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Abstract: Human behavior significantly contributes to severe road injuries, underscoring a critical
road safety challenge. This study addresses the complex task of predicting dangerous driving
behaviors through a comprehensive analysis of over 356,000 trips, enhancing existing knowledge
in the field and promoting sustainability and road safety. The research uses advanced machine
learning algorithms (e.g., Random Forest, Gradient Boosting, Extreme Gradient Boosting, Multilayer
Perceptron, and K-Nearest Neighbors) to categorize driving behaviors into ‘Dangerous’ and ‘Non-
Dangerous’. Feature selection techniques are applied to enhance the understanding of influential
driving behaviors, while k-means clustering establishes reliable safety thresholds. Findings indicate
that Gradient Boosting and Multilayer Perceptron excel, achieving recall rates of approximately 67%
to 68% for both harsh acceleration and braking events. This study identifies critical thresholds for
harsh events: (a) 48.82 harsh accelerations and (b) 45.40 harsh brakings per 100 km, providing new
benchmarks for assessing driving risks. The application of machine learning algorithms, feature
selection, and k-means clustering offers a promising approach for improving road safety and reducing
socio-economic costs through sustainable practices. By adopting these techniques and the identified
thresholds for harsh events, authorities and organizations can develop effective strategies to detect
and mitigate dangerous driving behaviors.

Keywords: road traffic safety; naturalistic driving experiment; driving behavior analysis; driving
behavior; harsh events; machine learning

1. Introduction

Road safety is a major concern for the institutions of the European Union and its
national components. According to research conducted by the World Health Organiza-
tion [1], approximately 1.19 million human deaths per year are related to road crashes,
making it the leading cause of fatalities for individuals aged 5–29 years. Consequently,
the European Union has implemented substantial measures to eliminate road fatalities by
adopting Vision Zero, which aims to eradicate fatal road crashes by 2050. This initiative
aligns with sustainable practices by promoting safer transportation systems and reducing
the socio-economic costs associated with road crashes. As outlined by the EU Road Safety
Policy Framework for 2021–2030 [2], the mid-term goal of the Vision Zero project is to
reduce fatalities in road crashes by 50% during the decade 2021–2030, based on the Safe
System approach and using contextual data.

Human behavior is a major factor in causing severe road injuries beyond the roadway
geometric design, traffic volume, and other risk indicators. However, the mechanisms
through which these behaviors lead to crashes remain largely unclear, posing a considerable
challenge in the realm of road safety analytics. Thus, recent studies have focused on driving
behavior analysis by developing appropriate machine and deep learning models to enhance
road safety and optimally detect and quantify the relationships between different features.
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It should be noted that excessive speeding and low-speed conditions and, there-
fore, acceleration-deceleration relationships are key factors in approximately 30% of fatal
crashes [3]. Speed has a direct impact on the frequency and severity of road crashes. A 1%
increase in average speed leads to an increase of approximately 2% in the incidence of mild
injuries from road crashes, 3% in the incidence of serious injuries, and 4% in fatalities [4].
Harsh events, specifically acceleration and braking, play a pivotal role as key indicators in
the evaluation of driving risk, particularly when assessing the degree of driving aggres-
siveness [5]. Therefore, to prevent and classify risky driving behavior, it is important to
highlight the spatiotemporal dimension in which accelerations and brakings take place and
examine their categorization into ‘Dangerous’ and ‘Non-Dangerous’ classes.

This study aims to bridge these gaps through the utilization of advanced machine
learning algorithms that predict dangerous driving behaviors. It leverages a comprehensive
dataset of over 356,000 trips, analyzing patterns of harsh accelerations and braking events
to elucidate their predictive significance for road safety. The establishment of specific
thresholds for ‘Dangerous’ and ‘Non-Dangerous’ driving behaviors furnishes actionable
insights for traffic safety interventions. Employing a variety of analysis techniques, this
study evaluates the impact of driving behavior features on the occurrence and severity of
harsh events through feature selection and regression models. Subsequent developments
include the use of classification algorithms, such as Random Forest, Gradient Boosting,
Extreme Gradient Boosting, Multilayer Perceptron, and K-nearest Neighbors, to categorize
the dependent variables into predetermined safety levels. The k-means clustering method
establishes optimal thresholds for distinguishing between safe and risky driving behavior,
identifying 48.82 harsh accelerations and 45.40 harsh brakings per 100 km as key thresh-
olds. The results indicate that Gradient Boosting and Multilayer Perceptron algorithms
outperform the others, achieving recall rates of approximately 67% to 68% for both harsh
acceleration and harsh braking events.

This research offers an innovative approach to predicting harsh events, with the key
contribution being the distinction between dangerous and non-dangerous driving behavior
based on harsh events. The predictive nature of this study is emphasized by its ability to
anticipate dangerous driving behaviors before they occur. Unlike traditional data-fitting
models, these predictive models utilize real-time data to estimate the likelihood of harsh
events, enabling proactive interventions. This capability is particularly important for
enhancing Advanced Driver Assistance Systems (ADAS), where early warnings about
potentially dangerous driving can significantly improve driver safety and overall road
safety. This integrated approach enhances predictive accuracy and provides valuable
insights for developing effective strategies to mitigate dangerous driving behaviors, thereby
contributing to the overarching goal of improving road safety.

This paper is structured as follows: Firstly, after an overview of the field of road
safety, an extensive literature review is conducted on the analysis of driving behavior using
emerging techniques. Following this, a detailed description of the research methodology is
provided, including the theoretical basis of the models, as well as the data collection and
processing procedures. The study results are then presented, leading to the formation of
conclusions related to road safety.

