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Abstract: The shield tunneling method is commonly used in the development and construction of
underground spaces, and the adjustment of its parameters is a crucial part of shield construction.
However, there are relatively few studies on optimizing tunneling parameters from a sustainable
perspective, with a focus on energy saving and emission reduction. This study addresses this gap
by combining engineering geological conditions with shield machine propulsion parameters in a
specific section of metro construction in China. By aiming to reduce power consumption and improve
efficiency, an improved particle swarm optimization algorithm based on the concept of Pareto
optimal solutions was employed to optimize the tunneling parameters. The results demonstrated
that the optimized parameters reduced power consumption and improved efficiency. This validates
the feasibility of the optimization scheme and its potential for broader applications in sustainable
underground construction.
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1. Introduction

As urban population density continues to rise, traffic congestion becomes increasingly
severe, making the development of underground transportation networks an inevitable
solution. The complex ground conditions in cities often make open-cut methods impractical
for tunnel construction. The shield tunneling method, with its high degree of mechanization,
labor-saving benefits, and minimal impact on the surface environment, has thus been widely
adopted for many underground projects.

However, shield machines, being large-scale equipment, consume a significant amount
of energy and produce emissions during tunneling, posing considerable challenges in terms
of cost control, construction schedule adherence, and environmental protection. In the face
of global carbon emission concerns, reducing tunneling power consumption has become a
critical goal in shield construction. Nonetheless, reducing power consumption may lead to a
decrease in construction efficiency. Therefore, balancing power consumption and efficiency
through the optimization of tunneling parameters presents a significant challenge.

Tunneling parameters reflect the specific conditions during construction, including
geological conditions and shield posture. Many researchers have explored the information
embedded in these parameters to identify directions for optimizing shield construction.
With the rapid development of big data technology, integrating big data and intelligent
algorithms into the engineering sector has become a popular research focus. Li Xue et al. [1]
analyzed the characteristics and main influencing factors of shield tunneling thrust, propos-
ing a mechanical mathematical modeling method based on field tunneling parameters and
dimensional theory, thereby improving thrust calculation accuracy. Zhang Yakun et al. [2]
developed a set of dimensionless, multi-objective tunneling performance evaluation in-
dicators that could be used to match intelligent shield operation systems, providing a
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framework for intelligent parameter optimization. Wu Huiming et al. [3] utilized large
volumes of construction data to build models using support vector machine algorithms to
predict shield posture and optimize construction parameters. Zhang Z.L. et al. [4] addressed
the shortcomings of traditional machine learning methods that require a large number
of training samples by constructing a data-driven and physics-informed neural network
model (PINN) to predict tunneling-induced surface settlement, aiming to enhance the
intelligence of surface settlement control during shield tunnel construction. Men Yanqing
et al. [5] defined tunneling efficiency from the perspective of tunneling power consumption
and proposed methods for analyzing and evaluating this efficiency. Lee H.L. et al. [6]
employed an ARIMAX-based walk forward (WF) prediction method to evaluate the perfor-
mance of two different tunnel boring machines (TBMs), showing that the ARIMAX-based
WF could provide reasonable operating conditions and time-varying data for TBMs, which
could be used to make decisions that improved excavation performance. Cardu M. et al. [7]
collected significant technical and mechanical parameters from numerous tunnels and
performed statistical analysis using Microsoft Excel 2016, developing predictive models
that estimated construction time during the preliminary design stage and evaluated the
mechanical and operational parameters of TBMs. Xu Li et al. [8] proposed a new architec-
ture for predicting TBM responses using a 2D convolutional neural network (2D-CNN)
with dual input strategies, overcoming the traditional models’ inability to learn the impacts
of control parameters, thus providing a foundation for timely optimization of TBM control
parameters during tunneling. Wang H. et al. [9] considered several important performance
aspects of TBMs during tunneling and used a differential evolution algorithm to solve
multi-objective optimization problems. Gokceoglu C. et al. [10] predicted TBM performance
by utilizing geological and geotechnical parameters along the tunnel and basic TBM param-
eters with a random forest algorithm, achieving favorable results. Agrawal A.K. et al. [11]
considered five main process control parameters, including machine control parameters,
cutter design parameters, and rock physical parameters. By analyzing cutter penetration
rates and wear, they determined optimal values for thrust and torque to control cutter wear
while maintaining an acceptable TBM penetration rate. Vieira J.T. et al. [12] optimized
robust models and material removal rate deterministic models through evolutionary multi-
objective methods, finding that multi-objective robust evolutionary results were superior
to scalarization methods used for comparison purposes.

