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Abstract: Poultry products are crucial for meeting consumer needs and ensuring food sustainability.
Unlike previous studies that examined the effect of only one animal disease on broiler prices, this
study utilized a time-varying parametric vector auto-regressive (TVP-VAR) model to analyze the
dynamic impacts of poultry and swine epidemics on price fluctuations in the upstream, midstream,
and downstream sectors of the broiler industry. The findings revealed the following: (1) Both
poultry and swine epidemics significantly affected price dynamics in China’s broiler industry, with
varying effects over time. (2) The impact of these epidemics varied across different segments of
the broiler industry, with chicken prices most affected, followed by live chicken prices, then broiler
chick prices, and lastly, broiler feed prices. (3) Poultry epidemics generally exerted negative impacts
on broiler industry prices, whereas swine epidemics predominantly had positive effects. (4) The
influence of these epidemics on broiler industry prices gradually weakened over extended periods.
(5) Poultry epidemics impact broiler industry prices rapidly but briefly, in contrast to the delayed
and more sustained effects of swine epidemics. The results of this study will be an important guide
for the prevention and control of animal diseases in developing countries and for the sustainable
development of the broiler industry.

Keywords: poultry epidemics; swine epidemics; broiler industry chain; price fluctuation; TVP-
VAR model

1. Introduction

The transition from pork, beef, and mutton to poultry in meat production and con-
sumption is a prevalent trend in global agricultural advancement. Fostering the expansion
of the grain-efficient broiler chicken sector is essential for promoting sustainable agricul-
tural practices and securing food safety and meat supply in China [1,2]. Despite China’s
self-sufficiency in grain, there remains a significant reliance on imported feed grains like
corn and soybeans, particularly soybeans. Broiler chickens exhibit a superior feed con-
version ratio, requiring approximately 1.7 kg of feed to yield 1 kg of white feather broiler
meat, which is nearly half the feed-to-meat ratio of pork. Additionally, their greenhouse
gas emissions are substantially lower than those of pork, beef, and mutton. The broiler
industry stands out as a low-carbon, efficient, and eco-friendly option compared to other
livestock sectors. In China’s current meat production landscape, grain-efficient poultry
meat, characterized by high feed conversion efficiency, constitutes only 33.0% of total
meat production, significantly lower than the global average of 43.2%. Consequently, the
development of grain-efficient broiler chicken industries holds substantial market potential.
Exploiting and harnessing these potentials can effectively reduce China’s dependence on
imported feed grains, aligning with the comprehensive food security system’s objectives to
fortify national food security and establish a robust agricultural nation.
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The transformation of China’s broiler industry towards modernization is currently
grappling with the dual challenges of internal supply–demand imbalances and external
uncertainties, leading to frequent price fluctuations in the broiler market. These fluctuations
are influenced by a range of factors including breeding costs, transportation expenses, the
prices of substitutes, household income levels, consumer preferences, financial conditions,
and unforeseen external shocks [3–5]. Notably, outbreaks of animal epidemics can greatly
exacerbate price volatility within the broiler industry chain, impeding the orderly and
healthy growth of the sector [6–8].

The poultry industry’s distinctive nature has led academic research to concentrate
on the effects of avian influenza outbreaks on poultry product prices. Saghaian et al. [9]
and Mutlu et al. [10] examined the impact of avian influenza on Turkey’s poultry market
prices, observing that price adjustments varied across market segments, with retail prices
rebounding to equilibrium faster than production and wholesale prices post-shock. Park
et al. [11] reported similar results for the Korean poultry market. Condry et al. [12] and
Mu [13] emphasized that avian influenza can have cross-regional effects on poultry product
prices in areas not directly affected by the outbreak. Hassouneh et al. [14] explored the price
effects of food panic information indices in the Egyptian poultry market under different
regimes, demonstrating that under low-regime conditions, an index increase results in
a minor decline in chicken prices, while under high-regime conditions, it leads to more
substantial price volatility. Research on China’s poultry industry includes Ding et al. [15],
who analyzed the broiler market’s switching characteristics during the avian influenza
crisis. Zhou and Liu [16], along with Liu et al. [17], found that both human and avian
influenza infections significantly influence price fluctuations along the broiler supply chain,
albeit with varying impacts on market segments. Zheng and Ma [18] noted that changes
in avian influenza outbreaks cause price fluctuations in livestock and poultry products,
primarily affecting chicken prices but also inducing some fluctuations in pork prices. Cai
and Tao [19] observed that avian influenza exerts a short-term influence on the poultry
sector if it remains non-zoonotic, with the majority of broiler product prices rebounding to
their pre-outbreak levels within a month. However, when human infections are implicated,
the impact on poultry supply chain prices extends to a long-term duration, persisting for
more than 13 months.

