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Abstract: Accurate forecasting of PV power not only enhances the utilization of solar energy but
also assists power system operators in planning and executing efficient power management. The
Temporal Convolutional Network (TCN) is utilized for feature extraction from the data, while the
White Shark Optimization (WSO) algorithm optimizes the TCN parameters. Given the extensive
dataset and the complex variables influencing PV output in this study, the maximal information
coefficient (MIC) method is employed. Initially, mutual information values are computed for the base
data, and less significant variables are eliminated. Subsequently, the refined data are fed into the
TCN, which is fine-tuned using WSO. Finally, the model outputs the prediction results. For testing,
one year of data from a dual-axis tracking PV system is used, and the robustness of the model is
further confirmed using data from single-axis and stationary PV systems. The findings demonstrate
that the MIC-WSO-TCN model outperforms several benchmark models in terms of accuracy and
reliability for predicting PV power.

Keywords: photovoltaic power forecasting; maximal information coefficient; temporal convolutional
network; white shark optimizer

1. Introduction

The progress of human society has increased the energy demand. But fossil fuel
reserves are limited and non-renewable. Therefore, more and more countries are starting to
support the growth of renewable energy technology for generating power [1]. As energy
demand rises in developing nations, the installed capacity of photovoltaic (PV) systems
is also increasing annually [2], and Building Integrated Photovoltaics (BIPVs) have been
developed, which are important for reducing energy consumption and improving thermal
quality [3]. Due to factors such as solar radiation and ambient temperature, the output
power of PV systems exhibits intermittency, volatility, and randomness, which brings great
uncertainty to the operation, scheduling, and planning of the power system [4]. Forecasting
photovoltaic power is considered one of the most economically feasible solutions for man-
aging solar intermittency. Precise photovoltaic power forecasting significantly enhances
the efficiency of solar energy utilization, thus increasing the revenue of the power plant
and reducing the economic loss caused by power limitation [5].

In current studies, photovoltaic power prediction typically falls into three main cate-
gories: physical models, statistical approaches, and machine learning methods [6]. Instead
of requiring historical data, physical prediction methods rely on accurate meteorologi-
cal information, power plant geographic information, and PV module information [7].
Meteorological information generally comes from the following three sources: numerical
weather prediction (NWP), satellite cloud images, and sky images. The obtained mete-
orological parameters are combined with parameters such as module mounting angle,
PV array conversion efficiency, and battery status to build a physical model, which in
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turn directly calculates the power generation. Physical modeling of PV cells requires a
large number of circuit parameters, which greatly affects the accuracy of the models [8].
Physical methods, while offering excellent long-term forecasting capabilities, have some
shortcomings. Satellite cloud images suffer from low spatial and temporal resolution,
which makes it difficult to capture meteorological information at small scales [9]. A full-sky
imager is unable to provide a wide range of cloud coverage information [10]. Although the
coverage can be expanded by means of arrays, it requires high hardware costs and complex
communication technologies.

Statistical methods do not require much information about the PV system compared
to physical models [11]. Statistical approaches offer the advantages of straightforward
modeling and suitability across various regions. The application of statistical methods in
PV power prediction also has certain challenges. Collection and calculation of accurate
data in actual implementation remains challenging [12]. Statistical models have high
requirements for accurate historical data, and their relatively low computational speed and
computational volume make it difficult to meet the requirements of short-term PV power
prediction [13].

In recent years, researchers have shown significant interest in machine learning, and
machine learning models can extract nonlinear features from photovoltaic (PV) power gen-
eration data to improve prediction accuracy [14]. An artificial neural network is employed
for short-term solar radiation prediction [15]; as a classical algorithm, it is also used in the
fault detection of lines in the power grid [16–18]. In Ref. [19], the outcomes of the pro-
posed Extreme Learning Machine (ELM) are contrasted with those of conventional models,
demonstrating the capability of the proposed model to predict short-term wind speeds. In
Ref. [20], support vector machine (SVM) is employed to forecast the output from a photo-
voltaic power station. However, these machine learning models encounter challenges due
to the pronounced volatility and nonlinearity of photovoltaic power generation time series;
conventional machine learning models may struggle to capture the intricate nonlinear and
dynamic nature of photovoltaic power generation data [21]. In Ref. [22], various machine
learning algorithms are used for PV power prediction, including ensemble of regression
trees, support vector machine, Gaussian process regression, and artificial neural networks.
Therefore, some scholars have begun to shift their attention to deep learning (DL) models
because they have sufficient feature extraction and feature transformation capabilities [23].
Recently, common deep learning models used in photovoltaic power prediction include
convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The widely
used long short-term memory network (LSTM) is an improvement over RNN, which solves
the problem of RNN gradient disappearance. In Ref. [24], a bidirectional long short-term
memory network with Bayesian optimization is used to predict solar photovoltaic power
generation. In Ref. [25], an algorithm based on LSTM is proposed for predicting solar radi-
ation, outperforming the persistence algorithm, linear least squares regression, and other
algorithms in terms of prediction accuracy. In Ref. [26], a hybrid model employing CNN
and support vector regression (SVR) is proposed to enhance the accuracy of solar radiation
prediction. In Ref. [27], it has been demonstrated that integrating CNN and LSTM to predict
PV power shows superior performance compared to using either model individually.

The Temporal Convolutional Network (TCN) structure outperforms conventional
recurrent structures like LSTM and GRU across various sequence modeling tasks. Hence,
we utilize TCN for addressing the PV power prediction task [28]. TCN is a new convolution
architecture specially designed for sequence modeling. While maintaining the convolution
operation characteristic of CNN, it incorporates dilated causal convolution and residual
connections, enhancing its performance in handling time series data [29]. TCN has recently
been applied to tackle various complex prediction tasks. For example, Reference [30]
applies TCN to short-term wind power prediction and obtains high prediction accuracy
even in the case of large fluctuations in wind power. Reference [31] uses TCN to predict the
ship’s motion attitude.
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Constructing a deep learning model involves numerous hyperparameters, making
it challenging to establish a model with both strong robustness and accurate prediction
capabilities. The traditional enumeration method and grid search method have the disad-
vantages of low efficiency and a large amount of calculation. Therefore, some researchers
began to pay attention to meta-heuristic algorithms. Many meta-heuristic algorithms have
been demonstrated to enhance prediction accuracy. In Ref. [32], Particle Swarm Optimiza-
tion (PSO) is used to optimize the proposed adaptive network based fuzzy inference system.
Reference [33] utilizes a Genetic Algorithm (GA) to optimize the hyperparameters of LSTM
for forecasting PV power generation four hours ahead. Ref. [34] proposes an SCA-BILSTM
architecture for hourly solar radiation forecasting. An SSA-RNN-LSTM architecture for
predicting PV power output one hour in advance is proposed in [35]. In order to better
tune and optimize the model, in this study, a new meta-heuristic algorithm known as
White Shark Optimizer (WSO) is used. Compared to many previous meta-heuristics, WSO
performs better in global optimality and avoiding local minima [36]. In [37], the WSO
algorithm is employed to optimize the design parameters of proton exchange membrane
fuel cell, which improves its performance in practical applications. Compared with SSA,
HHO, DBO, ASO, and other algorithms, its effect is better.