Currently, research on optimizing shield tunneling parameters focuses mainly on
prediction, aiming to guide subsequent parameter selection by analyzing relationships
among key parameters. However, studies that explore optimization opportunities from
successful tunneling parameters are relatively rare, particularly those targeting power
consumption and efficiency. Therefore, this study aims to reduce tunneling power con-
sumption and enhance efficiency by applying an improved particle swarm optimization
(PSO) algorithm combined with Pareto optimality principles. By exploring optimization
directions from existing data and considering the multi-factor constraints of tunneling
and geological parameters, this study seeks to develop a method for optimizing shield
tunneling parameters that addresses both power consumption and efficiency.

2. Parameters
2.1. Power Consumption and Efficiency Calculation Methods

Power consumption of shield tunneling mainly consists of thrust power consumption
and cutting power consumption [13]. The calculation methods are as follows:

Ptotal = Pthrust + Pcutting (1)

Pthrust = Fthrust × vthrust (2)

Pcutting = T × ω = 2πTn (3)

where Ptotal is the total power consumption of shield tunneling, Pthrust and Pcutting are
the power consumed by thrust and cutting respectively. Fthrust,Vthrust are the thrust force
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and thrust velocity of a specific ring, and T, n are the torque and rotational speed of the
cutterhead for that ring.

The efficiency of shield tunneling is typically evaluated by the penetration rate [14],
which is calculated as follows:

Ep = hp =
vthrust

n
(4)

where Ep is the tunneling efficiency and hp is the penetration rate (mm/r).
By optimizing the shield tunneling parameters involved in these formulas, we aim

to reduce power consumption while improving tunneling efficiency, achieving optimal
performance in shield construction.

2.2. Data Selection

Tunneling parameters directly influence efficiency calculations, but they are also
affected by geological parameters. From the data extracted from the shield machine, we
can obtain total thrust force, cutterhead torque, cutterhead rotational speed, and thrust
speed. Integrating the geological data, we identified a total of 26 geological parameters
that needed to be filtered to determine the key parameters for analyzing and evaluating
tunneling efficiency, thereby enhancing the specificity and efficiency of the analysis.

The relationships between geological parameters can be evaluated using correlation
analysis. Using Python 3.12.4. and the Seaborn library, a heatmap was generated to
show the correlations among geological parameters (Figure 1). In the heatmap, the darker
colors indicate stronger positive correlations, while lighter colors indicate stronger negative
correlations. The heatmap revealed strong correlations among geological parameters that
reflect the properties of the tunneling soil layer and significant correlations among some
geological parameters reflecting the properties of the overlying soil layer.
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The relationships between geological and tunneling parameters can be analyzed
using supervised learning. A random forest algorithm [15] was employed for supervised
learning to analyze the relationships between tunneling parameters (total thrust force,
cutterhead torque, cutterhead rotational speed, and thrust speed) and geological parameters.
Although the random forest itself does not directly calculate correlation coefficients, it helps
us more specifically analyze the geological parameters that have a significant impact
on the tunneling parameters by evaluating the influence of geological parameters on
tunneling parameters and ranking them by importance. The results indicated that the
top four key geological parameters were depth, density of the overlying soil, geological
engineering classification of the overlying soil, and density of the excavation soil. According
to the correlation analysis, density strongly correlated with other parameters, reflecting
the engineering properties of both the overlying and excavation layers. The geological
engineering classification [16] consists of six levels, ranging from I to VI: loose soil, common
soil, hard soil, soft rock, medium-hard rock, and hard rock. This classification reflects the
excavation difficulty and the uniaxial saturated compressive strength of the soil layers.
Since the geological engineering classification of the overlying soil can be derived from
parameters such as density and compressive strength, and considering the correlations
among geological parameters and the results of supervised learning, depth, density of the
overlying soil, and density of the tunneling soil were ultimately selected as the three key
geological parameters for analyzing and evaluating power consumption and efficiency.