As a matter of fact, in the broiler industry, swine epidemics may also exert a substantial
influence on price dynamics. Previous studies by Shi et al. [20], Li et al. [21], Zhan et al. [22],
Li et al. [23], and He et al. [24] have employed various econometric methods to evaluate the
impact of African swine fever on the pricing of pork, beef, chicken, and mutton in China.
However, a comprehensive examination of how poultry and swine epidemics differently
affect price mechanisms in China’s broiler sector is still under-explored. Considering
the potential differences in the effects of epidemic disruptions across various temporal
and developmental stages, a refined analysis is necessary. Therefore, our research will
utilize the Time-Varying Parameter Vector Autoregressive (TVP-VAR) model to compare
the magnitude, direction, and duration of the impacts of poultry and swine epidemics on
broiler product prices in China. This analysis will reveal how these impacts evolve over
time and vary under diverse policy contexts, providing insights into the specific effects and
mechanisms of different epidemics on broiler product price volatility in China.

We attempt to make the following two contributions to the literature: (1) Constructing
a theoretical framework integrating supply and demand shocks to elucidate the unique
impact pathways of different sudden epidemics on price volatility within the poultry
industry chain. (2) Implementing the TVP-VAR model to investigate the time-varying
characteristics of diverse epidemic shocks on market price dynamics within the Chinese
broiler industry chain.

The remainder of this paper is organized as follows. Section 2 introduces a theoretical
framework elucidating the shifts in supply and demand within the broiler market due
to poultry and swine epidemics. Section 3 elaborates on the econometric techniques and
data sources utilized. Section 4 constructs a TVP-VAR model to empirically assess the
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time-varying effects of poultry and swine epidemics on the market price within the broiler
industry chain, and employs a BVAR model for robustness testing. Section 5 outlines the
conclusions, policy recommendations, and future research directions.

2. Theoretical Framework

The price volatility of the poultry industry chain is largely dependent on sudden
external shocks, such as animal epidemic outbreaks, which are managed by making adjust-
ments to supply and demand dynamics [20]. Overall, this impact process follows a cyclical
pattern: elevated chicken prices prompt an expansion in stock, which leads to augmented
supply and subsequent price decline; this price drop then prompts a reduction in stock,
resulting in decreased supply and, consequently, a rise in chicken prices [25,26]. This cycle
reveals how external shocks affect the price dynamics of the poultry industry chain through
the inherent regulation of market mechanisms.

Poultry epidemic outbreaks directly influence the behavior and expectations of chicken
producers and consumers, thereby affecting the price volatility of the poultry industry
chain [19,26,27]. Swine epidemic shocks primarily affect the behavior and expectations of
pork producers and consumers [25,28,29]. The strong substitution relationship between
chicken and pork can subsequently trigger shifts in the supply and demand of the poultry
industry chain, leading to price fluctuations [30]. Figure 1 depicts the impact pathways of
different types of sudden epidemics on the price volatility of the poultry industry chain.
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Figure 1. The impact paths of swine and poultry epidemics on price fluctuations in the broiler
industry chain.

