output of the time correlation layer Zo

i (θ).

fi(θ) = σ
(

Wf(θ)
[
xi,t−hsi

, hi,t−hsi−1
]
+ b f (θ)

)
, (3)

C′i(θ) = tanh
(
Wc(θ)

[
xi,t−hsi

, hi,t−hsi−1
]
+ bc(θ)

)
, (4)

Ci(θ) = ∑I
i=1

(
fi(θ)◦ Ci−1(θ) + Zr

i (θ)◦ C′i(θ)
)
, (5)
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Zo
i (θ) = σ

(
Wo(θ)

[
xi,t−hsi

, hi,t−hsi−1
]
+ bo(θ)

)
, (6)

where i = 1, 2, . . . , I, σ(·) and tanh(·) = the activation, sigmoid, and hyperbolic tangent
functions, respectively; “◦” = the Hadamard product; Wf(θ) and b f (θ) = the weight matrix and
bias term of the forget gate; Wc(θ) and bc(θ) = the weight matrix and bias term of the current
input cell state; Wo(θ) and bo(θ)= the weight matrix and bias term of the current output.

Based on the above settings, the current memory C′i(θ) and long-term memory Ci−1(θ)
are combined to form a new unit state Cj(θ). At the same time, a control function is added
for the forget gate to enable it to store relatively old information.

3.1.4. Time Extraction Layer

Since the LSTM model does not distinguish the impact of various historical inputs on
current data, the AM approach is added to extract valid time information, learn the degree
of influence of multiple variables on response variables at different moments, and mine
key time information. The weights of each time series pattern are determined through a
scoring function. Weight information at different times is then extracted based on the size
of the weights. Convolutional neural network (CNN) filters capture necessary signals and
extract fixed-length time series from input information. The main steps of derivation are as
follows.

First, determine the output of the time correlation layer Zo
i (θ) and the unit state Ci(θ)

and then calculate the results of the time extraction layer hi(θ).

hi(θ) = Zo
i (θ)◦ tanh(Ci(θ)), (7)

Second, we used d CNN filters Ck ∈ R1×T (T is the maximum length of interest, which
is the sliding window size w) to extract features; the convolution operation produces the
matrix HC ∈ Rn×d, where HC

k,j(θ) denotes the convolution value of the vector in a row k
and the j-th filter.

HC
k,j(θ) = ∑w

l=1 Hk,t−w−1+l(θ)× Cj,T−w+l(θ), (8)

Next, a scoring function f (·) is used to assess the strength of the impact of each time
series on the predicted outcome, where the scoring function weight matrix Wa(θ) ∈ Rm×d

and Ak(θ) is the weight of interest, which facilitates the selection of the multivariable.

f (HC
k (θ), hi(θ)) = (HC

k (θ))
T

Wa(θ)hi(θ), (9)

Ak(θ) = σ
(

f (HC
k (θ), hi(θ)

)
, (10)

Lastly, each row is weighted and summed to obtain a context vector vi(θ); the context
vector vi(θ) and final output of the time extraction layer hi(θ) are further linearly mapped
and summed to obtain the final output of the time extraction layer after the operation of
the attention mechanism h′i(θ).

vi(θ) = ∑n
k=1 Ak(θ)HC

k (θ), (11)

vi(θ) = ∑n
k=1 Ak(θ)HC

k (θ), (12)

3.1.5. Output Layer

As deep mining of mixed-frequency data time is completed after the above steps,
the MIDAS–AM–DeepAR model moves to the output layer, where the sample of mixed-
frequency data and the prediction of abnormal inflection points are executed. The final
output of the model y′t(θ) is expressed as the following:

y′t(θ) ∼ P
(
y′t(θ)θ

(
h′i, Θ

))
, (13)
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where t = t0, . . . , T. Figure 4 presents the structural diagram of the MIDAS–AM–DeepAR
model.