2. Literature Review

In recent years, with the advancement of Intelligent Transport Systems (ITS), research
has focused on the analysis of driving behavior to make safety systems capable of predicting
and improving dangerous driving behavior. Given this context, several studies have
applied various machine and deep learning techniques to create accurate predictive models.
For instance, Papadimitriou et al. (2019) [6] proposed a methodology to quantify the
correlation between dangerous driving behavior and mobile phone use through naturalistic
driving data analysis. In this study, a model of binary logistic regression was deployed with
an accuracy of 70%, revealing a large correlation between harsh events and mobile phone
use. The study by Yang et al. (2021) [7] aimed to evaluate driving performance in real-time
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by focusing on detecting the optimal number and thresholds for driving safety levels. To
implement the research, three different clustering techniques were applied to the dataset;
the K-means algorithm, hierarchical clustering, and Gaussian Mixture Models (GMM)
combined with the Expectation-Maximization algorithm (EM), resulting in four optimal
safety levels and a Support Vector Machine classification algorithm with 97.9% overall
accuracy. The study of Yarlagadda et al. (2021) [8] proposed a framework using k-means
clustering to identify aggressive driving patterns in heavy passenger vehicle drivers and
revealed 13.5% of accelerations and 34.7% of braking maneuvers as aggressive [8]. The
study establishes thresholds for aggressive maneuvers and demonstrates the heterogeneity
in drivers’ aggressive behavior through k-means clustering, emphasizing its potential
for developing personalized driver assistance systems. Furthermore, Ali et al. (2021) [8]
established the imperative goal of enhancing traffic safety on freeways by proposing an
analysis protocol to distinguish between normal and risky driving in both clear and rainy
weather conditions. The study employs a k-means cluster analysis, to classify driving
patterns into normal and risky conditions, and results showed that risky driving patterns in
rainy conditions start, on average, one second earlier and extend for three seconds longer
compared to clear conditions.

Moreover, Zhang et al. (2016) [9] intended to classify driving behaviors by using only
low-level sensors, such as data collected from the diagnostic outlet of the car (OBD) and
smartphone sensors. Results showed that using the combined dataset of both smartphone
and OBD sensors and applying an SVM algorithm, classification accuracy was 86.67%.
Ghandour et al. (2021) [10] applied a methodology to classify behavior based on different
psychological states of the driver in real driving conditions. This approach was comprised of
several machine learning algorithms, such as Random Forests, Artificial Neural Networks,
and Gradient Boosting, with the alternative behaviors being classified into three separate
psychological levels. As a result, Gradient Boosting was found to be the optimal method to
identify and predict the levels.

In addition, Mumcuoglu et al. (2019) [11] dealt with behavior pattern recognition
based on data collected from a realistic truck model simulator. For this study, a Long Short-
Term Memory (LSTM) algorithm was developed to detect dangerous driving behavior in
short time frames based on a dataset consisting of IMU, GPS, and Radar/LiDAR signals.
Results indicate that the LSTM structure has a substantial capability to recognize dynamic
relations between driving signals in short time frames and could be widely deployed in
prospective analyses.

Several advanced models have demonstrated high efficiency in various applications.
For example, the LSTM-ALO model has been utilized in monthly runoff forecasting, achiev-
ing superior performance due to its ability to capture long-term dependencies [12]. Sim-
ilarly, the ANFIS-PSO model has shown high accuracy in system modeling, effectively
combining the benefits of adaptive neuro-fuzzy inference systems with particle swarm op-
timization [13]. Additionally, the SVM-FFAPSO model has been leveraged for its strengths
in feature selection and parameter optimization, significantly boosting predictive accuracy
in environmental data analysis [14]. Furthermore, the RVM-IMRFO model is recognized
for its robust prediction capabilities, making it effective in handling complex regression
tasks [15]. Despite the proven effectiveness of these advanced models, they require exten-
sive data and high computational resources, which may not be feasible given the current
study’s constraints.

The selected models—Random Forest, Gradient Boosting, Extreme Gradient Boosting,
Multilayer Perceptron, and K-Nearest Neighbors—were chosen for their demonstrated
effectiveness in similar contexts of driving behavior analysis. These models offer several
advantages, including high accuracy, robustness to overfitting, and computational effi-
ciency. Unlike more complex deep learning models, which require extensive data and
computational resources, the chosen models can be effectively trained and deployed with
the available dataset and computational constraints. Additionally, these models provide
interpretable results, which are crucial for understanding the factors contributing to dan-
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gerous driving behaviors and for developing targeted interventions. Furthermore, the key
contribution of this research lies in the distinction between Dangerous and Non-Dangerous
behavior, a critical aspect of road safety and essential for developing effective interventions.
Therefore, simpler models were developed to retain the primary focus of this research on
driving behavior distinction.

Handling imbalanced datasets in machine learning methodology has great significance
in improving the accuracy of the predictive models. Due to the utilization of a real-
world dataset in assessing driving behavior, data imbalance is a known issue concerning
the distribution of instances across different classes (i.e., dangerous and non-dangerous
behavior). The minority class most commonly consists of dangerous behavior samples,
due to the fewer driving delinquent behaviors and overall dangerous conduct compared to
non-dangerous ones. In this regard, Wang et al. (2021) [16] propose a framework for an
automated hyperparameter optimization technique based on Bayesian optimization that
aims to tune and train machine learning algorithms. The inputs of the recognition models
are discrete Fourier transform coefficients of several driving features, and oversampling
was best handled with the combination of the Support Vector Machine-based Synthetic
Minority Oversampling Technique (SVMSMOTE), which can significantly increase the
recognition ability and minimize the designated loss function.

Another study of L. Yang et al. (2018) [17] aimed to classify driving behavior by
correlating it with electroencephalography (EEG) data. For the predictive model to be
optimized, the ADAptive SYNthetic (ADASYN) sampling approach was employed for
adaptively generating minority data samples according to their distributions, with the
highest accuracy reaching 83.50%, suggesting significant correlations between EEG data
and driving behavior. Zhu et al. (2022) [18] propose a novel machine learning framework
for unbalanced time series samples. The meanShift technique was applied to cluster
samples and expand their volume according to sample similarity before employing three
Convolutional Neural Networks (CNN) to classify driving behavior. Results indicate
that using time series samples to generate data in an imbalanced classification could
prove beneficial. Furthermore, in the Katrakazas et al. (2018) [19] study, researchers
exploited raw speed time series data of varying duration using several imbalanced learning
techniques, such as undersampling and its integration with oversampling, resulting in the
best technique being the integrated combination of Repeated Edited Nearest Neighbors
(REEN) with Synthetic Minority Oversampling (SMOTE-ENN) for classes that are difficult
to identify. This study highlights the significance of efficient imbalanced data handling,
showcasing that classification results could be enhanced by up to 40% using imbalanced
learning approaches.