In predicting PV power, potential colinearity between explanatory variables may
lead to feature redundancy, which in turn may adversely affect the performance of the
prediction model. Moreover, explanatory variables that lack a strong correlation with the
output power might also detrimentally influence performance. Given the intricate nature of
PV output power, complex nonlinear or nonfunctional relationships between variables may
exist. The maximal information coefficient (MIC) exhibits stronger robustness and fairness
compared to the traditional correlation coefficient. MIC serves to detect both linear and
nonlinear relationships in extensive datasets, while also revealing possible non-functional
correlations [38]. Currently, MIC is successfully used in various fields [39,40].

According to the literature review, the research gaps in photovoltaic power prediction
that are addressed in this study are as follows: (1) This study investigates the power
prediction of three different photovoltaic systems, namely dual-axis tracking photovoltaic
systems, single-axis tracking photovoltaic systems, and fixed photovoltaic systems. (2) The
maximal information coefficient (MIC) is employed for feature vector selection. (3) The
application of Temporal Convolutional Networks (TCNs) in photovoltaic power prediction
is still rare, especially for the three different photovoltaic systems. (4) This paper is the first
to use the White Shark Optimizer (WSO) algorithm to adjust the hyperparameters of the
TCN to improve the accuracy of photovoltaic power output prediction.

To improve the accuracy of PV power prediction in this study, we propose a novel
hybrid approach of Temporal Convolutional Networks (TCNs), maximal information
coefficients (MICs), and the White Shark Optimizer (WSO). Among them, the MIC is used
to deal with the complex relationships of the variables in the dataset in this study, the data
are processed and then fed into the TCN, and the WSO algorithm adjusts and optimizes the
structure and hyperparameters of the model during the training process to further enhance
its prediction capabilities. The primary contributions of this paper are as follows:

(1) A novel hybrid model (MIC-WSO-TCN) for photovoltaic power prediction is pro-
posed, capable of achieving accurate prediction results across different seasons.

(2) The prediction accuracy of the proposed model is compared with MIC-TCN, MIC-
WSO-BP, and MIC-WSO-LSTM.

(3) The performance of the proposed model in predicting photovoltaic output is evaluated
across various seasons using a dual-axis tracking photovoltaic system. In addition,
the robustness of the model is verified on single-axis and fixed photovoltaic systems,
and its prediction accuracy is evaluated using real power generation data.

2. Methodology

This section introduces three different photovoltaic systems, summarizes the data pre-
processing steps, describes the proposed deep learning model, and explains the indicators
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used to evaluate the performance of the model. In addition, Figure 1 shows a schematic
diagram of the research conducted in this paper.
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2.1. Overview of PV Systems

The three photovoltaic systems are all located in Alice Springs, Australia, with a
latitude of 23.7618◦ S and a longitude of 133.8748◦ E. Figure 2 shows an overview of
the three systems, which are the dual-axis tracking photovoltaic system (1B), the single-
axis tracking photovoltaic system (5), and the fixed photovoltaic system (11). The power
generation data of the photovoltaic system can be downloaded in Ref. [41].
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2.2. Data Preprocessing and Data Split

Data preprocessing includes data segmentation, data standardization, abnormal data
processing, and feature selection. Data preprocessing can improve the convergence speed of
the model and remove the influence of dimension. The outliers in the dataset are removed,
and thresholds are set based on the installed generating capacity and then filtered. Missing
data can affect the accuracy of the model, especially when predicting PV power generation
data that requires continuous measurements. To address this issue, we utilize widely
adopted cubic spline interpolation for handling missing values. In this experiment, the
data from December 2013 to December 2014 are selected. These data are sampled every
5 min. The data of this year are divided into four seasons for the experiment. Since the



Sustainability 2024, 16, 6102 5 of 20

photovoltaic system studied in this paper is located in Australia, the season is opposite to
the northern hemisphere. The data for each season are partitioned into training, testing,
and validation sets, comprising 80%, 10%, and 10% of the total data, respectively.

Due to the fluctuating nature of PV power, it is categorized as time series data. For
forecasting using deep learning, it is crucial to reformat the dataset into a supervised
regression framework. This involves structuring the dataset so that both input features and
their corresponding outputs are explicitly identified [42]. The sliding window technique
effectively addresses this requirement by dividing the dataset to create sequences used as
model inputs, with a defined number of sequences designated as outputs. In this study, a
single-step prediction model is implemented to forecast PV power generation, where data
from intervals 0 to t − 1 serve as inputs, and the data point at time t is used as the output.
The dataset is continuously partitioned by shifting the window one time step forward to
create new input and output pairs.

Because the data include many features, different features have different dimensions.
In order to eliminate the influence of dimension, this experiment adopts data standardiza-
tion. The calculation method is as follows:

u =
1
N

N

∑
n=1

X (1)

σ = std(X) =

√
∑(xi − u)2

N
(2)

Xstd = (X − u)/σ (3)

Here, X represents the actual data, N is the size of the data, u denotes the average
value, xi represents each value of the data, and σ is the standard deviation of the data.

Feature selection is a common feature engineering technology in deep learning and
data mining. When training a model, the input variables are called features, and training
a model with too many useless features can lead to longer training times and reduce the
predictive power of the model and complicate it [43]. Therefore, in order to make the model
obtain better predictive ability, it should be ensured that only the most representative and
relevant features are retained, while irrelevant and redundant features are excluded.

The most commonly used method to capture the correlation between data is by calcu-
lating the correlation coefficient. This coefficient is sensitive to linear relationships between
variables, but when there is a nonlinear relationship between the data, it may produce inac-
curate results [44]. The maximal information coefficient (MIC) offers a balanced approach to
capturing all functional relationships. The underlying idea involves calculating the mutual
information between two variables by analyzing their approximate probability density
distribution within a grid following any form of meshing of their scatter plots, thereby
revealing any correlation between the variables. The normalized mutual information (MI)
serves as a measure to quantify the correlation between two variables. It is calculated
based on a set of sample pairs associated with the two variables, represented by X and Y,
D = {(xi, yi), i = 1, . . . , N}, where N is the number of samples. The calculation process of
normalized mutual information is as follows:

Step 1: Initially, the sample space is partitioned into m × n grids, denoted as G.
Subsequently, the empirical marginal probability densities p(x) and p(y) of X and Y, as
well as the joint probability density p(x, y), are estimated [38]. The calculation methodology
for MI is as follows:

MI(X, Y|D, G) = ∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(4)
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The division of data is diverse. In all possible grids, the maximum MI can be expressed
as follows:

MI∗(D, m, n) = maxGMI(X, Y|D, G) (5)

Step 2: In order to facilitate comparison and analysis, the maximum MI value is
normalized, and the normalized value is in the interval of [0, 1].