In terms of novelty, the MIDAS–AM–DeepAR model differs from previous prediction
models proposed by earlier researchers in the following ways: (i) Salinas [65]—the DeepAR
model cannot handle the sampling of raw mixed data and perceive the temporal attention of
the data directly; (ii) Bangwayo-Skeete et al. [71]—the AM-MIDAS model used a non-linear
least squares method to estimate the specification; (iii) Xu et al. [60]—the ANN–MIDAS
model cannot output conditional distributions to avoid prediction uncertainty and related
risks; (iv) Liu et al. [72]—the QRNN–MIDAS model used quantile regression to process
and describe the complete conditional distribution information of corresponding variables.
Instead, the proposed MIDAS–AM–DeepAR model has the following unique characteristics:
(i) it can directly use raw mixed-frequency data as input without the need to pre-process the
data before inputting it into the neural network, preserving high-frequency data as much as
possible to utilize high-frequency information fully; (ii) by fully leveraging neural networks’
data-driven and adaptive learning capabilities, the current model can automatically identify
and explore potential non-linear patterns between variables while learning complex long-
lag tasks without losing short-lag capabilities; (iii) the model has the capacity of generating
directly outputs probability distributions to evaluate the uncertainty of predictions and
related risks, thereby providing more helpful information for decision-making; (iv) an
attention mechanism of the filter is constructed to extract temporal patterns, enabling the
model to learn not only the interdependencies between multiple variables within the same
time step but also dependencies across all previous times and series, thereby achieving the
ability to screen important variables while increasing attention to important time nodes
and effectively capturing anomalous fluctuations; (v) the model can generate multi-step
forward predictions. The intrinsic temporal correlation between hidden states at different
times can be learned through the time attention mechanism to promptly capture short-term
fluctuations and improve the accuracy of long-term predictions.
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3.2. Model Estimation

Given the low-frequency time series {yt}T
t=1 and the associated high-frequency time

series {xτi}
I
i=1, the MIDAS–AM–DeepAR model parameters Θ are learned by maximizing

logarithmic likelihood. The model parameters consist of the parameters of the recurrent



Sustainability 2024, 16, 6029 12 of 24

neural network h′i(·) that incorporates the attention mechanism and the parameters of θ(·).
The loss function can be expressed as the following:

Loss =
I

∑
i=1

T

∑
t=t0

− log ℓG
(
yt(θ) | θ

(
h′i, Θ

))
, (14)

where the likelihood function ℓ(·) acts on the model noise, and the Gaussian function,
negative binomial distribution, and others can be chosen.

This study assumes that each low-frequency response variable yt(θ) follows a Gaussian
likelihood function ℓG that satisfies a certain parameter, and its mean and standard deviation
Θ = (µ, σ) are obtained by fitting the DeepAR network layer. In contrast, the softplus
activation function σ

(
h′i
)

ensures the continuity and non-negativity of the standard deviation.

ℓG(µ, σ) =
(

2πσ2
)− 1

2 exp
(
−(y′t(θ)− µ)

2/
(

2σ2
))

, (15)

µ
(
h′i
)
= WT

µh′i + bµ, (16)

σ
(
h′i
)
= log

(
1 + exp

(
WT

σh′i + bσ

))
, (17)

Unlike scholars such as Silver [73], who assumed a determined demand distribution,
this study uses neural networks to train parameters, making optimizing neural networks
an indispensable step. Given the differentiability of the loss function, the adaptive moment
estimation (ADAM) algorithm proposed by Kingma et al. [74] iteratively updates the
neural network weights based on training data to optimize the neural network for model
estimation.

The ADAM algorithm is an adaptive learning rate method that dynamically adjusts
the learning rate of each parameter using first-order and second-order moment estimation
of gradients. Its main advantage is that after bias correction, the learning rate of each
iteration has a certain range, and therefore, the parameters remain relatively stable. Its
algorithm is as follows; see Algorithm 1. This study applies Python 3.11, an open-source
software, for model computation.