3. Project Overview
3.1. Section Division

The project under study was a section of Line 6 of the Changsha Metro. Based on the
characteristics of the overlying soil layers in this section, it was divided into three major
sections: A, B, and C. The specifics are as follows:

Section A: The overlying layer mainly consisted of slate and fill soil, with a high
density, mostly between 2080 and 2100 kg/m3.

Section B: The overlying layer contained some silty clay, resulting in a slight decrease
in density.

Section C: The overlying layer was predominantly silty clay, with the presence of
gravel layers, and an average density of approximately 2000 kg/m3.

Considering the variations in depth, overlying soil layers, and tunneling soil layers, a
more detailed subdivision of the major sections was conducted. The specific divisions are
shown in Table 1, and the trends in geological parameters are illustrated in Figure 2.

Table 1. Section Division.

Sections Section Number Ring Number Range Overlying Soil Layer Excavation Soil Layer

A
1 1–47 Completely weathered slate

Highly weathered slate
Highly weathered slate

Moderately weathered slate

2 48–80
Plain fill

Completely weathered slate
Highly weathered slate

Highly weathered slate
Moderately weathered slate

3 81–127
Plain fill

Completely weathered slate
Highly weathered slate

Highly weathered slate

B
1 128–207

Plain fill
Silty clay

Completely weathered slate
Highly weathered slate

Highly weathered slate

2 208–247
Plain fill

Completely weathered slate
Highly weathered slate

Highly weathered slate
Moderately weathered slate
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Table 1. Cont.

Sections Section Number Ring Number Range Overlying Soil Layer Excavation Soil Layer

C

1 248–267
Plain fill
Silty clay

Completely weathered slate
Highly weathered slate

2 268–307 Silty clay
Completely weathered slate

Completely weathered slate
Highly weathered slate

3 308–327
Silty clay

Completely weathered slate
Highly weathered slate

Highly weathered slate

4 328–368

Plain fill
Silty clay
Boulders

Completely weathered slate
Highly weathered slate

Highly weathered slate
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In Section A, the depth ranged from 14.2 to 16.3 m, with significant variation in depth
in subsection A-1. The density of the tunneling soil layer varied greatly in subsections A-1
and A-2, while the overlying soil layer showed minor variations. In subsection A-3, the
tunneling soil layer was uniform, but the overlying soil layer varied significantly compared
to the previous two subsections.

In Section B, subsection B-1 showed minor depth variations, and the tunneling soil
layer was uniform, consisting of highly weathered slate. In subsection B-2, the depth varia-
tion was larger, and the tunneling soil layer consisted of a composite of highly weathered
slate and moderately weathered slate, with significant density variations and a standard
deviation of 92.24 kg/m3.

Section C had an overall shallower depth, ranging from 10.6 to 12.6 m. Except for
subsection C-2, the other three subsections had uniform tunneling soil layers. In subsec-
tion C-2, the tunneling soil layer was composite, but the density variation was small, with
a standard deviation of 8.92 kg/m3.

3.2. Tunneling Parameters for Each Section

The average tunneling parameters for each section are shown in Table 2, with power
consumption and efficiency illustrated in Figures 3–5. In Section A, the average tunneling
efficiency ranged from 19 to 28 mm/r, but the highest total power consumption among
all sections. The tunneling efficiency was medium to low and fluctuated significantly. In
Section B, the total power consumption was moderate, with an average tunneling efficiency
similar to that of Section A, ranging from 19 to 28 mm/r, but with a more stable tunneling
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efficiency. Section C had the lowest total power consumption, but an average tunneling
efficiency ranging from 27 to 33 mm/r, which was the highest among the three sections.