From a demand analysis perspective, the widespread use of the internet and the
effectiveness of information dissemination have facilitated the fast dissemination of news
about sudden epidemics via social media. This has repercussions on the pricing of livestock
and poultry products [21,26,31]. Insufficient guidance in the early stages of an epidemic
outbreak can result in a “risk amplification effect”, where residents foster negative market
expectations, fearing food safety issues. This can lead to consumer panic and a drop in
consumer confidence [25,32]. For instance, during the early phase of a poultry epidemic
outbreak, the demand for chicken decreases notably. Similarly, in the initial stages of a
swine disease outbreak, pork consumption diminishes significantly, leading to a spike in
chicken consumption as the main alternative. As the epidemic situation gradually stabilizes,
public confidence in consumers will recover, shifting from panic-induced hesitance to
rational buying. Consistent positive government directives, alongside improved consumer
confidence, will progressively restore corresponding consumer demand levels.
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From a supply perspective, the deaths and culling of pigs and poultry during sudden
epidemics have a direct impact on current stocks, resulting in significant financial losses for
breeders. This may prompt some breeders to scale down production to reduce epidemic
prevention costs, potentially forcing smaller enterprises with limited risk capacities to exit
the market [25,29,33]. Comparatively, swine epidemics like African swine fever have a
more substantial effect on hog production than poultry epidemics such as avian influenza
on poultry production. Due to fixed production cycles for both pigs and poultry, exclusive
of external trade factors, their supply cannot be quickly increased in the short term [30].
Information related to epidemics influences breeders’ decisions, affecting hog and poultry
stock levels as well as slaughter volumes. During poultry and swine epidemic outbreaks,
most entities and breeders tend to be cautious, postponing stock replenishment until the
epidemic stabilizes [31]. This will result in prolonged supply–demand gaps and subsequent
price increases for hogs due to the long production cycle of hogs. Conversely, the shorter
production cycle of poultry leads to a rapid increase in supply when positive epidemic
control news is disseminated, causing a temporary surge in poultry stocks.

3. Materials and Methods
3.1. Methods

The Time-Varying Parameter Vector Autoregressive (TVP-VAR) model was used in
this study for empirical analysis. The TVP-VAR model is derived from a modification of the
traditional VAR model. The VAR model, originally developed by Christopher Sims in 1980,
serves as a prevalent econometric instrument that incorporates multiple variables into a
unified analytical structure [34]. This model assumes that the estimated coefficients and the
variance of the disturbance terms are constant over time, which enhances computational
efficiency but might obscure the dynamic nature of shock impacts. The TVP-VAR model,
pioneered by Primiceri in 2005 and refined by Nakajima in 2011, effectively resolves this
issue [35,36]. The implementation of the TVP-VAR model facilitates the exploration of
the inherent impact mechanisms and time-varying characteristics of swine and poultry
epidemics on the fluctuation of prices in China’s broiler industry chain.

The basic structural VAR model is established as follows.

Ayt = F1yt−1 + · · ·+ Fsyt−s + µt, t = s + 1, · · · , n (1)

In Equation (1), yt is a k × 1 dimensional vector comprising the observed variables.
A, F1, · · · , and Fs are the k × k dimensional coefficient matrixes. µt is a k × 1 dimensional
structural shock following a normal distribution, namely µt ∼ N(0, ∑ ∑).

∑=


σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 σk

 (2)

A =


1 0 · · · 0

α21
. . . . . .

...
...

. . . . . . 0
αk1 · · · αk,k−1 1

 (3)

Therefore, Equation (1) can be rewritten as follows:

yt = B1yt−1 + · · ·+ Bsyt−s + A−1∑ εt, εt ∼ N(0, Ik) (4)
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In Equation (4), Bi = A−1Fi , i = 1, · · · , s. The elements of Bi are transformed
into a (k 2s × 1) vector β by row expansion. Then, it is assumed that Xt = Is ⊗[
y′

t−1, · · · , y′
t−s

]
where ⊗ is the Kronecker product; thus, Equation (4) can be rewrit-

ten as follows:
yt = Xtβ + A−1

t ∑ εt (5)

The expression of the TVP-VAR model can be derived by permitting the equation
coefficient β, parameter A, and ovariance matrix ∑ εt in Equation (5) to vary with time:

yt = Xtβt + A−1∑t εt, t = s + 1, · · · , n (6)

For the specification of the TVP-VAR model, several simplifying assumptions have
been made [37]. Firstly, the matrix At is postulated to be lower-triangular, and the elements
in which are denoted by αt = (α21, α31, α41, · · · , αk,k−1)

′. Secondly, it is assumed that the
parameters follow a random walk process, as described below:

βt+1 = βt + µβt

αt+1 = αt + µαt

ht+1 = ht + µht

(7)