Algorithm 1. ADAM algorithm pseudo-code

Require: Steps ε

Require: The exponential decay rate of moment estimation ρ1, ρ2 ∈ [0, 1), with default
values of ρ1 = 0.9 and ρ2 = 0.999.
Require: A constant δ used for numerical stabilization, with a default value of 10−8

Require: Objective function with noise f (θ)
Require: Initialization parameters: θ0
Initializing first-order moment variables: m0 ← 0
Initializing second-order moment variables: v0 ← 0
Initializing time step t← 0
while ∆θt > 0 do
Take a small batch of data containing m samples of {x(1)i,τi

, . . . , x(m)
i,τi

} from the training set m,

with the corresponding target being y(n)

Calculating the gradient gt ← 1/m(∇θ ∑
n

L
(

ft

(
x(n)i,τi

; θt−1

)
, y(n)

)
)

Updating biased first-order moment estimates: mt ← ρ1mt−1 + (1− ρ1)gt
Updating biased second-order moment estimates: vt ← ρ2vt−1 + (1− ρ2)g2

t
Correcting for deviations from first-order moments: m̂t ← mt/

(
1− ρt

1
)

Correcting for deviations from second-order moments: v̂t ← vt/
(
1− ρt

2
)

Calculating the updates: ∆θt = −ε ∗ m̂t/
(√

v̂t + δ
)

Applying the updates: θt ← θt−1 + ∆θt
end while
return θt
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3.3. Model Predictions

The MIDAS–AM–DeepAR model aims to establish a conditional probability distri-
bution, which can be considered a concatenated multiplication of the likelihood function
over a series of time steps. Define the low-frequency response variable as {yt}T

t=1 at time t.
To demonstrate the advantage of forward multi-step prediction, take t0 as the time point
of division, that is, the prediction range h = t0 : T associated with the release of the low-
frequency response variables. Given a dataset Ωt =

{
{yt}T

t=1, {xτ1}
m1T
τ1=1, . . . , {xτI}

mI T
τI=1

}
,

based on known low-frequency response variables {yt}t0−1
t=1 and multiple high-frequency

explanatory variables {xτi}
miT
τi=1(i = 1, 2, . . . , I), low-frequency response variables are mod-

eled for future multi-step prediction {yt}T
t=t0

(y′t(θ)).

P(y′t(θ) | Ωt) =
T
∏

t=t0

l
(
y′t(θ) | θ

(
h′i, Θ

))
, (18)

The network structure of the model is divided into two parts, namely model training
and model prediction, As shown in Figure 5 below, during the model training process,
the input data are known, while the AM approach is used to assign weights to the input
data. The likelihood function of the next moment is further calculated, and the model
parameters are trained by maximizing the likelihood function. In model prediction, the
data are unknown; therefore, the AM approach is used to integrate the weight-learning
results of collected samples to obtain an estimated value y′t(θ), and the prediction result is
generated through continuous iteration. Specifically

y′t(θ) ∼ P(yt+h(θ) | Ωt) =

{
y′t(θ; h), h > 0
yt+h(θ), h ≤ 0

, (19)

where a certain relationship exists between the low-frequency prediction range h and
the high-frequency prediction range hsi involved in multi-step advance prediction, i.e.,
h = ⌈hs1⌉ = ⌈hs2⌉ = · · · = ⌈hsI⌉, where ⌈· ⌉ is the upper bound function.
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4. Empirical Analysis
4.1. Data Description and Descriptive Statistics

Online retail data derived from the US Department of Commerce (UDOC) was used
to represent e-commerce development in the US. In line with Jurado et al. [75], monthly
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producer price index data, monthly consumer price index data, real M2 money supply,
and West Texas Intermediate Oil (WTI) prices were used as predictive factors to evaluate
macro-level uncertainty and its impact on the development of the e-commerce industry.
Data sourced from the Federal Reserve Economic Data (FRED) comprised four key macroe-
conomic indicators spanning from January 2000 to December 2022. Tables 2 and 3 provide
the relevant information about the data used in this study.

Table 2. Description of predictive variables for U.S. e-commerce sales data.