Table 2. Tunneling Parameters for Each Section.

Section Thrust Force
(kN)

Torque
(kN·m)

Rotation Speed
(r/min)

Thrust Speed
(mm/min)

A-1 14,587 3390 1.51 28.57
A-2 13,710 3328 1.49 34.67
A-3 15,162 3412 1.48 41.38
B-1 12,529 2259 1.51 29.15
B-2 11,535 2674 1.48 41.35
C-1 11,150 2254 1.51 44.80
C-2 8905 1470 1.49 49.10
C-3 8475 1175 1.52 47.65
C-4 10,376 1424 1.51 41.00
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4. Parameter Optimization
4.1. Optimization Model Selection

Low power consumption and high efficiency are somewhat contradictory goals. There-
fore, in parameter optimization, it is necessary to consider both energy saving and effi-
ciency through multi-objective optimization to determine the optimal range and direction
of parameter adjustments. The Pareto optimality method [17] can yield multiple feasible
solutions, each of which cannot be improved in any optimization objective without dete-
riorating another objective. Key concepts in this context are Pareto solutions, the Pareto
optimal set, and the Pareto front.

The distribution of solutions obtained from multi-objective optimization is shown in
Figure 6. Suppose there are two solutions, A and B. If solution A performs better than
solution B in all optimization objectives, then A is said to dominate B. Furthermore, if there
is no other solution that dominates A, then A is a non-dominated solution, also known as a
Pareto solution. These non-dominated solutions collectively form the Pareto optimal set,
and in the objective space, they constitute the Pareto front. All solutions on the Pareto front
are not dominated by any solutions outside the front.
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In addition, the following indicators can be used to measure the condition and quality
of the Pareto solution:

The size of the Pareto optimal set: Refers to the number of solutions in the Pareto
solution set. Theoretically, if the design variables in an optimization problem are continuous,
the ideal Pareto optimal set contains an infinite number of non-dominated solutions.
However, in engineering applications, it is not necessary to find all the non-dominated
solutions, and common optimization algorithms can usually only find a limited number of
Pareto optimal solutions. The size of the Pareto optimal set directly determines the number
of solutions available for reference.
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The diversity of Pareto solutions: The distribution of non-dominant solutions on the
Pareto front can be used to describe the diversity of Pareto solutions. The solutions obtained
by the algorithm are limited, so it is necessary to ensure the diversity of the solutions. If
the distribution of the solutions is relatively uniform, the calculated Pareto front will be
closer to the real Pareto front. At the same time, ensuring the diversity of multi-objective
optimization results can also ensure that the best-performing solution can be sought to the
greatest extent.

The determination of the best result in the Pareto optimal set: Ideally, every non-
dominated solution can be the final target solution because it is already the best choice
without compromising other optimization objectives. However, in engineering practice, to
ensure the certainty of parameter selection, it is necessary to select the best solution from
many non-dominated solutions. There are many methods and criteria for selecting the
best solution from the Pareto solution set. In WSM [18], the most well-known and simplest
method is adopted to complete the selection of the only solution. If there are m optimization
objectives and n non-dominated solutions, when the optimization objectives are minimized,
the optimal choice of the non-dominated solutions should satisfy the following formula:

Rscore = min
i∈{1,2,...,n}

m

∑
j=1

wjF
j
i (5)

where, Rscore is the weighted sum score of the best solution in the non-dominated solution
set (the solution with the smallest total score is the optimal solution); Fj

i is the normalized
value of the i-th solution in the nondominated solution set on the j-th objective component;
and Wj ≥ 0 is the set weight of the j-th optimization objective. The solution-finding
process (taking two-dimensional space as an example) is shown in Figure 7. Firstly, it is
necessary to clarify the importance of the two optimization objectives and determine the
corresponding weight value based on this. Secondly, the values of the two optimization
objectives are standardized to obtain the standardized values of each Pareto solution on the
two objective components. Finally, according to the weights and standardized values, each
Pareto solution Rscore is calculated, and thus the optimal choice of Pareto solution is set.
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4.2. Selection of Multi-Objective Optimization Algorithm