NMI∗(D, m, n) =
MI∗(D, m, n)

log min{m, n} (6)

Step 3: According to the previous steps, calculate all NMI∗(D, m, n) that satisfy the
condition, this condition is m × n < k(N), and MIC is the maximum NMI∗(D, m, n) value
in all grids. This process can be expressed by the following formula:

MIC(X, Y) = maxm×n<k(N){NMI∗(D, m, n)} (7)

Among them, k(N) is defined as a function of the number of samples. When k(N) =
N0.6, the algorithm works well in practice [38].

In the context of MIC, the value ranges between 0 and 1. High correlation between
two variables results in high mutual information values, indicating stronger correlation.
Consequently, higher MIC values imply stronger correlation. Conversely, when there is
no relationship between the two variables, the value of MIC is 0. The dataset of this paper
contains a large amount of meteorological data and radiation data. After calculation and
analysis, it is most appropriate to discard the characteristics of MIC less than 0.2. After
screening, the characteristics of the input model include global horizontal radiation, diffuse
horizontal radiation, wind speed, temperature, radiation global tilted, relative humidity,
and radiation diffuse tilted.

2.3. White Shark Optimizer

The WSO is a new meta-heuristic algorithm for biologically inspired global optimiza-
tion problems. The algorithm is based on the overall situation of white shark predation
behavior and the way they track prey. Compared with other existing meta-heuristic meth-
ods, the WSO algorithm demonstrates a viable solution in terms of global optimality,
evasion of local minima, and overall solution quality. The inspiration of this optimiza-
tion algorithm comes from three predatory behaviors. The mathematical models of these
behaviors are shown below [36].

2.3.1. The Initialization Process of the WSO

In the optimization problem addressed by the WSO algorithm, a set of random initial
solutions is generated, with each solution representing the position of a white shark. If
there are n white sharks in the population, their positions can be captured by a matrix,
effectively modeling the candidate solutions, as shown below:

w =


w1

1 w1
2 . . . . . . w1

d
w2

1 w2
2 . . . . . . w2

d
...

...
...

...
...

wn
1 wn

2 . . . . . . wn
d

 (8)

where w represents the position of the white shark in the given search area, wi
d specifies

the position of the ith white shark in the dth dimension space, and d is the sum of decision
variables relevant to the issue at hand. The initial population is established based on the
subsequent equation [36]:

wi
j = lj + r × (uj − lj) (9)

Among them, wi
j is the original vector of the ith white shark in the jth, while uj and lj

denote the maximum and minimum limits of the jth dimensional search field. r represents
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a randomly chosen number within the interval [0, 1]. The fitness function is used to assess
the quality of each new alternative candidate solution for white sharks at each new location.
If a white shark’s current position is superior to its new position, it will remain at its current
location. Conversely, if the new position offers an improvement over the current one, the
shark’s location will be updated accordingly [36].

2.3.2. Speed of Movement to Prey

Because white sharks are a kind of creature with strong desire for survival, they hunt
and track their prey most of the time. They usually use auditory, visual, and olfactory
senses to track prey. When the white shark detects the presence of its prey through the
disturbance created by the movement of the prey, it will move to the prey, and this process
can be expressed in Equation (10).

vi
k+1 = u

[
vi

k + p1

(
wgbestk − wi

k

)
× c1 + p2

(
w

vi
k

best − wi
k

)
× c2

]
(10)

For the ith shark, vi
k+1 represents the updated velocity vector for the ith white shark

at step (k+1). wgbestk indicates the globally optimal position vector identified in the kth
iteration of any white shark. wi

k signifies the present position vector of the ith white shark

at the kth step, w
vi

k
best refers to the optimal discovery position vector for the population

marker by the ith shark, and vi signifies the exponential vector for those white sharks
occupying a higher position, as defined in Equation (11). p1 and p2 represent the force of

white sharks, which regulate the impacts of wgbestk and w
vi

k
best on wi

k, and are calculated as
Equations (12) and (13), and u symbolizes the contraction factor instrumental in examining
the convergence patterns of great white sharks within the WSO, and its definition is shown
in Equation (14) [36].

v = [n × rand(1, n)] + 1 (11)

where rand(1, n) denotes an evenly distributed random vector ranging between 0 and 1.

p1 = pmax + (pmax − pmin)× e−(4k/K)2
(12)

p2 = pmin + (pmax − pmin)× e−(4k/K)2
(13)

where k denotes the number of current iterations, and K signifies the maximum iteration
limit. pmin and pmax correspond to the beginning and modified velocities of the white
shark, which are essential for optimal movement. After analysis, it was found that the
values of pmin and pmax were 0.5 and 1.5, respectively [36].

µ =
2∣∣∣2 − τ −
√

τ2 − 4τ
∣∣∣ (14)

where τ represents the acceleration coefficient, set at 4.125, a value determined through
comprehensive analysis [36].

2.3.3. Advance towards the Ideal Prey

Great white sharks predominantly search for potential prey to secure the best food
sources. Therefore, their positions are constantly changing. They typically move towards
prey upon detecting wave sounds caused by prey movement or sensing their scent. Occa-
sionally, prey might move from its original spot, either due to the shark’s movement or in
search of food. Usually, the prey will leave a smell when it leaves, so the white shark can
use this clue. In such instances, white sharks might randomly search for prey, like a school
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of fish feeding. Under these circumstances, we apply the position update strategy outlined
in Equation (15) to model the white shark’s movement towards prey [36].

wi
k+1 =

{
wi

k · ¬ ⊕ wo + u · a + l · b; rand < mv
wi

k + vi
k/ f ; rand ≥ mv

(15)

where wi
k+1 denotes the updated location vector of the ith white shark in the (k+1)th

iteration, a and b are binary vectors, with their definitions provided in Equations (16) and
(17). l and u indicate the minimum and maximum limits of the search space. wo is the logic
vector, as shown in Equation (18). f represents the wave motion frequency utilized by the
white shark, as described in Equation (19). rand is a randomly produced number in the
interval 0 to 1.

a = sgn(wi
k − u) > 0 (16)

b = sgn(wi
k − l) < 0 (17)

wo = ⊕(a, b) (18)

Equations (16) and (17) enable the white shark to comprehensively investigate every
possible region within the search area.

f = fmin +
fmax − fmin

fmax + fmin
(19)

Here, fmin and fmax represent the minimum and maximum frequencies of wave
motion. Through accurate analysis and testing of various problems, it is found that when
the values of fmin and fmax are 0.07 and 0.75, respectively, good results can usually be
obtained [36].

mv =
1(

a0 + e(K/2−k)/a1
) (20)

where mv can affect the search capability and a0 and a1 represent two positive constants
that regulate the exploratory and exploitative behaviors.