Variables Detail Frequency Sample Interval

ANS US online retail sales data Quarterly (Q) 2000Q1-2022Q4
CPI Consumer Price Index Monthly (M) 2000M1-2022M12
PPI Producer price index Monthly (M) 2000M1-2022M12
M2 Real M2 money stock Monthly (M) 2000M1-2022M12

POIL West Texas Intermediate (WTI) prices Weekly (W) 2000W1-2022W52
Source: Federal Reserve official economic database (indicator ANS: https://fred.stlouisfed.org/series/RSXFS
accessed on 25 November 2023; indicator CPI: https://fred.stlouisfed.org/series/CPALTT01USM657N accessed
on 25 November 2023; indicator PPI: https://fred.stlouisfed.org/series/PPIACO accessed on 25 November
2023; indicator M2: https://fred.stlouisfed.org/series/WM2NS accessed on 25 November 2023; indicator POIL:
https://fred.stlouisfed.org/series/DCOILWTICO accessed on 25 November 2023).

Table 3. Descriptive statistics of predictive variables for U.S. e-commerce sales data.

Variables Number of Observations Average Maximum Minimum Standard Deviation

A.N.S. 92 73,381.5 299,119 5592 7115.5067
CPI 276 2.6732 8.0480 −0.2861 0.0775
PPI 276 182.3551 280.2510 128.1000 1.9404
M2 276 4532.2986 7671.6000 2752.6000 83.3230

POIL 1104 62.4182 142.5200 3.3200 0.7551

Figure 6 shows the trend of quarterly online retail sales in the US from January 2000 to
December 2022. As seen below, due to the global COVID-19 pandemic, there have been
significant fluctuations in e-commerce transactions characterized by apparent uncertainty,
non-linearity, and abnormal inflection points, which makes traditional prediction methods,
including DeepAR–MIDAS, AM–DeepAR, DeepAR, and AR–MIDAS models ineffective.
Instead, the MIDAS–AM–DeepAR model has a superior capacity to analyze the prediction
accuracy and distribution fitting effect of industrial economic indicators.
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4.2. Selection of Evaluation Indicators

Data from January 2000 to June 2014 was used as in-sample data to evaluate the
predictive effect, while data from July 2014 to December 2021 data was taken as out-of-
sample data in the MIDAS–AM–DeepAR model. Meanwhile, the rolling sliding window
prediction method was used to verify the robustness of the above model. The fixed window
comprises 114 quarters, with data from January 2000 to June 2018 as the initial dataset and
scrolling along the entire dataset. At each scrolling step, the window continues to move
forward, covering new data points and scrolling until the end of December 2022. Regarding
the traditional DeepAR and AM–DeepAR models, based on the same observation frequency,
this study refers to the work of Xu et al. [76], in which monthly and weekly predicted
values were averaged using the sample averaging method to generate quarterly online
retail data observations.

To analyze the reliability of the model, this study adopts three types of performance
evaluation metrics, including the prediction error evaluation metric, the probability predic-
tion evaluation metric, and the significance test metric for inter-model differences.

1. Prediction error evaluation metric: To test the prediction accuracy of the model, this
study uses two criteria, namely the mean absolute error (MAE) [77] and mean absolute
percentage error (MAPE) [78], to test the prediction accuracy of the model. The formula is
as follows:

MAE(θ) =
1
T

T

∑
t=1

∣∣y′t(θ)− yt(θ)
∣∣, (20)

MAPE(θ) =
1
T

T

∑
t=1

∣∣∣∣y′t(θ)− yt(θ)

yt(θ)

∣∣∣∣× 100%, (21)

where y′t(θ) is an estimate of the true quantile yt(θ); θ = 0.5 is taken as an estimate of
the quantile type model based on the experimental study of Salinas [65]. Generally, the
smaller values of MAE and MAPE reflect the superior performance of a model in terms of
prediction accuracy.