Most of the studies reviewed dealt with distinguishing safety levels based on socio-
demographic characteristics, psychological factors, and driving characteristics such as
speed and headway. This study aims to develop driver risk behavior profiles based on
harsh events, which, to the authors’ knowledge, is an innovative approach and can be a
useful tool in the field of road safety. Most of the studies reviewed dealt with distinguishing
safety levels based on socio-demographic characteristics, psychological factors, and driving
characteristics such as speed, headway, etc. This study aims to develop driver risk behavior
profiles based on harsh events, which, to the authors’ knowledge, is an innovative approach
and can be a useful tool in the field of road safety. The motivation of the current research
arises from the critical need to enhance road safety through the prediction and analysis
of dangerous driving behaviors. The main contribution of this study lies in its innovative
approach to utilizing a comprehensive dataset of over 356,000 trips to identify and analyze
patterns of harsh accelerations and braking events. By establishing specific thresholds for
‘Dangerous’ and ‘Non-Dangerous’ driving behaviors, the research provided actionable
insights that are pivotal for traffic safety interventions. Moreover, the development of
driver risk behavior profiles represents a novel application in the field of road safety. With
the analysis of various factors, such as exposure indicators (i.e., distance, duration), mental
state (i.e., distraction) and driving characteristics (i.e., speed), these profiles help identify
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high-risk drivers and tailor interventions to mitigate potential dangers. This approach
integrates advanced technologies like machine learning, telematics, and Big Data analytics
to create comprehensive and dynamic profiles that evolve with new information. The
ultimate goal is to enhance road safety through personalized strategies, early warnings and
targeted education, thereby fostering a safer driving environment for all road users.

While the potential benefits of incorporating comparisons with deep learning mod-
els and hybrid machine learning models are acknowledged, the current focus is on the
utilization and optimization of advanced traditional machine learning algorithms to en-
sure interpretability and practical applicability for immediate traffic safety interventions.
Given the complexity and resource-intensiveness of deep learning models, such compar-
isons have been reserved for future research, as noted in the limitations section of this
study. This strategic decision allows for the presentation of a clear and actionable set of
findings while laying the groundwork for subsequent investigations into more complex
modeling techniques.

3. Materials and Methods
3.1. Naturalistic Driving Experiment

The naturalistic driving dataset that was exploited for the analysis was collected and
provided by OSeven Telematics, London, UK (https://oseven.io/, accessed on 15 July 2022)
through a specialized and fully trip-integrated smartphone application that records and
collects driving data continuously without any interference with the driving process. The
application operates based on the hardware sensors of the smartphone without using any
other identification equipment. Additionally, a plethora of APIs is used for data reading and
temporary saving in the smartphone database before being transmitted to the company’s
back-end database. The collected data are specially marked spatiotemporally, and after
being stored in the final database, they are converted into driving behavior and safety
indexes through signal processing, machine learning algorithms, data fusion, and Big Data
algorithms. More precisely, the hardware sensors that are exploited include the use of
an accelerometer, gyroscope, magnetometer, and GPS, while the appointed data fusion
techniques are provided by iOS and Android with nine degrees of freedom models (Yaw,
Pitch, Roll), gravity, and linear acceleration, with data recording operating at a maximum
frequency of 1 Hz. Data was recorded continuously throughout each trip at one-second
intervals, ensuring detailed and comprehensive measurement of driving behavior during
the entire trip.

It is important to note that the OSeven Telematics, London, UK platform (https:
//oseven.io/, accessed on 15 July 2022) has explicit privacy policy declarations and adheres
to strong information security measures in accordance with the General Data Protection
Regulation (GDPR) and relevant EU legislation. As a result, OSeven provided all data in an
anonymized format, and no geolocation information for the trips (other than the relevant
country) was included in the dataset.

Figure 1 illustrates the process that is carried out every time the application records a
new trip.
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For this study, the collected and processed data provided by OSeven included record-
ings of 356,162 different trips in an urban road network, with indexes provided for each
trip exclusively amounting to 75. However, our analysis focuses on a subset of 23 key
variables relevant to this study’s objectives. Detailed descriptions of these variables and

https://oseven.io/
https://oseven.io/
https://oseven.io/


Sustainability 2024, 16, 6151 6 of 19

their descriptive statistics can be found in Appendix A Table A1 and Table A2, respectively.
The recordings occurred during the outbreak of the pandemic SARS-CoV-2 (e.g., from
January 2020 to December 2020), with indexes associated with policy measures that gov-
ernments took to tackle the pandemic, such as the Stringency Index and Restrictions Index,
not being included in the analysis due to their irrelevant status at the moment. Overall, the
Naturalistic Driving dataset consists of important risk factors for driving behavior related
to traffic conditions and driver state.

To evaluate the driving quality of each trip, OSeven Telematics provides detailed score
indicators, with their values ranging from 0 to 100, with 100 indicating a behaviorally
perfect trip. The overall score of the user is calculated as the weighted average of the trips’
scores over the last twelve (12) months, where the user was the driver, with distance as the
weighting factor.

3.2. Definition of Driving Behavior Levels

After the examination of previous studies, the optimal methodology for determining
safety levels proved to be clustering techniques [7,8,20]. Upon comparing several different
techniques, the k-means clustering method was selected to find the required numerical
thresholds for every dependent variable, with the given clusters representing the predefined
classes. Thus, two clusters and, therefore, two centroids were selected for the computation.
The subsets underwent renormalization.