Among them, ht = (h1t, · · · , hkt)
′, where hjt = log σ2

jt(j = 1, 2, · · · , k; t = s + 1, · · · , n),

βs+1 ∼ N
(

µβ0 , ∑β0

)
, αs+1 ∼ N

(
µα0 , ∑α0

)
, hs+1 ∼ N

(
µh0 , ∑h0

)
, and


εt

µβt

µαt

µht

 ∼ N

0,


1 0 0 0
0 ∑β 0 0
0 0 ∑α 0
0 0 0 ∑h


, t = s + 1, · · · , n

The shocks associated with the time-varying parameters are postulated to exhibit no
correlation. The matrics ∑β, ∑α, and ∑h are all stipulated to be diagonal. The following
priors are assumed for the i-th diagonals of the covariance matrices [35]:

(
Σβ

)−2
i ∼ Gamma (40, 0.02)

(Σα)
−2
i ∼ Gamma (4, 0.02)

(Σh)
−2
i ∼ Gamma (4, 0.02)

The parameters of the TVP-VAR model were estimated using the Markov Chain Monte
Carlo (MCMC) method. This approach employs a series of algorithms to sample from a
random distribution via a Markov chain, requiring only a predetermined prior probability
distribution to infer the posterior probability distribution of the parameters through itera-
tive processes. As iterations progress, the posterior distribution progressively aligns with
the true parameter distribution, with the initial prior probability having minimal impact on
the outcomes. In this research, the MCMC algorithm was executed with 10,000 sampling
iterations, discarding the initial 1000 samples to ensure the independence of the obtained
samples from the initial conditions and to enhance the robustness of the estimations [38,39].
OxMetrics 6 software was utilized for this analytical task.

3.2. Data Sources and Descriptive Statistical Analysis

This study utilized monthly price data for broiler feed, broiler chicks, live chickens,
and chicken meat in China spanning from January 2009 to September 2021. The price
data were sourced from the annual “China Animal Husbandry and Veterinary Yearbook”
and adjusted for inflation using the national annual CPI index [40]. The poultry diseases
involved in this study included avian influenza, Newcastle disease, avian cholera, duck
plague, Marek’s disease, etc., while the swine diseases included African swine fever,
classical swine fever, highly pathogenic porcine reproductive and respiratory syndrome,
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swine cysticercosis, anthrax, erysipelas, porcine pulmonary adenomatosis, brucellosis,
foot-and-mouth disease, etc.

To measure the severity of poultry and swine epidemics, we constructed poultry and
swine epidemic indices based on the number of confirmed poultry and swine deaths and
culls, retrieved from BricBigData. To ensure data consistency and linearization, and to
account for heteroscedasticity, natural logarithms of the epidemic indices were employed,
denoted as lnchickendisease and lnpigdisease.

The trends in broiler chick, broiler feed, live chicken, and chicken meat prices in China
from 2009 to 2021 are depicted in Figure 2. The prices of broiler chicks, live chickens, and
chicken meat exhibit notable fluctuations with similar patterns, while broiler feed prices
remain relatively stable with minor fluctuations.
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Figures 3 and 4 illustrate the trends of the non-logarithmic poultry and swine epidemic
indices, respectively. Both indices show similar trends since 2009, generally maintaining
low and stable levels with occasional sharp fluctuations during specific periods. The
poultry epidemic index is primarily influenced by avian influenza outbreaks, showing
stability with peaks in April to September 2012, March 2014, and March to August 2017.
On the other hand, the swine epidemic index, chiefly driven by outbreaks of African swine
fever, exhibits stability until a significant rise during the outbreak in 2018, and subsequently
returns to a stable state in the latter half of 2019.
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2021 in China. Source: BricBigData (https://www.agdata.cn).

4. Results and Discussion
4.1. Model Estimation
4.1.1. Stability Test

To avoid the issue of spurious regression, it is essential to confirm the stationarity of
the data before utilizing the dynamic regression model. This study initially employed the
Augmented Dickey–Fuller (ADF) unit root test to assess the stationarity of six variables’
time series data spanning from January 2009 to September 2021 [41]. These variables
include broiler chick prices, chicken feed prices, live chicken prices, chicken meat prices,
the natural logarithm of the poultry epidemic index, and the natural logarithm of the swine
epidemic index. The results of the test are detailed in Table 1.

https://www.agdata.cn
https://www.agdata.cn
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Table 1. ADF unit root test results.