2. Probability prediction performance evaluation: To overcome the shortcomings of
the model proposed by Xu et al. [72], the prediction interval coverage probability (PICP)
and prediction interval normalized average width (PINAW) were used to check the validity
and effectiveness of non-parametric probability prediction and to evaluate the interval
prediction effectiveness of the quantile type model. As a reliability metric, PICP represents
the number of observed values falling into the prediction interval [79], and the formula is
as follows:

PICP =
1
T

T

∑
t=1

It, (22)

It =

{
1, yt ∈ [Wt,1, Wt,Z]
0, yt /∈ [Wt,1, Wt,Z]

, (23)

where [Wt,1, Wt,Z] = the predicted interval within the predetermined coverage range;
It = Boolean variable. When the actual value at the moment t is within the predicted
interval, the value is 1. Otherwise, the value is 0. The larger the PICP, the more predicted
values are covered by the predicted interval and the more convincing the predicted re-
sults are. In addition to evaluating reliability, PINAW is also required to fully assess the
performance of interval prediction using the following formula:

PINAW =
T

∑
t=1

Wt,Z −Wt,1

ND
, (24)

where D denotes the difference between the maximum and minimum target values of
online retail data. The smaller the PINAW, the more accurate the prediction results.

3. Significant test metric to measure differences between models. This study adopted
Harvey et al.’s [80] version of the DM test, originally introduced by Diebold and Mari-
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ano [81], to examine the statistical significance of the differences between the two groups of
predictions. Hypothesis 0 (H0) implies that the prediction efficiency of the two models is
consistent with the alternative hypothesis, implying that Model 2 is more accurate than
Model 1, i.e.

H0 : E(dt) = 0, ∀t, (25)

where dt = ρθ(e1t)− ρθ(e2t) is the loss error between the predictions of two models, and
ρθ(·) is the loss function of prediction error (e). For step-ahead prediction h, the DM test
statistic is obtained from the following equation:

DM =

√
T + 1− 2h + h(h− 1) · d√

γ̂d(0) + 2 ∑h−1
k=1 γ̂d(k)

, (26)

where d =
T
∑

t=1
dt, γ̂d(k) =

1
T

T
∑

t=|k|+1

(
dt − d

)(
dt−|k| − d

)
tests by comparing statistical data

to critical values of t distributions with (T − 1) degrees of freedom.

5. Results
5.1. Results and Analysis of Prediction Accuracy

As seen in Table 4, the differences among the five models, under h = {1, 2, 3, 4, 5, 6}
step-forward prediction, were computed to establish the prediction accuracy of MIDAS–
AM–DeepAR against other competing models using the MAE and MAPE approach. These
five models were extended using a stepwise addition and substitution approach.

Table 4. Multi-step forward prediction error of quarterly A.N.S. values in the United States.

Model h 2 3 4 5 6

DeepAR MAE 43,785 84,879 50,804 53,542 48,982
MAPE 0.4032 0.3234 0.2228 0.2193 0.2090

AM-DeepAR MAE 60,270 25,150 54,122 27,612 34,421
MAPE 0.2101 0.0987 0.2064 0.1112 0.1301

AR-MIDAS
MAE 111,890 108,130 102,437 138,117 94,498

MAPE 0.4381 0.4011 0.3914 0.5402 0.3780

DeepAR-MIDAS MAE 117,459 37,971 30,934 44,922 35,758
MAPE 0.1687 0.1453 0.1174 0.1852 0.1545

MIDAS–AM–DeepAR MAE 32,820 24,034 24,016 21,366 29,586
MAPE 0.1205 0.0850 0.0867 0.0771 0.1197

Table 4 shows that regardless of the forward prediction steps, the MIDAS–AM–
DeepAR model has higher prediction accuracy than the other four models, with a maximum
performance improvement of over 70%, demonstrating high prediction accuracy and robust-
ness. First, compared with the same-frequency models (DeepAR model and AM–DeepAR
model), the DeepAR–MIDAS and MIDAS–AM–DeepAR models have lower MAE and
MAPE values, which proves that adopting the MIDAS method can improve prediction
performance. The main reason was that the introduction of MIDAS could effectively retain
and utilize the information of prediction factors while avoiding information loss caused by
converting high-frequency prediction factors to low-frequency quarterly ANS data. Second,
by comparing the prediction accuracy of MIDAS–AM–DeepAR with that of the AR–MIDAS
and the DeepAR–MIDAS models, it was found that under the coordination of attention
mechanism and neural network, it overcame the complex non-linear relationship of online
retail data with abnormal inflection points and considered the attention mechanism and
temporal sensitivity of abnormal states. Furthermore, compared with the DeepAR and
DeepAR–MIDAS models without an improved attention mechanism, the AM–DeepAR
and MIDAS–AM–DeepAR models have lower MAE and MAPE values, indicating that in-
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troducing an attention mechanism that balances temporal sensitivity and variable selection
can relatively optimize prediction accuracy.