2.3.4. Moving toward the Best White Shark

Great white sharks can keep close to the ideal prey location. This behavior can be
expressed by Equation (21).

w′ i
k+1 = wgbestk

+ r1
→
Dwsgn(r2 − 0.5) r3 < ss (21)

where w′ i
k+1 indicates the updated location of the ith white shark relative to the prey

location, while sgn(r2 − 0.5) takes values of 1 or −1 to alter the search direction. The

variables r1, r2, and r3 are randomly produced numbers chosen from the interval [0, 1].
→
Dw

quantifies the distance between the white shark and the prey, as outlined in Equation (22).
ss is a parameter reflecting the intensity of the white shark’s olfactory and visual senses
when tracking other sharks near the optimal prey, outlined in Equation (23) [36].

→
Dw = |rand × (wgbestk

− wi
k)| (22)

where rand denotes a randomly chosen number with the range [0, 1], and wi
k indicates the

white shark’s present location relative to wgbestk
.

ss = |1 − e(−a2×k/K)| (23)

where a2 can influence the exploration and exploitation behavior. For the problem ad-
dressed in this study, the value of a2 is set at 0.0005.
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2.3.5. Fish School Behavior

To create a mathematical model of white shark behavior, the best two solutions are
retained, and the locations of other white sharks are adjusted according to these solutions.
The behavior of white sharks is then described by the subsequent formula:

wi
k+1 =

wi
k + w′ i

k+1

2 × rand
(24)

Equation (24) demonstrates that a great white shark can adjust its position based on the
location of another shark that has achieved an optimal position near the prey. Consequently,
the final position of this shark will likely be very close to the best prey within the search area.
The schooling behavior of fish and the tendency of great white sharks to move towards
the most successful sharks exemplify their collective behavior. This pattern allows for
enhanced exploration and exploitation of the environment.

2.4. Temporal Convolutional Network

A TCN is a convolutional neural network specifically designed for sequence modeling
tasks that require causal constraints, such as time series prediction. In the field of deep
learning, commonly used models include RNN and its variants, including LSTM and
Gated Recurrent Unit (GRU). TCN offers a more straightforward and simpler architecture
compared to recurrent frameworks like LSTM and GRU [28].

TCN is optimized on the basis of a traditional CNN. Distinguished from conventional
CNNs, TCNs incorporate unique features such as causal convolution, dilation factor, and
residual block. The architecture of the TCN is detailed in Figure 3.
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To maintain an output length identical to the input length, the Temporal Convolu-
tional Network (TCN) employs a 1D fully convolutional network (FCN) framework. This
methodology ensures that each hidden layer’s length remains consistent with that of the
input layer by utilizing zero padding to keep lengths equal through successive layers. To
avoid future information from influencing past data, TCN implements causal convolution,
where the output at any specific time t is dependent solely on the input at time t and
previous times.

The basic causal convolution in a network can only access historical information
linearly proportional to its depth, posing a challenge for sequential tasks requiring longer



Sustainability 2024, 16, 6102 10 of 20

historical contexts. To address this limitation, dilated convolution is introduced. This
technique expands the reach of the convolution operation, allowing it to cover a broader
span of input data without increasing the network depth, thereby facilitating the processing
of extended historical sequences. For the filter f : {0, 1, . . . , k − 1}, the dilated convolution
operation F on the element s of the one-dimensional sequence (x ∈ Rn) can be expressed
as follows:

F(s) =
(
x∗d f

)
(s) =

k−1

∑
i=1

f (i) · xs−d·i (25)

where d represents the dilation factor, k is the filter size, s − d · i indicates the direction of
the past, and i is the number of filters. When d = 1, dilated convolution reverts to traditional
convolution. To broaden the network’s receptive field, selecting a larger filter size k and
increasing the dilation factor d are effective strategies. A larger receptive field allows the
network to delve deeper into historical data [45]. Figure 3 illustrates the structure of the
dilated causal convolution in the TCN, with a kernel size k = 3 and dilation factors d = [1, 2, 4].

Although the dilation factor is employed to enhance model reach, practical applica-
tions may still encounter significant model depths, leading to challenges such as gradient
vanishing. To address this, a residual block structure similar to that in ResNet can be
incorporated in place of simple connections between layers in the TCN. This adjustment
helps the model more effectively counter issues like gradient vanishing.

2.5. Model Evaluation

To assess the precision of the prediction model, this study employs multiple statistical
metrics. These include the Mean Absolute Error (MAE), Mean Square Error (MSE), Root
Mean Square Error (RMSE), and the coefficient of determination (R2), which are calculated
using the following formulas.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (26)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣yi − ŷi

∣∣∣∣∣ (27)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (28)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(29)

where n represents the number of samples, yi represents the actual value, ŷi then represents
the predicted value, and y represents the average of the actual values.

3. Results and Discussion

In this section, RMSE, MAE, MSE, and R2 are used to evaluate the performance of all
the experimental models on three different PV systems; the experimental models include
MIC-WSO-TCN, MIC-WSO-LSTM, MIC-WSO-BP, and MIC-TCN, which are represented
by TCN2, LSTM, BP, and TCN1 in the figure. In order to evaluate the performance and
accuracy of the proposed model, we use the test dataset to calculate the prediction error of
each season (spring, summer, autumn, winter). The dataset contains the actual photovoltaic
power generation measured in one year, and the power generation data are collected every
5 min. In addition, in order to illustrate the effectiveness of the MIC feature selection
method, the results of the prediction model with feature selection and the prediction model
without feature selection are compared. Taking the dataset of the dual-axis photovoltaic
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system in the summer as an example, the test dataset includes not only sunny days but also
various complex weather conditions such as rainy days and cloudy days. Such a dataset is
closer to the actual demand and can more comprehensively evaluate the predictive ability
of the model. If the CPU is used to train deep learning models with large datasets and
multiple layers, it will take a lot of time. Therefore, this experiment chooses to use GPU to
speed up the training speed, and the GPU memory used in the experiment is 8 GB. Here
are the parameters used to train the model:

(1) The number of epochs selected is 100.
(2) The batch size is equal to 200, which can reduce the training time without affecting

the accuracy of the model.
(3) The learning rate is 0.0015.
(4) The historical sequence input of the model is 15.
(5) The loss function is RMSE.