Variable ADF Statistic (C, T, K) 5% Threshold Value Conclusion

chick −2.633 (1, 0, 2) −2.881 Stable
∆chick −11.459 (0, 0, 1) −1.943 Stable

chickenfeed −1.812 (1, 0, 13) −2.882 Unstable
∆chickenfeed −1.633 (0, 0, 13) −1.943 Stable
livechicken −4.476 (1, 0, 1) −2.881 Stable

∆livechicken −7.585 (0, 0, 0) −1.943 Stable
chicken −4.476 (1, 1, 1) −3.440 Stable

∆chicken −7.131 (0, 0, 0) −1.943 Stable
lnchickendisease −6.342 (1, 1, 1) −3.440 Stable

∆lnchickendisease −9.169 (0, 0, 4) −1.943 Stable
lnpigdisease −3.314 (1, 0, 1) −1.881 Stable

∆lnpigdisease −16.995 (0, 0, 0) −1.943 Stable
Note: in Table 1, C denotes the constant term, T denotes the trend term, K denotes the lag order, and ∆( ) indicates
the first-order difference of each sequence variable.

The ADF statistic for the original data of the chicken feed variable exceeds the critical
value at a 5% significance level, indicating a non-stationary time series. This non-stationarity
suggests that the data contains a unit root, which can lead to misleading regression results
if not addressed. To address this issue, the study performs first-order differencing on the
data. The first-order differencing process involves subtracting each data point from its
preceding value, which helps to remove trends and other non-stationary characteristics
from the time series.

After conducting first-order differencing, the first-difference series of all variables
exhibits stationarity at a 5% significance level, implying the absence of a unit root phe-
nomenon. Stationarity in the first-difference series means that the mean and variance of the
data are constant over time, and the series does not exhibit long-term trends or cycles that
could distort the results of a regression analysis.

Consequently, these variables, now confirmed to be stationary after differencing,
are deemed suitable for constructing the Time-Varying Parameter Vector Autoregressive
(TVP-VAR) model. The TVP-VAR model is particularly useful in capturing the dynamic re-
lationships among variables over time, allowing for more accurate and reliable estimations.
By ensuring the stationarity of the data, the study mitigates the risk of spurious regression
and enhances the robustness of its empirical findings.

4.1.2. Optimal Lag Order Determination

Various techniques were utilized in this research to determine the most effective
lag order of the model. These methods included the log likelihood method (LogL), the
likelihood ratio statistic (LR), final prediction error (FPE), the Akaike information criterion
(AIC), the Schwarz criterion (SC), and the Hannan–Quinn information criterion (HQ).
Each of these criteria has its own methodology for evaluating lag order, contributing to a
comprehensive assessment of the model’s performance. The log likelihood (LogL) method
evaluates the goodness of fit of the model by maximizing the probability of observing
the given sample data. The likelihood ratio statistic (LR) compares the fit of two nested
models to determine whether the additional lags improve the model significantly. The
final prediction error (FPE) estimates the model’s prediction accuracy by minimizing the
prediction error of future values.

The Akaike information criterion (AIC) is a widely used measure that balances the
model’s fit with its complexity, penalizing models with more parameters to prevent over-
fitting [42]. The Schwarz criterion (SC), also known as the Bayesian information criterion
(BIC), is similar to the AIC but imposes a harsher penalty for adding more parameters,
often leading to more parsimonious models. The Hannan–Quinn information criterion
(HQ) provides another balance between model fit and complexity, with a penalty term that
grows more slowly than the SC but faster than the AIC [43].

The lag order with the most asterisks (“*”) indicates the optimal choice among these
methods, reflecting the consensus of multiple criteria. We resorted to the Stata 17 software
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to determine the optimal lag order. Table 2 illustrates that the optimal lag order for the
model in this study is three. This consensus suggests that a lag order of three balances the
trade-off between model complexity and goodness of fit most effectively, ensuring robust
and reliable results. By carefully selecting the appropriate lag order, this study enhances
the accuracy and predictive power of its dynamic regression model, contributing to more
reliable conclusions and insights.

Table 2. Determination of the model lag.