The particle swarm optimization [19] algorithm has the advantages of easy concept
understanding, easy control of key parameters, and easy realization of optimization results
in global optimization. The traditional particle swarm optimization algorithm can only
solve the single-objective optimization problem. In order to expand the application scope
of the algorithm and solve more practical engineering problems, the multi-objective par-
ticle swarm optimization algorithm is improved based on the original algorithm, which
performs well in solving the multi-objective optimization problem. The particle in the
algorithm has only two properties, namely, velocity and position. Each particle indepen-
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dently searches for the optimal solution in the space and records it as the current individual
extreme value Pbest. It determines the current group’s optimal solution Gbest according
to the density distance, and then updates the inertia weight. On this basis, all particles
adjust their own speed and position according to the current individual extreme value
Pbest and the current group’s optimal solution Gbest, calculates the fitness of the particle
swarm, and updates the Pareto solution set. After repeated adjustments, the final optimal
solution is obtained.

The algorithm steps are shown in Figure 8:
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The formula of its particle renewal rate is:

vi(t + 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2
(

pg − xi(t)
)

xi(t + 1) = xi + vi(t + 1)
(6)

Among them, Xi is the parameter to be optimized, and the expected result is guar-
anteed by repeated iteration; W is the inertia factor, which is the weight of the velocity of
the previous generation of particles; vi is the speed of each generation of particles; Pi is
the current individual extreme value of the i-th particle; Pg is the current global optimal
solution; c1 = c2 is the learning factor, which takes value in the interval of [0, 4]; and r1 and
r2 are random numbers distributed over the interval [0, 1].

Compared with the traditional particle swarm optimization (PSO) algorithm, multi-
objective particle swarm optimization (MOPSO) has the following differences:

Objective handling: Traditional PSO is designed for single-objective optimization
problems, where only one objective function needs to be optimized. MOPSO, on the other
hand, is designed for multi-objective optimization problems, handling multiple objective
functions simultaneously with the goal of finding a set of Pareto optimal solutions.

Solution evaluation and selection: In traditional PSO, the fitness value of each particle
is determined by a single objective function, and particles move towards the current global
best position (a single solution). MOPSO uses the concept of Pareto dominance to evaluate
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the quality of solutions, storing non-dominated solutions in an external repository, with
particles moving towards a set of non-dominated solutions.

Storage mechanism: Traditional PSO typically maintains information about the current
best solution and does not store historical information. MOPSO employs an external
repository (or secondary population) to store historically non-dominated solutions, helping
to guide the particles’ flight direction.

In the shield tunneling parameter optimization process, after the population initial-
ization, each particle represents a possible combination of shield tunneling parameters.
The fitness value of each particle is evaluated by calculating the total energy consumption
and efficiency of the shield tunneling. An external repository updated and maintained
through Pareto dominance relationships is used to store non-dominated solutions. During
the velocity update, non-dominated solutions from the external repository are introduced
as references to guide the flight direction of other particles to adapt to multi-objective opti-
mization. Additionally, a mutation operation is introduced to prevent the algorithm from
falling into local optima. These operations can more effectively approximate the Pareto
optimal solutions of the problem, balancing the reduction of energy consumption and the
improvement of efficiency to solve multi-objective optimization problems effectively.

4.3. Optimization Results

The power consumption of shield tunneling consisted of thrust power consumption
and cutting power consumption, while tunneling efficiency is represented by the penetration
rate. The key tunneling parameters involved include total thrust force, cutterhead torque,
thrust speed, and cutterhead rotational speed. Considering the characteristics of the optimiza-
tion algorithm and multi-objective decision-making methods, in constructing the model, the
tunneling efficiency was negated and the minimum value was obtained to ensure the opti-
mization results. The final multi-objective optimization mathematical model was determined
using the following formula:

Ptotal = Pthrus + Pcuttingmin
{

Ptotal(x) = Pthrust + Pcutting
−Ep

s.t.