The study hypothesis suggests that the k-means clustering method can effectively
distinguish driving behavior into two distinct safety levels (e.g., Non-Dangerous and
Dangerous) based on thresholds determined for harsh acceleration and braking events per
100 km. Additionally, the hypothesis postulates that machine learning algorithms, such as
Random Forest, Gradient Boosting, Extreme Gradient Boosting, Multilayer Perceptron, and
K-Nearest Neighbors, will accurately classify driving behavior into these safety levels.

3.2.1. Based on Harsh Accelerations Events per 100 Km

For the set of harsh accelerations per 100 km, the k-means algorithm performed a
vector quantization of the data into two clusters. The centroids of these clusters, which
represent the average values of the harsh acceleration events within each cluster, were
found to be 5.693 and 91.942 events per 100 km, respectively. These centroids are crucial
as they indicate the central tendency of the two groups (clusters) of data points identified
by the k-means algorithm. The binary distribution value threshold, which differentiates
between “Non-Dangerous” and “Dangerous” driving behavior, was determined by taking
the average of these centroid values. This threshold was calculated to be 48.817 harsh
acceleration events per 100 km, as shown in Figure 2. Therefore, the variable data are
defined as 0 (Non-Dangerous) for values below the threshold and 1 (Dangerous) for values
above it.
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The two clusters resulting from the aforementioned process consisted of 330,395 Non-
Dangerous behavior trips and 25,767 Dangerous behavior trips, with percentages of 93%
and 7%, respectively.

3.2.2. Based on Harsh Braking Events per 100 km

Similarly, the same procedure was performed for the set of harsh braking events
per 100 km. The k-means algorithm resulted in a vector quantization of the data into
two clusters. The centroids of these clusters were found to be 7.975 and 82.835 events per
100 km, respectively. These centroids represent the average values of the harsh braking
events within each cluster. The binary distribution value threshold, which differentiates
between “Non-Dangerous” and “Dangerous” driving behavior, was determined by taking
the average of these centroid values. This threshold was calculated to be 45.405 harsh
braking events per 100 km, as shown in Figure 3.
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The two clusters resulting from the aforementioned process consisted of 315,986 Non-
Dangerous behavior trips and 40,176 Dangerous behavior trips, with percentages of 89%
and 11%, respectively.

To conclude, the use of the k-means algorithm provided specific thresholds for harsh
acceleration and harsh braking events per 100 km to distinguish between Dangerous and
Non-Dangerous driving behavior. The observed thresholds of harsh events per 100 km
may initially seem high; however, this could be attributed to the nature of the driving
conditions, such as urban traffic density or complex road scenarios. It is crucial to highlight
that the identified thresholds are not absolute but are rather contextualized within the
parameters of the studied environment, including a wide range of harsh events that directly
affect the outcomes. Nevertheless, the distribution of this study’s results is consistent with
the literature, meaning that Non-Dangerous behavior instances are the major class while
Dangerous driving behavior instances are the minority class.

The methodological framework on which the present research is based depends on the
various mathematical and statistical concepts of the complex machine learning techniques
applied and of the model acceptance criteria. In particular, the methodological approach is
structured into a Feature Selection, a pre-processing of the provided data, and, finally, a
Classification stage with all the techniques and the relevant theories applied.

3.3. Feature Selection

Among the 23 variables analyzed in this study, those related to harsh acceleration
and harsh braking events were specifically utilized to define driving behavior as either
dangerous or non-dangerous. The remaining variables were evaluated using the feature
selection method to determine their significance in predicting driving behavior and to
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retain the most influential ones, ensuring the highest performance of the models. Feature
selection is a process aiming to identify the more effective independent variables and
segregate them from the totality of variables. It is thought to be an optimization procedure
for classification, as it reduces the possibility of results being deviated due to the excessive
volume of input variables. According to [21], when the input variables are more abundant,
the volume of the space increases so radically that the available data becomes sparse,
leading to an exponential growth within dimensionality; a phenomenon called the “curse
of dimensionality”. According to previous studies [22–24], a permutation importance-based
feature selection is utilized.

According to Figures 4 and 5, the total distance travelled and driving duration have a
major impact on the regression process. Conversely, the time of mobile usage and distance
travelled during dangerous time zones (00:00–05:00) (e.g., risky_hours in Figure 4) have the
least direct effect on the regression process.
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According to the feature importance, the input variables for the classification process
for both harsh acceleration and braking events, are total distance, driving duration, average
driving speed, speeding score, and mobile use score. The following Table 1 displays
some descriptive statistics for the input variables employed in the classification procedure,
including mean, standard deviation, maximum, minimum, and mean values.

In this study, the use of additional noise decomposition methods was not deemed
essential for real-time prediction purposes. Although feature selection helps to eliminate
certain noise by identifying the most significant variables, future research will consider
integrating decomposition techniques such as Empirical Mode Decomposition (EMD) or
Wavelet Transform to further enhance noise management and improve predictive accuracy.
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Table 1. Descriptive statistics for input variables.

Variables Description (Units) Mean St. Dev. Min Max

Total distance Total trip distance (km) 11.60 22.31 0.50 648.68

Driving
duration

Total duration of driving, i.e., duration of
stops has been excluded (s) 769.97 967.15 61.00 23,900.00

Average
driving speed

Average speed while the vehicle is in
motion (km/h) 42.57 17.58 5.57 183.91

Speeding score Excessive speed score (%) 76.52% 32.92 10.00% 100.00%

3.4. Classification Process

To achieve the main objective of this study, (i.e., the identification of dangerous driving
behavior), five classification models were proposed due to their strong performance and
widespread use in the literature for identifying unsafe driving behavior, real-time collision
prediction, and other real-world challenges. The selected algorithms were Random Forest
(RF), Gradient Boosting (GB), Extreme Gradient Boosting (XGBoost, version 1.5.2), K-
Nearest Neighbors (kNN), and Multilayer Perceptron (MLP). The predictive nature of these
models is emphasized by their ability to anticipate dangerous driving behaviors before
they occur, utilizing real-time data to forecast the likelihood of harsh events.