Lag Period LogL LR FPE AIC SC HQ

0 −820.567 NA 0.003 11.246 11.368 11.295
1 −16.943 1607.2 8.99 × 10−8 0.802 1.656 * 1.149
2 61.704 157.29 5.04 × 10−8 0.222 1.808 0.866 *
3 103.494 83.58 4.69 × 10−8 * 0.143 * 2.462 1.085
4 133.118 59.248 5.17 × 10−8 0.23 3.281 1.47
5 171.974 77.712 * 5.07 × 10−8 0.191 3.975 1.728
6 194.633 45.318 6.25 × 10−8 0.372 4.889 2.207

Note: an asterisk (*) denotes the most suitable lag order based on the respective criteria.

4.1.3. Results of MCMC Estimation

In this study, Nakajima’s research served as the basis for the selection of a reliable
sample for the TVP-VAR model. Through the implementation of the Markov Chain Monte
Carlo (MCMC) method, 10,000 simulated samples were generated, with the initial 1000 sam-
ples being discarded [38,39]. The MCMC estimation outcomes (See Table 3) indicated that
the posterior means of all parameter tests fell within the 95% credibility intervals, and the
Geweke convergence diagnostic values were notably below the critical value of 1.96 at
a significance level of 5%, which meant that the parameters achieved convergence with
the posterior distribution; thus, the MCMC sampling exhibited a high level of concentra-
tion [35]. In addition, the maximum inefficiency factor was 43.93, well below the sample
size, which implies that the number of iterations employed in the estimation was adequate
for achieving stable results [44].

Table 3. MCMC parameter estimation results.

Parameter Mean SD 95%U 95%L Geweke Inefficiency

(∑ β)1 0.024 0.003 0.019 0.030 0.666 7.08
(∑ β)2 0.023 0.003 0.019 0.029 0.185 7.05
(∑ α)1 0.059 0.017 0.037 0.104 0.375 42.98
(∑ α)2 0.055 0.014 0.035 0.088 0.761 30.93
(∑ h)1 0.376 0.092 0.222 0.587 0.779 43.18
(∑ h)2 0.297 0.090 0.158 0.512 0.066 43.93

Note: in Table 3, mean indicates the posterior means. SD indicates the standard deviations. A result of 95%L
means a lower credible interval limit, 95%U means an upper credible interval limit, and Gewe indicates conver-
gence diagnostics.

Figure 5 illustrates the autocorrelation and sample paths of the samples within the
TVP-VAR model. As depicted in Figure 5, it is apparent that with an increase in sample size,
the autocorrelation diminished swiftly and converged toward zero. This behavior signifies
the proficient management of sequence correlation within the model, indicating that the
residuals are not serially correlated, which is a crucial aspect indicating the validity of the
model. Autocorrelation diminishing towards zero demonstrates that the dependencies
between observations at different time lags are effectively captured by the model, reducing
the risk of spurious results and enhancing the model’s reliability. This is critical for dy-
namic models like the TVP-VAR model, where an accurate representation of time-varying
relationships is essential.
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Concurrently, the sample paths exhibited fluctuations around a particular value,
indicating the stability and convergence of the model parameters. The stability of the
sample paths suggests that the model parameters do not drift over time but instead oscillate
around a steady state. This is an important feature, as it implies that the model can reliably
capture the underlying dynamics of the time series data without being influenced by
transient shocks or structural breaks.

These outcomes reinforce the robust fitting capabilities of the TVP-VAR model, estab-
lishing a reliable basis for further analysis and forecasts. The ability of the model to handle
autocorrelation effectively and maintain parameter stability ensures that it can provide
accurate and consistent predictions. This reliability is crucial for any subsequent analysis,
as it means that the results derived from the model are based on a sound statistical founda-
tion. As a result, the TVP-VAR model proves to be a powerful tool for understanding and
forecasting the dynamic relationships among the variables under study, providing valuable
insights for decision-making and strategic planning.

4.2. Time-Varying Impulse and Response
4.2.1. Equidistant Impulse Responses

Figure 6 demonstrates the equidistant pulse responses of different broiler product
prices to outbreaks of poultry and swine epidemics at lag periods of 4, 8, and 12. In Figure 6,
the labels on the “x” axes represent the specific time and the numbers on the “y” axes
represent the impulse responses. The fluctuations induced by these epidemics led to notable
time-dependent variations in market prices within the broiler industry. This underscores
the dynamic influence of such diseases on market prices across different timelines. Hence,
it is imperative to consider the evolving dynamics of poultry and swine epidemics and their
diverse impacts across various time intervals when analyzing and predicting the market
prices of broiler products.