Based on the data in Table 1, when other conditions are consistent, the model using
MIC feature selection shows lower RMSE, MAE, and MSE values than the model without
feature selection, and the R2 value is also higher. The RMSE of the model after feature
selection decreased from 1.395 to 0.969, and the value of MAE also decreased from 0.528 to
0.386, which decreased by 30.5% and 26.9%, respectively, and the value of MSE decreased
from 1.947 to 0.940, which decreased by 51.7%, while the R2 increased from 0.958 to
0.980, which increased by 23%. It can be seen that the predictive ability of the model has
been significantly improved after the addition of the MIC algorithm. Tables 2–5 show
the prediction accuracy indexes of summer, autumn, winter, and spring, respectively. In
addition, the line charts show the difference between the actual photovoltaic power curve
and the prediction curve of three different photovoltaic systems in four seasons. Each figure
contains five days of prediction samples.

Table 1. Forecasting results comparison of with and without feature selection.

Index Without Feature Selection With Feature Selection

RMSE 1.395 0.969
MAE 0.528 0.386
MSE 1.947 0.940
R2 0.958 0.980

Table 2. RMSE, MAE, MSE, and R2 of different models in summer.

Methods
Dual-Axis Single-Axis Fixed

RMSE
(KW)

MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2

MIC-TCN 1.383 0.584 1.914 0.959 0.253 0.093 0.064 0.947 0.246 0.092 0.061 0.959
MIC-WSO-BP 1.263 0.507 1.591 0.966 0.226 0.081 0.051 0.958 0.260 0.107 0.068 0.955

MIC-WSO-LSTM 1.267 0.624 1.605 0.966 0.221 0.083 0.049 0.960 0.241 0.101 0.058 0.961
MIC-WSO-TCN 0.969 0.386 0.940 0.980 0.195 0.072 0.038 0.968 0.213 0.081 0.045 0.970

Table 3. RMSE, MAE, MSE, and R2 of different models in autumn.

Methods
Dual-Axis Single-Axis Fixed

RMSE
(KW)

MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2

MIC-TCN 1.028 0.365 1.057 0.969 0.196 0.066 0.038 0.977 0.168 0.056 0.028 0.980
MIC-WSO-BP 0.991 0.359 0.982 0.972 0.173 0.057 0.030 0.981 0.177 0.107 0.031 0.978

MIC-WSO-LSTM 0.867 0.337 0.752 0.978 0.195 0.064 0.038 0.976 0.161 0.068 0.026 0.982
MIC-WSO-TCN 0.758 0.273 0.575 0.984 0.153 0.053 0.023 0.986 0.148 0.055 0.022 0.985
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Table 4. RMSE, MAE, MSE, and R2 of different models in winter.

Methods
Dual-Axis Single-Axis Fixed

RMSE
(KW)

MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2

MIC-TCN 0.380 0.177 0.144 0.997 0.108 0.061 0.012 0.993 0.123 0.066 0.015 0.993
MIC-WSO-BP 0.400 0.194 0.160 0.997 0.173 0.079 0.006 0.996 0.118 0.058 0.014 0.994

MIC-WSO-LSTM 0.376 0.238 0.142 0.998 0.094 0.057 0.009 0.995 0.089 0.045 0.008 0.996
MIC-WSO-TCN 0.291 0.151 0.085 0.999 0.058 0.031 0.003 0.998 0.082 0.044 0.007 0.997

Table 5. RMSE, MAE, MSE, and R2 of different models in spring.

Methods
Dual-Axis Single-Axis Fixed

RMSE
(KW)

MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2 RMSE

(KW)
MAE
(KW)

MSE
(KW2) R2

MIC-TCN 0.769 0.331 0.581 0.987 0.141 0.073 0.020 0.981 0.153 0.063 0.023 0.985
MIC-WSO-BP 0.791 0.348 0.625 0.986 0.113 0.050 0.013 0.987 0.136 0.056 0.019 0.988

MIC-WSO-LSTM 0.728 0.357 0.530 0.988 0.116 0.060 0.013 0.987 0.137 0.061 0.019 0.988
MIC-WSO-TCN 0.655 0.304 0.429 0.991 0.083 0.051 0.007 0.993 0.129 0.052 0.016 0.989

Figures 4–6 show the RMSE values of the four hybrid algorithms listed in the tables
for three types of photovoltaic systems across the four seasons (summer, autumn, winter,
and spring). It can be clearly observed that the proposed hybrid method (MIC-WSO-TCN)
achieves lower RMSE values in each season compared to the other three hybrid methods.
The RMSE value of the proposed model is generally higher in summer than in the other
three seasons, while it is at a relatively low level in winter. This is because the dataset
contains more cloudy days in summer (cloudy weather causes significant fluctuations in
photovoltaic output) and more sunny days in winter. Even during periods of severe output
fluctuations, the proposed model maintains a high level of accuracy and outperforms other
comparative models.

Figure 4. Evaluation results of several models (dual-axis).
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Figure 6. Evaluation results of several models (fixed).