The dataset was divided into a training dataset and a test dataset in order to train and
evaluate the classification algorithms. A training dataset follows the form Xtraining = (xn, yn),
n = 1, N, where xn is a predictor variable and yn = 0.1 is the target variable (in this case y
refers to Dangerous and Non-Dangerous level).

To evaluate and compare the performance of the five models, several key metrics were
employed, described by Equations (1) to (6).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity (recall) =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

f-1 score =
2 × (Precision)× (Recall)
(Precision) + (Recall)

(5)

False alarm rate =
FP

FP + TN
(6)

where true positive (TP) instances correspond to those that belong to class i and were
correctly identified in it; true negative (TN) instances are those that do not belong to class i
and were not classified in it; false positive (FP) cases are those that do not belong to class i
but were wrongly identified as such; false negative (FN) instances are those that do belong
to class i but were not classified as such.

The proposed performance indexes are specifically selected for their ability to provide
a comprehensive and nuanced evaluation of the models’ effectiveness. These metrics
collectively ensure that the models not only identify dangerous driving behaviors accurately
but also minimize false positives and negatives. In practical terms, this means that the
models are effective at correctly identifying risky driving behaviors (reducing the chance
of missing dangerous incidents) and at avoiding misclassifying safe drivers as dangerous
(reducing unnecessary interventions). By adopting these indexes, this study can better
gauge the reliability and robustness of the predictive models, leading to more precise
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and actionable insights for road safety improvements. This comprehensive evaluation
framework significantly enhances the potential for developing effective interventions and
policies aimed at reducing risky driving behaviors, ultimately contributing to greater road
safety and sustainability.

3.4.1. Random Forest (RF)

Ensemble learning approaches combine predictions from multiple weak classifiers to
make a more accurate prediction than a single model. The Random Forest (RF) algorithm
combines ensemble learning methods with the decision tree framework to create multiple
randomly designed trees leading to powerful predictions. In particular, the RF model
employs the bootstrapping and aggregation techniques. The bootstrapping technique
involves training multiple decision trees in parallel using different subsets of the dataset.
The final decision is made by aggregating the decisions of each decision tree. Through Grid
Search, the key parameters found to be optimal were: (a) number of trees/estimators (150),
(b) criterion (‘entropy’), and (c) maximum depth (20).

3.4.2. Gradient Boosting (GB)

Another type of ensemble method is Gradient Boosting (GB), which utilizes multiple
learning algorithms to yield the best predictive ability, in the form of a boosted decision tree
(BDT). The fundamental idea underlying this model is to build the new base learners to be
maximally correlated with the negative gradient of the loss function, associated with the
entire ensemble [25]. Grid Search optimization identified the key parameters as: (a) number
of estimators (200), (b) maximum depth (6), and (c) learning rate (0.1).

3.4.3. Extreme Gradient Boosting (XGBoost)

The Extreme Gradient Boosting (XGBoost) algorithm is an optimized form of the
Gradient Boosting model that operates as a Newton–Raphson algorithm, using a second-
order Taylor approximation, contrary to Gradient Boosting, which relies on gradient descent.
More specifically, XGBoost is an implementation of gradient-enhanced decision trees, in
which trees are generated sequentially with significantly higher model accuracy, in less
computational training time, than standard machine learning models. The key parameters
were found to be: (a) number of estimators (200), (b) maximum depth (6), and (c) learning
rate (0.1).

3.4.4. Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a supplement of a feed-forward neural network. Each
MLP consists of at least 3 node layers: the input layer, the hidden layer, and the output layer,
where each node, except the input layer, consists of an artificial neuron using a nonlinear
activation function. Each neuron of each layer is connected to the previous and next layer,
with this process called neural synapses. A key performance element in classification in
MLPs is the number of hidden layers, between those of input and output. In MLPs, the
basic learning technique used to train all the nodes is called backpropagation. Grid Search
determined that the best parameters were: (a) activation function (‘tanh’), (b) alpha (0.0001),
(c) hidden layer sizes (10, 30, 10), and (d) learning rate (‘adaptive’).

3.4.5. K-Nearest Neighbors (kNN)

The K-Nearest Neighbors (kNN) algorithm is one of the most important and simple to
apply to classification problems, as it does not require any primary knowledge about the
distribution of the data, also overcoming the obstacle of parametric estimates of probability
densities that are difficult to disambiguate [26]. For this reason, this model works most
effectively on relatively small datasets. The kNN classifier is based on considering the
Euclidean distance between a test data sample and training data samples by estimating
their vector. More simply, the algorithm’s operation classifies the data, based on their
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common characteristics, as it assumes that they are in proximity. Using Grid Search, the
number of neighbors was optimized to be (7).

The overall methodological approach of this study offers several unique advantages
that enhance its value and effectiveness. The utilization of a comprehensive naturalistic
driving dataset from OSeven Telematics provides a highly detailed and realistic perspective
on urban driving behavior. With over 356,162 trips recorded at one-second intervals, the
dataset’s high granularity allows for precise and thorough analysis of driving behaviors
and harsh events. This focus on urban driving environments ensures that the developed
models are specifically tailored to address the unique challenges and conditions found
in urban settings, thereby improving their applicability and effectiveness. Moreover, the
methodology includes robust feature selection and the application of advanced machine
learning algorithms. This combination enhances the accuracy and reliability of the models
in distinguishing and predicting Non-Dangerous versus Dangerous driving behaviors. The
k-means clustering method further refines the analysis by establishing optimal thresholds
for harsh events, ensuring a clear and actionable distinction between different safety levels.
By integrating these comprehensive data collection and advanced analytical techniques,
this case study not only improves the predictive power of the models but also provides
valuable insights that can be directly applied to enhance road safety in urban areas.