In terms of the intensity of impulse responses, chicken prices were most influenced by
poultry and swine epidemics, with live chicken and broiler chick prices also significantly
affected. Conversely, chicken feed prices were comparatively less impacted by sudden
disease outbreaks. The notable influence on chicken prices could be attributed to retail
chicken products being at the final stage of the broiler industry chain, making them highly
sensitive to shifts in consumer preferences and prompt to respond to unexpected external
shocks. On the other hand, the effect on chicken feed prices, whether linked to poultry or
swine epidemics, was minimal. This minimal impact was primarily because the amount of
feed is a crucial element in ensuring livelihood security. The supply of policy-regulated
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feed had shown a high degree of stability in the face of sudden epidemics, remaining
largely unaffected by epidemic fluctuations.
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In terms of the direction of impulse responses, the responses of chick prices, live
chicken prices, and chicken prices remained consistent. Poultry epidemics primarily
exerted a negative impact on prices within the broiler industry chain, whereas swine
epidemics tended to have a positive impact on the prices of broiler products. This positive
impact arose because swine diseases diminished pork supply, causing a decline in pork
production capacity and triggering significant price hikes. The insufficient pork supply
created an imbalance in the pork market, leading to higher pork prices and subsequently
increasing the demand for chicken meat as a substitute. In comparison, the effect of poultry
and swine epidemics on broiler feed prices exhibited intermittent fluctuations, with diverse
patterns of both positive and negative influences.



Sustainability 2024, 16, 6043 12 of 17

Regarding the impulse responses over different lags, it was observed that the strongest
response occurs at lag 4. As the lag period extended, the impact of both poultry and swine
epidemics on broiler product prices gradually diminished, with the response at lag 12 being
the weakest. This diminishing effect over longer lags suggested that the immediate shock
of an epidemic had a more pronounced impact on prices, which then tapered off over time
as markets adjusted and alternative supplies or substitutes were sourced. The ability to
identify these lagged responses is crucial for understanding the temporal dynamics of price
adjustments and for developing strategies to mitigate the adverse effects of such shocks on
the broiler industry.

4.2.2. Point-in-Time Impulse Responses

Figure 7 depicts the point-in-time impulse responses of various broiler product prices in
March 2014 and September 2018, corresponding to the peak periods of the poultry epidemic
index and swine epidemic index, respectively. In Figure 7, the labels on the “x” axes represent
the lag periods and the numbers on the “y” axes represent the impulse responses. The
results are generally consistent with the previous equidistant impulse responses, indicating a
predominantly negative influence of poultry diseases and a primarily positive effect of swine
diseases on the broiler industry chain. Notably, outbreaks of poultry and swine epidemics
exerted the greatest influence on chicken meat prices, followed by live chicken prices. Broiler
feed prices, on the other hand, showed the least vulnerability to sudden epidemics. Given the
minimal impact of unexpected epidemics on broiler feed prices, further analysis regarding the
directional effects of broiler feed prices at different time points is excluded.

In addition, the influence of poultry diseases on prices of broiler chicks initially
displayed a negative trend, turning positive starting from lag 2, and eventually reaching
stability around zero by lag 9. This differed from the consistently negative effect of poultry
outbreaks on live chicken and chicken prices, reaching a peak at lag 1 and decreasing
thereafter. Conversely, the impact of swine diseases on prices of the broiler industry chain
showed a minor negative effect initially, followed by a prolonged positive impact peaking
around lag 7 before gradually subsiding. The results indicate that the market prices within
the broiler industry responded quickly to outbreaks of poultry epidemics, but the effects
were temporary. In contrast, the impact of swine epidemic outbreaks was delayed but
long-lasting. The findings suggested that market prices in the broiler industry swiftly
respond to poultry epidemic outbreaks, but only temporarily. In contrast, the consequences
of swine epidemic outbreaks exhibited a delayed yet enduring impact on the market.