When predicting sustainability development indicators, more attention was paid to the
model’s ability to predict turning points. Therefore, Figure 7 presents the differences between
the ANS forecast values and actual values of the five models mentioned above from the third
quarter of 2021 to the fourth quarter of 2022 to demonstrate the specific differences in the
MIDAS–AM–DeepAR model’s ability to predict macroeconomic turning points.
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Figure 7 shows that the MIDAS–AM–DeepAR model fits well with ANS fluctuations
and tracks trends better than the AM–DeepAR model. The prediction error of the latter
model can be amplified due to information loss if external uncertainty increases. In the case
of the DeepAR–MIDAS model, an apparent failure was observed in tracking the abnormal
fluctuation trends of ANS. The same model exhibited less sensitivity to ANS fluctuations,
making it suitable for predicting relatively stable data only. This result demonstrated that
the MIDAS–AM–DeepAR model exhibited robustness and generalization capabilities in
predicting uncertain environments.

In summary, when facing significant changes in the external environment, such as the
outbreak of COVID-19, the MIDAS–AM–DeepAR model outperformed competing models
(i.e., DeepAR, AM–DeepAR, AR–MIDAS, and DeepAR–MIDAS) in prediction accuracy. In
short, under shocks of external uncertainty, the MIDAS–AM–DeepAR model can prove
to be a robust prediction tool as it can learn complex non-linear relationships between
variables, maximize information value, and capture abnormal data fluctuations, ensuring
effective prediction of e-commerce sales trends in uncertain environments.

5.2. Probability Prediction Results and Analysis

The PICP and PINAW tests were applied to evaluate the performance of different AR
models in terms of multi-step forward prediction of the selected quarterly data. With the
AR–MIDAS model showing the worst prediction accuracy, it was excluded from the list of
models compared with the AR–MIDAS model. The result is shown in Table 5.
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Table 5. Evaluation of probability prediction performance under multi-step forward prediction.

h
DeepAR AM-DeepAR MIDAS - DeepAR MIDAS–AM–DeepAR

PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%) PICP (%) PINAW (%)

2 100 46.3088 100 17.4015 100 36.7394 100 15.6016
3 100 29.4017 100 32.3584 100 29.3011 100 28.2068
4 100 11.5190 100 9.0055 100 11.6373 100 8.3355

5 50 12.0120 100 8.1670 100 11.1382 100 7.0776
6 33.3333 6.7923 100 6.0988 100 5.5139 100 5.4609

As evident from the results in Table 5, the MIDAS–AM–DeepAR model performed
better than other models in multi-step prediction. In long-term (h > 4) prediction, all PICP
metrics were 100% significantly higher than in the DeepAR model. This finding indicates
that the MIDAS–AM–DeepAR model could accurately predict the fluctuation of future
multi-period ANS, providing an effective means for early monitoring of abnormal states.
Second, the AM–DeepAR model is close to the MIDAS–AM–DeepAR model in terms of
PICP and PINAW metrics, with PICP in both models being 100%. PINAW only differed by
approximately 10%. This result indicated that the AM–DeepAR model could only track the
abnormal trend of abnormal changes in the ANS shifts, while its prediction error amplified
owing to the loss of information once the external uncertainty increased. Lastly, the error
between the DeepAR–MIDAS and the MIDAS–AM–DeepAR models increased significantly,
with the difference in their PINAW values more than doubling. This finding showed that
their ability to track the trend of abnormal changes in the ANS was significantly insufficient
and their sensitivity to ANS fluctuations was low. In summary, the MIDAS–AM–DeepAR
model was found to be a more reliable and robust prediction tool in uncertain environments
with a generalization capacity for predicting e-commerce sales.