4. Results

After evaluating approaches employed in previous research [17–19], numerous re-
sampling techniques, including SMOTE and SMOTE-ENN, were examined. To handle
imbalanced datasets and prevent overfitting, the Synthetic Minority Oversampling Tech-
nique (SMOTE) is believed to be the most effective approach [27].

Following the oversampling process based on the SMOTE method, the development of
the five classification models was performed for each category of harsh events (e.g., harsh
acceleration and harsh braking events). As already mentioned, the classification of driving
behavior has a binary form in two individual discrete classes: Dangerous Behavior and
Non-Dangerous Behavior. To ensure optimal performance of the algorithms, a thorough
optimization of hyperparameters was meticulously carried out using GridSearch before
commencing with the model training.

4.1. Evaluation of Classification Models for Harsh Acceleration Events

In order to properly evaluate the models, it is important to highlight that the mis-
classification of driving behavior that belongs to the Dangerous class is the most critical
evaluation because of the potential road safety risk associated with this error. Additionally,
based on the literature on data imbalance problems [28], there is a high risk that accuracy
can lead to misleading conclusions (“accuracy paradox”). Based on the above, according
to Table 2 and Figure 6, additional evaluation metrics such as precision, recall, false alarm
rate, and f-1 score are considered

Table 2. Classification metrics for the developed classifiers for harsh acceleration events per 100 km.

Classification Models Accuracy Precision Recall False Alarm Rate F-1 Score AUC

RF 70.83% 55.16% 66.39% 33.61% 52.64% 73.98%
GB 65.28% 55.15% 68.05% 31.95% 50.25% 75.10%

XGBoost 66.76% 55.09% 67.46% 32.54% 50.86% 74.26%
MLP 68.16% 55.26% 67.65% 32.35% 51.63% 74.67%
kNN 72.70% 53.46% 60.08% 39.92% 51.47% 64.55%

Notably, the five models achieved reasonable accuracy and recall compared to the
precision metric. Based on the provided FNR scores, the models generally achieved
satisfactory results in terms of capturing instances of dangerous driving behavior. A high
recall indicates that the model is effective at capturing the majority of actual dangerous
instances, reducing the chances of false negatives. Consequently, a lower false alarm
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rate implies a smaller proportion of dangerous instances being incorrectly classified as
non-dangerous. Given that misclassifying dangerous incidents as non-dangerous poses
significant road safety risks compared to the other way around, it is concluded that recall,
false alarm rate, and AUC score are the most important metrics evaluated.
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The ROC curves presented in Figure 7 further illustrate the performance of the best-
performing models—Gradient Boosting (GB) and Multilayer Perceptron (MLP). The ROC
curve for GB (Figure 7a) demonstrates a strong ability to distinguish between dangerous
and non-dangerous driving behaviors, with an area under the curve (AUC) that indicates
high overall performance. Similarly, the ROC curve for MLP (Figure 7b) shows comparable
effectiveness, underscoring the robustness of these models in capturing true positive rates
while maintaining low false positive rates.
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Overall, the models performed adequately in terms of predictive ability and at rela-
tively similar performance levels compared to each other. The Gradient Boosting (GB) and
Multilayer Perceptron (MLP) classifiers provide the best results in terms of recall and false
alarm rate among the five models, with GB slightly outperforming MLP. Also, both models
scored satisfactory AUC scores, 75.1% for the GB model and 74.67% for the MLP model,
which means that the performance of the algorithm is relatively good.
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4.2. Evaluation of Classification Models for Harsh Braking Events

Similar to the analysis for harsh acceleration events, additional evaluation metrics were
examined due to the imbalanced dataset and the hidden risk of the “accuracy paradox”.
Based on Table 3 and Figure 8, the five models achieved satisfactory performance in
identifying dangerous driving behavior.

Table 3. Classification metrics for the developed classifiers for harsh braking events per 100 km.

Classification Models Accuracy Precision Recall False Alarm Rate F-1 Score AUC

RF 67.78% 57.20% 66.48% 33.52% 55.09% 73.62%

GB 63.36% 57.36% 67.91% 32.09% 53.13% 74.88%

XGBoost 64.53% 57.20% 67.30% 32.70% 53.60% 74.28%

MLP 62.96% 57.29% 67.80% 32.20% 52.88% 74.69%

kNN 68.45% 54.88% 60.55% 39.45% 53.19% 65.00%
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Overall, the five models demonstrated strong performance metrics similar to those
observed in the analysis of harsh acceleration events. Nevertheless, the Gradient Boosting
(GB) and Multilayer Perceptron (MLP) models outperformed the rest in terms of recall and
false alarm rate. As mentioned in Section 4.1, these metrics are the most crucial for the
hypothesis of this research. Moreover, GB and MLP achieved adequate AUC score with
similar results 74.88% and 74.69%, respectively.

The ROC curves for harsh braking events, illustrated in Figure 9, provide additional
insights into the performance of the best-performing models. The ROC curve for GB
(Figure 9a) shows a robust performance, indicating its ability to effectively discriminate
between dangerous and non-dangerous driving behaviors. The AUC score for GB reflects
a strong overall performance, ensuring that the model captures a high proportion of true
positives while maintaining a low rate of false positives. Similarly, the ROC curve for
MLP (Figure 9b) demonstrates its competency in identifying dangerous driving behaviors
associated with harsh braking. The model maintains a balance between sensitivity and
specificity, evidenced by the high AUC score. This indicates that the MLP model is highly
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reliable in predicting harsh braking events, thereby minimizing the risks of misclassification
and enhancing road safety interventions.
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5. Discussion

Regarding feature selection and feature importance, distance and total trip duration
emerged as the most important factors affecting the identification of driving behavior.
An increase in the distance traveled and the total duration typically worsens the driver’s
behavior, as signs of fatigue, sleepiness, and impaired perception appear, reaction time is
affected, and psychomotor coordination is burdened. Moreover, vehicle speed was found to
be an important parameter for sudden incidents and contributes significantly to accidents
and dangerous driving behavior in general, confirming international literature.