Table 2 shows that in summer, compared with the MIC-TCN, MIC-WSO-BP, and
MIC-WSO-LSTM methods, MIC-WSO-TCN has the lowest RMSE values on dual, single,
and fixed photovoltaic systems, which are 0.969 KW, 0.195 KW, and 0.213 KW, respectively.
Compared with MIC-TCN, the RMSE values of MIC-WSO-TCN were reduced by 29.9%,
22.9%, and 13.4% on three different photovoltaic systems, respectively. The MAE values
of the proposed MIC-WSO-TCN model are also lower than other models, and the MAE
values on the three systems are 0.386 KW, 0.072 KW, and 0.045 KW. This indicates a notable
enhancement in the prediction performance of the WSO algorithm upon its integration into
the model. Such improvement can be attributed to the simplicity and robustness of WSO,
which facilitates the rapid and accurate identification of global solutions for challenging
optimization problems, and because WSO does not need to compute the derivatives of
the search space of the relevant problem, it can effectively get rid of the local minima
problem that exists in the actual problem. Figures 7–9 show the prediction results of the
four models in different photovoltaic systems during summer. The figure clearly illustrates
the intermittent nature of solar energy during the summer season due to the mostly cloudy
weather. Even under such complex fluctuating weather conditions, the prediction results of
the method (MIC-WSO-TCN) proposed in this paper can be very close to the actual power
curve. Compared with other methods, the proposed hybrid method is also closer to the
actual power curve than other methods.
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Figures 10–12 show the prediction results of the four models in different photovoltaic
systems during autumn. Table 3 reveals that during autumn, for the dual-axis tracking
photovoltaic system, the proposed method achieves an RMSE of 0.758 KW, compared to
0.991 KW for MIC-WSO-BP and 0.867 KW for MIC-WSO-LSTM. This represents a reduction
in RMSE of 24.5% and 12.6% relative to these methods, respectively. In fixed photovoltaic
systems, the RMSE, MAE, and MSE for the proposed method are 0.148 KW, 0.055 KW, and
0.022 KW2, respectively. The MAE of the proposed method, MIC-WSO-TCN, is 48.6% and
19.1% lower than that of MIC-WSO-BP and MIC-WSO-LSTM. The proposed method also
shows superior performance for single-axis tracking photovoltaic systems. For example,
in autumn, the hybrid method achieves RMSE, MAE, and R2 values of 0.153, 0.053, and
0.986, respectively, while in summer, these values are 0.195, 0.072, and 0.968. This indicates
that the prediction accuracy is higher in autumn than in summer. By examining Figures 8
and 11, it can be observed that the weather conditions in autumn are less intermittent than
in summer, leading to a more stable power generation curve overall. This suggests that the
prediction accuracy of the model improves when there is less fluctuation in photovoltaic
power. Consequently, the proposed method delivers better prediction accuracy in autumn
compared to summer.
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Figures 13–15 show the prediction results of the four models in different photovoltaic
systems during winter. Table 4 shows that in winter, the performance of each model is better.
For the fixed photovoltaic system, the RMSE values of MIC-TCN, MIC-WSO-BP, and MIC-
WSO-LSTM are 0.123, 0.118, and 0.089, respectively, while the RMSE value of MIC-WSO-
TCN is 0.082, which is reduced by 33.3%, 30.5%, and 7.9% from these baselines. In addition,
the proposed model shows extremely high R2 values in three different photovoltaic systems,
which are 0.999, 0.998, and 0.997, respectively. These results show that the model has good
fitting ability. Figure 13 shows that there are more sunny days (days where irradiance does
not vary much during the day and is essentially cloudless) during the winter months, and
that the model can achieve a very high level of prediction accuracy under these weather
conditions. Although the prediction accuracy of the comparison methods is relatively high,
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the performance of the hybrid method (MIC-WSO-TCN) proposed in this paper is still
better than other comparison algorithms. Figures 16–18 show the prediction results of the
four models in different photovoltaic systems during spring. As can be seen from Table 5,
the model proposed in this paper still performs the best.
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This study introduces a novel hybrid approach, MIC-WSO-TCN, and this approach is
applied to predict the output power for three different PV systems (dual-axis, single-axis,
and fixed PV systems) using actual data across all four seasons. The results reveal that
the model excels in predicting power generation with high accuracy during periods of
minimal power generation fluctuation (such as sunny or cloudless weather) and maintains
commendable prediction accuracy even under complex, fluctuating weather conditions.

4. Conclusions

In this study, power output predictions are made for three different PV systems in-
stalled in Alice Springs, Australia. These three photovoltaic systems are a dual-axis tracking
photovoltaic system, single-axis tracking photovoltaic system, and fixed photovoltaic sys-



Sustainability 2024, 16, 6102 18 of 20

tem. This paper proposes a new hybrid deep learning prediction method (MIC-WSO-TCN).
To demonstrate its superiority, it is compared with MIC-TCN, WSO-TCN, MIC-WSO-BP,
and MIC-WSO-LSTM.

It can be seen from the results that the MIC algorithm and WSO algorithm in the
hybrid model are very useful for improving the prediction accuracy. The MIC algorithm is
used to explore the linear and nonlinear correlation in the dataset, and the characteristics
of high correlation are selected more reasonably. After adding the MIC algorithm, the
RMSE decreases from 1.395 to 0.969, and the value of MAE also decreases from 0.528 to
0.386, which decreases by 30.5% and 26.9%, respectively. The novel WSO algorithm is
utilized to optimize the performance of the model. Compared with MIC-TCN, the RMSE
values of MIC-WSO-TCN are reduced by 29.9%, 22.9%, and 13.4% respectively. Taking the
performance of the model in summer as an example, for the dual-axis photovoltaic system,
compared with MIC-WSO-BP and MIC-WSO-LSTM, the RMSE values of MIC-WSO-TCN
are reduced by 23.3% and 23.5%, and the MAE values are reduced by 23.9% and 38.1%. For
the single-axis photovoltaic system, the RMSE values are reduced by 13.7 % and 11.8 %, and
the MAE values are reduced by 11.1% and 13.3%. For the fixed PV system, the RMSE values
decreased by 18.1% and 11.6%, and the MAE values decreased by 24.3% and 19.8%. Overall,
despite the complex operating conditions of real PV systems, the proposed MIC-WSO-TCN
model also performs the prediction task well, obtaining low RMSE, MAE, and MSE values
and high correlation coefficients, both in the summer season when the power generation
fluctuates dramatically, and in the winter season when the power generation is stable. The
proposed model proves to be very effective and robust in predicting the output of different
types of PV systems.

Author Contributions: Conceptualization, Z.Y.; methodology, X.L.; software, X.L.; validation, X.L.;
formal analysis, X.L.; investigation, L.Z.; resources, J.S.; data curation, X.L.; writing—original draft
preparation, X.L.; writing—review and editing, P.T.; visualization, Y.N.; supervision, J.S.; project
administration, J.S.; funding acquisition, J.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Major Program of the National Natural Science Foundation
of China (No. 52090064), partly supported by The Fundamental Research Funds for the Central
Universities (2023JC005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data for this article was obtained from: https://dkasolarcentre.
com.au/locations/alice-springs/ (accessed on 20 October 2023).

Conflicts of Interest: The authors have declared no conflicts of interest.