Figure 8 shows the h = 6 forward prediction results of the US e-commerce sales from
Q3 2021 to Q4 2022, presenting a visual depiction of the long-term predictive capacity of the
MIDAS–AM–DeepAR model. As seen below, the actual values of the ANS were all within
the 90% confidence interval of the MIDAS–AM–DeepAR model, indicating its capacity to
capture normal and abnormal dynamics within the predicted range and manage shocks of
external uncertainty.
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5.3. Prediction Results and Analysis between Models

This study used the Diebold and Mariano (DM) test to determine if there was a significant
difference in out-of-sample prediction accuracy between the two models. The outputs in
Table 6 corroborated that the MIDAS–AM–DeepAR model significantly outperformed the
AM–DeepAR and DeepAR–MIDAS models at the 1% level of significance. Compared to the
AM–DeepAR, the MIDAS–AM–DeepAR had better predictive ability. This finding confirmed
that the frequency alignment and parameter constraint operations on mixed-frequency data
focused on the effective information carried by high-frequency variables and improved
model prediction accuracy compared with the DeepAR–MIDAS model. More so, the higher
prediction accuracy of the MIDAS–AM–DeepAR model affirmed that using an AM (with a
CNN filter) approach for feature selection captured more valuable influencing factors and
enhanced the correlation between e-commerce sales data and time features.

Table 6. DM test results.

Model 2
MIDAS-AM-DeepAR

h
Model 1

AM-DeepAR MIDAS-DeepAR

2 6.4019 *** 3.2478 ***
3 5.2582 *** 5.3216 ***
4 10.0048 *** 6.5814 ***
5 13.4894 *** 7.7211 ***
6 15.4423 *** 12.1993 ***

Note: (1) The numbers in the table represent the D.M. statistical values; (2) *** indicates significance at the 1%
level, i.e., p < 0.01.

6. Discussion and Conclusions

Following continuous infrastructure and technology improvement and strong policy
support, e-commerce sectors in many countries have entered a rapid development stage,
fully adapted to the current economic market. In congruence with the principles of sustain-
able development, this progress adds to the long-term sustainability of the e-commerce
ecosystem, comprising social, technological, environmental, and economic dimensions. In
response to its intermittent, uncertain, and non-linear operating trends in the e-commerce
sector, this study proposes the MIDAS–AM–DeepAR model (based on mixed-frequency
data) to enable sustainable, reliable, accurate, and generalizable prediction capacity. Such
progress is critical to address uncertainty as inherent volatility, the dynamic nature of mar-
kets, and external stimulus impact e-commerce significantly. Using quarterly e-commerce
sales data from the US as a sample, the MIDAS–AM–DeepAR model, evaluated from three
dimensions, demonstrated a superior capacity than other competing models in capturing
the operational and volatility trends of the industrial economy. In other words, the study
has provided an initial, empirically proven prediction tool for future researchers, policy-
makers, and industrial decision-makers to estimate the scale, scope, and uncertainty of
e-commerce sectors.