Increased speed leads to a rapid decrease in the driver’s perception and corresponding
reaction to external factors. Finally, it is worth noting that driving during the dangerous
time zone (00:00–05:00) (e.g., risky_hours) is not strongly associated with harsh events
compared to other factors. The data suggest that lower traffic and pedestrian volumes
during these hours might mitigate the occurrence of risky behaviors typically expected due
to reduced visibility and increased driver fatigue. The feature selection process used in this
study is of great importance. By carefully identifying the features of driving behavior that
significantly impact harsh events, the research highlights the key factors that contribute
to road crashes. This knowledge strengthens the field of road safety as well as empowers
researchers and safety experts to focus on specific aspects of driving behavior that require
attention and intervention, streamlining efforts to mitigate risky behaviors and reduce the
incidence of serious road injuries.

In addition, the use K-means clustering method, established optimal safety thresholds
of harsh events to distinguish driving behavior between ‘Dangerous’ and ‘Non-Dangerous’:
(a) 48.82 harsh accelerations per 100 km and (b) 45.40 harsh brakings per 100 km. By
utilizing the K-means clustering method and analyzing naturalistic driving data, this
framework provides a systematic approach to categorizing driving behavior on safety
levels based on naturalistic driving data. Most field studies gravitate towards identifying
and classifying into more than two safety levels, whereas this paper is solely focused on
binary classification. Moreover, this study provides original thresholds for the distinction
between dangerous and non-dangerous driving behavior as well as actionable criteria
for traffic safety applications, presenting a methodological advancement over traditional
heuristic-based approaches.

To handle the problem of an imbalanced distribution of minority classes, the SMOTE
technique was chosen, as the variations in the data were particularly strong and the
proportion of the majority class was very large. SMOTE proved to be an effective method
for large and multilevel data, validating the scientific community worldwide. However,
future research should consider exploring more sophisticated over-sampling techniques
such as SVM-SMOTE and SMOTE-Tomek.
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In the analysis of harsh driving behaviors, the data were analyzed separately for
each category based on two categories of harsh incidents: (a) harsh acceleration events
and (b) harsh braking events. Subsequently, five machine learning algorithms—Random
Forest (RF); Gradient Boosting (GB); Extreme Gradient Boosting (XGBoost); Multilayer
Perceptron (MLP); and K-Nearest Neighbors (kNN)—were meticulously developed and
employed to predict these behaviors. The GB and MLP models were found to have the
highest predictive ability for risky driving behaviors compared to the other algorithms for
both categories of harsh events (e.g., harsh acceleration events and harsh braking events).
According to Ghandour et al. (2021) [10], the gradient boosting algorithm outperforms
ANN and RF classifiers, striking a significant 60% on accuracy and macro f-1 and 59% on
macro precision and macro recall, in comparison to the present study’s 63.4%, 53.1%, 57.4%,
and 67.9%, respectively. This is due to the algorithm’s ability to use clone decision trees
with exemplary flexibility. While in present research MLPs are not greatly outperformed by
GB, with a notable 63% in accuracy, 57.3% in precision, 67.8 in recall, and 52.9% in f-1 score.
A serious decrease in performance is observed in Ghandour et al. (2021) [10] study with a
30% decrease in accuracy and macro precision, 28% in macro recall, and 27% in macro f-1
score. Nonetheless, deep learning models, such as Convolutional Neural Networks (CNN),
Recurrent Neural Networks (RNN), or Long Short-Term Memory (LSTM), due to their
training ability and auto-corrective nature, could be investigated as a promising alternative
to traditional machine learning approaches in future research, allowing for the automatic
extraction of complex features and the capture of non-linear relationships for improved
classification performance and generally producing better results on multilevel contextual
data, which this study is associated with. Due to limitations of processing power and time,
these analyses could not be performed during the time of this study.

The classification models developed contribute additional insights to the existing
literature and research in the field of driving behavior analysis. The classification models
developed in this research not only contribute additional insights to the existing literature
and research in the field of driving behavior analysis but also represent a significant
advancement in the quest for improved road safety measures. By employing machine
learning algorithms specifically designed for imbalanced datasets, the models demonstrate
a robust ability to detect, classify, and predict dangerous driving behavior and harsh events
with remarkable accuracy. Comparing and evaluating the five algorithms showed that
the differences were not significant. This phenomenon supports the hypothesis that the
dependent variables of harsh events were well clustered by the K-means method at two
safety levels and proves that these algorithms are efficient for classifications at two-class
safety levels. In the future, clustering using the Gaussian Mixture Model (GMM) can be
investigated and may prove to be particularly useful due to the Gaussian distribution of
the variables.

Overall, this study offers a viable alternative approach for harsh event prediction
through a thorough investigation of human behavior in road safety. The insights obtained
contribute significantly to the field’s background knowledge and have far-reaching impli-
cations for road safety enhancement efforts. The practical applications of these findings
are particularly crucial for policymakers and driving behavior analysts, who can leverage
the identified thresholds for harsh driving behaviors to develop dynamic interventions.
Specifically, the model’s ability to differentiate between dangerous and non-dangerous
driving behaviors provides a robust foundation for real-time adaptive speed management
systems, significantly mitigating the risk of crashes in high-risk zones. Furthermore, the
integration of these advanced machine learning techniques into existing vehicular telemat-
ics systems could enhance predictive accuracy and operational efficiency, offering traffic
management authorities the capability for immediate response to potential harsh driving
events. Additionally, this research can inform the development of personalized driver
training programs, targeting the mitigation of risky behaviors identified through the analy-
sis. By embedding these research findings into practical road safety measures, significant
advancements can be achieved, aligning with global safety initiatives (i.e., Vision Zero).
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Finally, the key novelty of this research lies in the distinction between Dangerous and
Non-Dangerous behavior based on harsh events employing the K-means technique. This
distinction and the context in which it is performed can extend the existing literature and
provide important insights into the field of road safety, specifically in profiling drivers
according to the number of harsh events.