References
1. Iheanetu, K.J. Solar Photovoltaic Power Forecasting: A Review. Sustainability 2022, 14, 17005. [CrossRef]
2. Mohamad Radzi, P.N.L.; Akhter, M.N.; Mekhilef, S.; Mohamed Shah, N. Review on the Application of Photovoltaic Forecasting

Using Machine Learning for Very Short- to Long-Term Forecasting. Sustainability 2023, 15, 2942. [CrossRef]
3. Rotas, R.; Fotopoulou, M.; Drosatos, P.; Rakopoulos, D.; Nikolopoulos, N. Adaptive Dynamic Building Envelopes with Solar

Power Components: Annual Performance Assessment for Two Pilot Sites. Energies 2023, 16, 2148. [CrossRef]
4. Bhatti, A.R.; Bilal Awan, A.; Alharbi, W.; Salam, Z.; Bin Humayd, A.S.; Praveen, R.P.; Bhattacharya, K. An Improved Approach to

Enhance Training Performance of ANN and the Prediction of PV Power for Any Time-Span without the Presence of Real-Time
Weather Data. Sustainability 2021, 13, 11893. [CrossRef]

5. Mei, F.; Pan, Y.; Zhu, K.; Zheng, J. A Hybrid Online Forecasting Model for Ultrashort-Term Photovoltaic Power Generation.
Sustainability 2018, 10, 820. [CrossRef]

6. Wang, K.; Qi, X.; Liu, H. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural
network. Appl. Energy 2019, 251, 113315. [CrossRef]

7. Gu, W.; Ma, T.; Song, A.; Li, M.; Shen, L. Mathematical modelling and performance evaluation of a hybrid photovoltaic-
thermoelectric system. Energy Convers. Manag. 2019, 198, 111800. [CrossRef]

https://dkasolarcentre.com.au/locations/alice-springs/
https://dkasolarcentre.com.au/locations/alice-springs/
https://doi.org/10.3390/su142417005
https://doi.org/10.3390/su15042942
https://doi.org/10.3390/en16052148
https://doi.org/10.3390/su132111893
https://doi.org/10.3390/su10030820
https://doi.org/10.1016/j.apenergy.2019.113315
https://doi.org/10.1016/j.enconman.2019.111800


Sustainability 2024, 16, 6102 19 of 20

8. Chen, B.; Lin, P.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Very-Short-Term Power Prediction for PV Power Plants Using a Simple and
Effective RCC-LSTM Model Based on Short Term Multivariate Historical Datasets. Electronics 2020, 9, 289. [CrossRef]

9. Wang, F.; Zhen, Z.; Liu, C.; Mi, Z.; Hodge, B.-M.; Shafie-khah, M.; Catalão, J.P.S. Image phase shift invariance based cloud motion
displacement vector calculation method for ultra-short-term solar PV power forecasting. Energy Convers. Manag. 2018, 157,
123–135. [CrossRef]

10. Zaher, A.; Thil, S.; Nou, J.; Traoré, A.; Grieu, S. Comparative study of algorithms for cloud motion estimation using sky-imaging
data. IFAC-PapersOnLine 2017, 50, 5934–5939. [CrossRef]

11. Sharadga, H.; Hajimirza, S.; Balog, R.S. Time series forecasting of solar power generation for large-scale photovoltaic plants.
Renew. Energy 2020, 150, 797–807. [CrossRef]

12. Dolara, A.; Leva, S.; Manzolini, G. Comparison of different physical models for PV power output prediction. Sol. Energy 2015,
119, 83–99. [CrossRef]

13. Zhou, Y.; Wang, J.; Li, Z.; Lu, H. Short-term photovoltaic power forecasting based on signal decomposition and machine learning
optimization. Energy Convers. Manag. 2022, 267, 115944. [CrossRef]

14. Yagli, G.M.; Yang, D.; Srinivasan, D. Automatic hourly solar forecasting using machine learning models. Renew. Sustain. Energy
Rev. 2019, 105, 487–498. [CrossRef]

15. Ali-Ou-Salah, H.; Oukarfi, B.; Mouhaydine, T. Short-term solar radiation forecasting using a new seasonal clustering technique
and artificial neural network. Int. J. Green Energy 2022, 19, 424–434. [CrossRef]

16. Yousaf, M.Z.; Tahir, M.F.; Raza, A.; Khan, M.A.; Badshah, F. Intelligent Sensors for dc Fault Location Scheme Based on Optimized
Intelligent Architecture for HVdc Systems. Sensors 2022, 22, 9936. [CrossRef] [PubMed]

17. Yousaf, M.Z.; Khalid, S.; Tahir, M.F.; Tzes, A.; Raza, A. A novel dc fault protection scheme based on intelligent network for
meshed dc grids. Int. J. Electr. Power Energy Syst. 2023, 154, 109423. [CrossRef]

18. Yousaf, M.Z.; Mirsaeidi, S.; Khalid, S.; Raza, A.; Zhichu, C.; Rehman, W.U.; Badshah, F. Multisegmented Intelligent Solution for
MT-HVDC Grid Protection. Electronics 2023, 12, 1766. [CrossRef]

19. Hua, L.; Zhang, C.; Peng, T.; Ji, C.; Shahzad Nazir, M. Integrated framework of extreme learning machine (ELM) based on
improved atom search optimization for short-term wind speed prediction. Energy Convers. Manag. 2022, 252, 115102. [CrossRef]

20. Ahmad, A.; Jin, Y.; Zhu, C.; Javed, I.; Waqar Akram, M.; Buttar, N.A. Support vector machine based prediction of photovoltaic
module and power station parameters. Int. J. Green Energy 2020, 17, 219–232. [CrossRef]

21. Yu, W.; Liu, G.; Zhu, L.; Yu, W. Convolutional neural network with feature reconstruction for monitoring mismatched photovoltaic
systems. Sol. Energy 2020, 212, 169–177. [CrossRef]

22. Tahir, M.F.; Yousaf, M.Z.; Tzes, A.; El Moursi, M.S.; El-Fouly, T.H.M. Enhanced solar photovoltaic power prediction using diverse
machine learning algorithms with hyperparameter optimization. Renew. Sustain. Energy Rev. 2024, 200, 114581. [CrossRef]

23. Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power
based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [CrossRef]

24. Tahir, M.F.; Tzes, A.; Yousaf, M.Z. Enhancing PV power forecasting with deep learning and optimizing solar PV project
performance with economic viability: A multi-case analysis of 10 MW Masdar project in UAE. Energy Convers. Manag. 2024, 311,
118549. [CrossRef]

25. Elizabeth Michael, N.; Hasan, S.; Al-Durra, A.; Mishra, M. Short-term solar irradiance forecasting based on a novel Bayesian
optimized deep Long Short-Term Memory neural network. Appl. Energy 2022, 324, 119727. [CrossRef]

26. Ghimire, S.; Bhandari, B.; Casillas-Pérez, D.; Deo, R.C.; Salcedo-Sanz, S. Hybrid deep CNN-SVR algorithm for solar radiation
prediction problems in Queensland, Australia. Eng. Appl. Artif. Intell. 2022, 112, 104860. [CrossRef]

27. Raman, R.; Mewada, B.; Meenakshi, R.; Jayaseelan, G.M.; Sharmila, K.S.; Taqui, S.N.; Al-Ammar, E.A.; Wabaidur, S.M.; Iqbal, A.
Forecasting the PV Power Utilizing a Combined Convolutional Neural Network and Long Short-Term Memory Model. Electr.
Power Compon. Syst. 2024, 52, 233–249. [CrossRef]

28. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv 2018, arXiv:1803.01271.