The empirical results and related conclusions of this study are as follows. First, the pre-
diction accuracy results reflected that the MIDAS–AM–DeepAR model was more efficient
and highly precise than other models in the long- and short-term predictions, as it efficiently
captured the long- and short-term memory of industrial economic indicators in the sampled
data. This result implied that the application of the proposed model could significantly
enhance economic sustainability by offering policymakers and businesses a prediction in-
strument to gauge market trends promptly and ensure readiness to improve supply chains
and resource management. Second, the prediction of inflection points based on industrial
economic indicators shows that compared with the AM–DeepAR and DeepAR–MIDAS
models, the proposed model had stronger self-adaptability and anti-interference ability
in cohesion with MIDAS and AM (containing filters) approaches. Unlike prior models
(cf. AM–DeepAR [82] and DeepAR–MIDAS [83]), this study focused on incorporating
critical elements in the prediction model, e.g., variable importance and temporal sensitivity.
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The proposed model demonstrated robust performance in tracking abnormal changes in
e-commerce sales and their fluctuation trends enable the smooth attainment of sustainable
development. The empirical outputs of the current model confirmed that market and insti-
tution systems can align with the shifts and continue operating efficiently during uncertain
times and economic, social, and environmental shocks. Third, the probability prediction
results established that the MIDAS–AM–DeepAR model had higher probability density
than other models as it computed industrial economic indicators more accurately and dis-
played a superior time correlation self-learning capacity. In this way, the proposed model
added to the existing knowledge pool on market dynamics and could play a crucial role in
designing policies and strategies that strengthen sustainable development by simultane-
ously balancing short- and long-term stability and benefits. Fourth, the DM test validated
that the MIDAS–AM–DeepAR model was statistically better than the AM–DeepAR and
DeepAR–MIDAS models at predicting industrial economic indicators. The inclusion of the
MIDAS and AM approaches optimized the capacity of the proposed model in the following
aspects: (i) maintaining the integrity of the original data structure, (ii) ensuring authenticity
and integrity of information, (iii) mining hidden non-linear relationships between variables
on mixed-frequency data, (iv) automatically perceiving the temporal weights of series,
(v) capturing external disturbance factors in time, and (vi) performing multi-step forward
probability predictions. The presence of all the above competencies directly supports
sustainable decision-makers in the e-commerce industry by strengthening their ability to
manage green supply chains from procurement to distribution. Fifth, the prediction of
the transaction scale of the e-commerce industry confirmed the trajectory of sustainable
development trends, providing decision-making support for the authorities to formulate
industrial sustainability strategies and develop frameworks that encourage sustainable
practices, legal compliance, and long-term vitality of markets in the e-commerce sector. In
short, the dynamic capabilities of the MIDAS–AM–DeepAR model offer stakeholders and
decision-makers a robust, data-driven tool to predict and address potential interruptions to
foster an adaptive and resilient e-commerce ecosystem.

In summary, this study’s main contribution is to further enrich the DeepAR model by
introducing the time AM with filters to enhance the original model’s sensitivity to abnormal
macroeconomic fluctuations. Moreover, the incorporation of MIDAS maximizes the utilization
and retention of effective information contained in high-frequency data. It has been confirmed
that the MIDAS–AM–DeepAR model can predict the intermittent and uncertain operating
trends of industrial economic indicators more accurately, thereby providing a reference for
regulators to formulate sound economic policies. However, several limitations should be
acknowledged. When handling positive correlations, the model’s weight distribution for
positively correlated variables was uneven, indicating room for improvement. Although the
DeepAR model with an attention mechanism can self-learn temporal associations, integrating
external control variables can still be enhanced. Drawing on the approach of Kingma and
Ba. [74], increasing the input dimensions and exploring the impact mechanism of feature
quality on predictive performance can be beneficial. Additionally, the model was prone
to error accumulation due to inconsistent input data distribution during the training and
generation phases. According to the suggestion of Mihaylova and Martins [84], future research
could explore techniques such as scheduled sampling to mitigate this problem. The analysis
may also be limited by the availability and quality of historical e-commerce data, which can
impact accuracy and reliability. Furthermore, the model assumptions might not fully capture
the complexities of the e-commerce market, such as sudden market changes and variations in
consumer behavior.

The findings of this study extend existing knowledge by demonstrating the effec-
tiveness of the MIDAS–AM–DeepAR model in the e-commerce industry. Even though
previous studies (cf. [58,60]) have shown the potential of mixed-frequency models, this
study highlights its potential application and scope in the e-commerce sector. The model
offers more precise predictions by integrating high-frequency data and a time AM, which
can be invaluable for strategic decision-making in the e-commerce sector. By addressing
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these limitations and situating our findings within the broader academic context, this study
contributes to the ongoing discourse on predictive modeling in e-commerce, providing a
foundation for future research.
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