6. Conclusions

This paper proposes a comprehensive framework for analyzing and classifying driv-
ing behavior as Dangerous or Non-Dangerous. The framework involves defining safety
levels using clustering algorithms, selecting relevant features, and addressing imbalanced
datasets. A naturalistic driving experiment collected data through OSeven Telematics’
specialized smartphone application, focusing on harsh acceleration and harsh braking
events. Five machine learning algorithms were developed: Random Forest (scikit-learn
version 1.0.2), Gradient Boosting (scikit-learn version 1.0.2), XGBoost (version 1.5.2), Multi-
layer Perceptron (scikit-learn version 1.0.2), and K-Nearest Neighbors (scikit-learn version
1.0.2), with Gradient Boosting and Multilayer Perceptron demonstrating superior predictive
ability for both harsh event categories.

Although the key contribution of this research lies in the distinction of driving behavior
(e.g., dangerous, and non-dangerous) based on harsh events using the k-means clustering
technique, there are certain limitations that future studies need to address. Firstly, future
research could explore deep learning models such as CNN, RNN, or LSTM to enhance
classification accuracy and predictive power. Due to limitations in processing power and
time, these models were not employed in this research. Additionally, alternative feature
importance measurement methods such as the Bayesian Information Criterion or Akaike
Information Criterion could provide further insights into the factors influencing dangerous
driving behavior, and the potential of Gaussian Mixture Models as an alternative insightful
clustering method. Moreover, this study focused solely on urban road networks, which
may limit the generalizability of the findings to other types of driving environments such
as rural or highway settings. Hence, future research should expand this study to include
different driving environments to validate and generalize the findings. Furthermore, the
dataset was collected during the SARS-CoV-2 pandemic, encompassing both lockdown
and non-lockdown periods, which could have influenced driving behavior in ways that
may not be typical during normal periods. Therefore, future studies should consider the
temporal dynamics of driving behavior, exploring how driving patterns evolve over time
and under different conditions, including external factors such as weather. By addressing
these limitations, the robustness and applicability of the findings can be further enhanced,
ultimately contributing to the field of road safety.

This paper makes a significant contribution to machine learning analyses of driving
behavior, offering insights into data manipulation and handling. The utilization of compre-
hensive driving profiles, particularly focusing on the analysis of harsh accelerations and
brakings, holds potential for personalized driver feedback, enhanced training programs,
and advancements in the automotive industry.
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Appendix A

Table A1. Description of the data collected from the OSeven database.

Variable Unit Description

duration s Total duration of the route

total_distance km Total distance traveled

total_score % Total score

speeding_score % Excessive speeding score

mu_score % Mobile usage score during the route

hb_score % Score of sudden decelerations

ha_score % Score of sudden accelerations

risky_hours km Distance traveled during risky hours zone (00:00–05:00)

ha - Sudden accelerations on a route

hb - Sudden decelerations on a route

sum_speeding s Total duration of driving with excessive speed on a route
(Speed limit + Tolerance limits)

av_speeding_kmh km/h Average driving speed during speed limit exceedance

time_mobile_usage s Total duration of mobile usage on a route

driving_duration s Total driving duration (excluding situations of vehicle
immobility/stop, parking)

ha/100 km - Sudden accelerations per 100 km

hb/100 km - Sudden decelerations per 100 km

avg speed km/h Average speed of route

time_mobile_usage/driving duration s/s Mobile usage duration per unit of total driving duration

sum_speeding/driving duration s/s Driving duration with excessive speed per unit of total
driving duration

av_speeding_kmh_no_changer km/h Average difference between driving speed and speed limit

avg driving speed km/h Average driving speed

GRdriving % Percentage daily difference in load of passenger car drivers
compared to pre-pandemic conditions

GRwalking % Percentage daily difference in load of passenger car drivers
compared to pre-pandemic conditions

Table A2. Descriptive statistics of the collected variables.

Variable Mean Standard
Deviation Variance Min Max

duration 962.04 1093.98 1.197 × 106 61.0 25,549.0

total_distance 11.6 22.31 4.979 × 102 0.5 648.68

total_score 75.66% 23.47 5.510 × 102 10.00% 100.00%
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Table A2. Cont.

Variable Mean Standard
Deviation Variance Min Max

speeding_score 76.52% 32.92 1.084 × 103 10.00% 100.00%

mu_score 80.53% 34.62 1.198 × 103 10.00% 100.00%

hb_score 79.20% 21.35 4.558 × 102 10.00% 100.00%

ha_score 81.59% 19.74 3.897 × 102 10.00% 100.00%

risky_hours 0.37 4.01 1.606 × 10 0.0 427.7

ha 0.89 1.97 3.882 0.0 121.0

hb 1.26 2.2 4.856 0.0 87.0

sum_speeding 65.63 194.31 3.776 × 104 0.0 7697.0

av_speeding_kmh 4.0 6.03 3.633 × 10 0.0 314.16

time_mobile_usage 39.11 159.27 2.537 × 104 0.0 9901.0

driving_duration 769.97 967.15 9.354 × 105 61.0 23,900.0

ha/100 km 11.95 27.86 7.763 × 102 0.0 597.01

hb/100 km 16.39 29.76 8.858 × 102 0.0 819.67

avg speed 35.13 18.89 3.567 × 102 1.96 262.52

time_mobile_usage/driving
duration 0.05 0.14 2.079 × 10−2 0.0 0.99

sum_speeding/driving duration 0.06 0.11 1.133 × 10−2 0.0 1.0

av_speeding_kmh_no_changer 9.51 11.11 1.234 × 102 0.0 329.16

avg driving speed 42.57 17.58 3.091 × 102 5.57 323.91

GRdriving 109.64 55.88 3.123 × 103 0.0 241.14

GRwalking 114.35 61.94 3.837 × 103 0.0 254.21
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