29. Wang, Y.; Zhang, C.; Fu, Y.; Suo, L.; Song, S.; Peng, T.; Shahzad Nazir, M. Hybrid solar radiation forecasting model with temporal
convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm. Energy 2023,
280, 128171. [CrossRef]

30. Shao, Z.; Han, J.; Zhao, W.; Zhou, K.; Yang, S. Hybrid model for short-term wind power forecasting based on singular spectrum
analysis and a temporal convolutional attention network with an adaptive receptive field. Energy Convers. Manag. 2022, 269,
116138. [CrossRef]

31. Qiao, X.; Peng, T.; Sun, N.; Zhang, C.; Liu, Q.; Zhang, Y.; Wang, Y.; Shahzad Nazir, M. Metaheuristic evolutionary deep learning
model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation
and multi-step runoff prediction. Expert Syst. Appl. 2023, 229, 120616. [CrossRef]

32. Pousinho, H.M.I.; Mendes, V.M.F.; Catalão, J.P.S. A hybrid PSO–ANFIS approach for short-term wind power prediction in
Portugal. Energy Convers. Manag. 2011, 52, 397–402. [CrossRef]

33. Jaidee, S.; Pora, W. Very Short-Term Solar Power Forecasting Using Genetic Algorithm Based Deep Neural Network. In
Proceedings of the 2019 4th International Conference on Information Technology (InCIT), Bangkok, Thailand, 24–25 October 2019;
pp. 184–189.

https://doi.org/10.3390/electronics9020289
https://doi.org/10.1016/j.enconman.2017.11.080
https://doi.org/10.1016/j.ifacol.2017.08.1488
https://doi.org/10.1016/j.renene.2019.12.131
https://doi.org/10.1016/j.solener.2015.06.017
https://doi.org/10.1016/j.enconman.2022.115944
https://doi.org/10.1016/j.rser.2019.02.006
https://doi.org/10.1080/15435075.2021.1946819
https://doi.org/10.3390/s22249936
https://www.ncbi.nlm.nih.gov/pubmed/36560301
https://doi.org/10.1016/j.ijepes.2023.109423
https://doi.org/10.3390/electronics12081766
https://doi.org/10.1016/j.enconman.2021.115102
https://doi.org/10.1080/15435075.2020.1722131
https://doi.org/10.1016/j.solener.2020.09.026
https://doi.org/10.1016/j.rser.2024.114581
https://doi.org/10.1016/j.enconman.2017.10.008
https://doi.org/10.1016/j.enconman.2024.118549
https://doi.org/10.1016/j.apenergy.2022.119727
https://doi.org/10.1016/j.engappai.2022.104860
https://doi.org/10.1080/15325008.2023.2217193
https://doi.org/10.1016/j.energy.2023.128171
https://doi.org/10.1016/j.enconman.2022.116138
https://doi.org/10.1016/j.eswa.2023.120616
https://doi.org/10.1016/j.enconman.2010.07.015


Sustainability 2024, 16, 6102 20 of 20

34. Peng, T.; Zhang, C.; Zhou, J.; Nazir, M.S. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on
sine cosine algorithm for hourly solar radiation forecasting. Energy 2021, 221, 119887. [CrossRef]

35. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Ali, R.; Usama, M.; Muhammad, M.A.; Khairuddin, A.S.M. A hybrid deep learning
method for an hour ahead power output forecasting of three different photovoltaic systems. Appl. Energy 2022, 307, 118185.
[CrossRef]

36. Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic
algorithm for global optimization problems. Knowl. Based Syst. 2022, 243, 108457. [CrossRef]

37. Fathy, A.; Alanazi, A. An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel
Cells. Sustainability 2023, 15, 1741. [CrossRef]

38. Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti,
P.C. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [CrossRef] [PubMed]

39. Guo, Z.; Yu, B.; Hao, M.; Wang, W.; Jiang, Y.; Zong, F. A novel hybrid method for flight departure delay prediction using Random
Forest Regression and Maximal Information Coefficient. Aerosp. Sci. Technol. 2021, 116, 106822. [CrossRef]

40. Ma, Y.; Chen, S.; Khattak, A.J.; Cao, Z.; Zubair, M.; Han, X.; Hu, X. What Affects Emotional Well-Being during Travel? Identifying
the Factors by Maximal Information Coefficient. Int. J. Environ. Res. Public Health 2022, 19, 4326. [CrossRef]

41. Data Download|DKA Solar Centre. Available online: https://dkasolarcentre.com.au/download?location=alice-springs (accessed
on 20 October 2023).

42. Benson, B.; Pan, W.D.; Prasad, A.; Gary, G.A.; Hu, Q. Forecasting Solar Cycle 25 Using Deep Neural Networks. Sol. Phys. 2020,
295, 65. [CrossRef]

43. Butcher, B.; Smith, B.J. Feature Engineering and Selection: A Practical Approach for Predictive Models. Am. Stat. 2020, 74,
308–309. [CrossRef]

44. Wang, Y.; Xu, H.; Song, M.; Zhang, F.; Li, Y.; Zhou, S.; Zhang, L. A convolutional Transformer-based truncated Gaussian density
network with data denoising for wind speed forecasting. Appl. Energy 2023, 333, 120601. [CrossRef]

45. Gan, Z.; Li, C.; Zhou, J.; Tang, G. Temporal convolutional networks interval prediction model for wind speed forecasting. Electr.
Power Syst. Res. 2021, 191, 106865. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.energy.2021.119887
https://doi.org/10.1016/j.apenergy.2021.118185
https://doi.org/10.1016/j.knosys.2022.108457
https://doi.org/10.3390/su151511741
https://doi.org/10.1126/science.1205438
https://www.ncbi.nlm.nih.gov/pubmed/22174245
https://doi.org/10.1016/j.ast.2021.106822
https://doi.org/10.3390/ijerph19074326
https://dkasolarcentre.com.au/download?location=alice-springs
https://doi.org/10.1007/s11207-020-01634-y
https://doi.org/10.1080/00031305.2020.1790217
https://doi.org/10.1016/j.apenergy.2022.120601
https://doi.org/10.1016/j.epsr.2020.106865

	Introduction 
	Methodology 
	Overview of PV Systems 
	Data Preprocessing and Data Split 
	White Shark Optimizer 
	The Initialization Process of the WSO 
	Speed of Movement to Prey 
	Advance towards the Ideal Prey 
	Moving toward the Best White Shark 
	Fish School Behavior 

	Temporal Convolutional Network 
	Model Evaluation 

	Results and Discussion 
	Conclusions 
	References