When price variations remained within a typical and acceptable range, the market’s
inherent regulatory mechanisms could efficiently mitigate the effects on both supply and de-
mand. However, significant fluctuations in broiler product prices, whether sharp increases
or decreases, severely hinder the high-quality growth of China’s poultry sector. From a
production standpoint, severe price volatility might disrupt the operational strategies of
breeding companies and farmers, increasing their business risks, eroding their confidence,
and discouraging investment. Banks, seeking to avoid risk, might curtail lending or pre-
maturely call in loans, intensifying financial pressures and potentially causing a collapse
in capital flow. This chain of consequences could force many small farmers, including
experienced and skilled breeders, to exit the market, causing substantial damage to the
poultry industry. From a consumption perspective, dramatic shifts in chicken prices would
directly affect daily food expenditures and the financial status of the population. Price
instability in a vital commodity not only impacts the quality of life and well-being of people
but also has a profound and significant influence on social stability.
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4.3. Robustness Test

To strengthen the validity of our empirical results, we employed the Bayes vector
auto-regression (BVAR) model to examine the effects of poultry and swine diseases on
the broiler industry chain. Figure 8 illustrates that variations in live chicken and chicken
meat prices were notably affected by abrupt epidemic outbreaks, with broiler chick prices
following behind. Conversely, the impact on chicken feed prices was negligible. Apart
from feed prices, prices within the broiler industry exhibited a negative response to poul-
try epidemics, eventually plateauing at zero. Conversely, responses to swine epidemics
generally displayed a predominantly positive trend, also stabilizing at zero. We found that
the results using the BVAR model and the TVP-VAR model are essentially the same. These
findings also demonstrate the robustness of the results in the article.
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5. Conclusions and Policy Recommendations
5.1. Conclusions

Unlike previous studies that examined the effect of only one animal disease on broiler
prices, this study employed the natural logarithm of confirmed poultry and swine deaths
and culls to assess the severity of these different type of epidemics during the research
period. A TVP-VAR model was utilized to analyze the impact of these two epidemics
on the monthly prices of broiler feed, broiler chicks, live chickens, and chicken meat in
China between January 2009 and September 2021. The key findings include the following:
(1) Poultry and swine epidemics exerted substantial impacts on the market prices within the
broiler industry chain, with discernible variations in the effects across different periods and
categories. (2) The influence of abrupt epidemics on the prices of various segments within
the broiler industry chain intensified as one moved from the initial to the terminal stages of
the chain. Specifically, chicken meat prices were the most affected, followed by live chicken
and broiler chick prices, while chicken feed prices were relatively less affected. (3) With
longer lag periods, the impulse response of both poultry and swine epidemics to broiler
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product prices gradually weakened. (4) Given the consistent consumption of livestock and
poultry products, the emergence of poultry or swine epidemics leads to a reduction in the
supply and demand for the affected products, while simultaneously increasing the supply
and demand for their substitutes. Typically, poultry epidemics primarily influenced the
demand side, whereas swine epidemics predominantly affected the supply side. (5) Due to
the distinct production cycle lengths of broilers and pigs, the impact of poultry diseases on
broiler product prices was immediate yet short-lived; on the contrary, the impact of swine
diseases was delayed but longer-lasting in nature.

5.2. Policy Recommendations

To mitigate the effects of unexpected epidemics on broiler production, stabilize prices,
secure farmers’ income, and uphold the growth of the broiler sector, the government
must prioritize animal epidemic prevention and enhance monitoring, early warning, and
emergency response systems. Firstly, integrating biological epidemic prevention tools into
requirements for safe feed production permits can curb disease transmission during feed
manufacturing. Secondly, strengthening epidemic prevention, supervision, and control
measures is vital for the prompt detection, reporting, treatment, and control of outbreaks,
thus minimizing their impact on the broiler industry. Thirdly, establishing a national
database for animal epidemics and pricing information can enhance transparency, enabling
stakeholders to access timely updates and make informed decisions to mitigate losses from
epidemics. Moreover, enhancing compensation post-major outbreaks is crucial to restoring
market confidence and ensuring the industry’s sustainability.

5.3. Research Limitations and Future Research Directions

Although we used the TVP-VAR model for our empirical analysis, we are limited by
the complexity of the model’s premise assumptions and overfitting risk, and we need to
use a more cutting-edge model for future analysis. In addition, future research needs to
extend the analysis to other regions or countries to examine whether similar patterns exist
and to understand the global impact of poultry and swine outbreaks on broiler product
prices. Finally, future research needs to include the impact of other factors, such as climate
change, trade policies, and technological innovations, on broiler product prices in order to
provide a more complete picture of price dynamics.
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