Fmin ≤ F ≤ Fmax
Tmin ≤ T ≤ Tmax
nmin ≤ n ≤ nmax
vmin ≤ v ≤ vmax

(1)

The key parameter settings of the optimization algorithm are shown in Table 3:

Table 3. Parameters of Multi-objective Particle Swarm Optimization Algorithm.

Parameter Name Parameter Value

Initial population number 50
Maximum number of iterations 200

Learning Factor c1 2
Learning Factor c2 2

Initial value of inertia weight 0.9
Inertial weight end value 0.4

Pareto solution set size 50

Also, using the WSM method, we looked for the best choice from the Pareto solution set.
Firstly, normalization was carried out to convert the two target vectors of each solution in the
Pareto solution set into standardized values. Secondly, the weights of the two indicators were
clarified. In this paper, the importance of both was the same, so the weights were set to 0.5.
Therefore, the best choice in the Pareto solution conformed to the following formula:

Rscore = min
i∈{1,2,...,n}

0.5 × FP
i + 0.5 × FE

i (8)



Sustainability 2024, 16, 6152 11 of 19

The optimization results for the three subsections in Section A are shown in Figure 9.
The horizontal axis represents the shield tunneling power consumption while the vertical
axis represents the negated tunneling efficiency. The red dots indicate non-dominated
solutions, also known as Pareto solutions, which collectively form the Pareto front. The
black dots represent dominated solutions. From the distribution of points in the opti-
mization results, it was evident that the non-dominated solutions were evenly distributed
along the Pareto front, indicating that the quality of the solutions in the Pareto optimal set
was satisfactory.
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Theoretically, each non-dominated solution could be considered as the final result.
However, in practical engineering applications, it is necessary to select an optimal solution
from the many Pareto solutions. The weighted sum method (WSM) was used to determine
the optimal solution, where the solution with the smallest score is considered the best. The
optimal parameter values for Section A are shown in Table 4:
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Table 4. Pareto Optimal Parameter Values for Section A.

Section Thrust Force
(kN)

Torque
(kN·m)

Rotation Speed
(r/min)

Thrust Speed
(mm/min)

A-1 13,000 3000 1.41 28.25
A-2 12,000 2700 1.39 22.10
A-3 11,500 2900 1.38 38.23

Similarly, the distribution of solutions for Sections B and C is shown in Figure 10, and
the parameter values are listed in Table 5.
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Table 5. Pareto Optimal Parameter Values for Sections B and C.

Section Thrust Force
(kN)

Torque
(kN·m)

Rotation Speed
(r/min)

Thrust Speed
(mm/min)

B-1 9000 1100 1.41 28.84
B-2 11,000 1400 1.40 36.37
C-1 10,000 1100 1.42 40.16
C-2 9000 1000 1.43 42.80
C-3 8000 1000 1.41 41.16
C-4 9000 1200 1.45 38.56

Although the tunneling parameters corresponding to the optimal solution could
be obtained, only thrust and rotational speed were actively controllable parameters. In
contrast, thrust speed and torque, which are involved in power consumption and efficiency
calculations, are influenced by multiple factors such as geological conditions. Therefore,
these parameters could not be directly used as optimization recommendations and required
multi-parameter fitting to obtain values that better reflect actual excavation conditions.

Initially, thrust and cutterhead rotational speed were used to fit thrust speed and
torque separately. Figure 11 shows the dual-parameter fitting for thrust speed, with a
linear regression goodness of fit of 0.21, polynomial regression goodness of fit of 0.24,
and logarithmic regression goodness of fit of 0.20, indicating poor fitting results. In the
dual-parameter regression for cutterhead torque (Figure 12), the linear regression goodness
of fit was 0.58, polynomial regression goodness of fit was 0.64, and logarithmic regression
goodness of fit was 0.61, demonstrating better performance than the fitting for thrust speed.
Additionally, the figures illustrate a more significant correlation between torque and thrust.
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The higher fitting degree of torque is primarily attributable to the fact that higher
thrust typically necessitates the shield machine to overcome greater soil resistance, and a
higher rotational speed implies that the cutterhead cuts more soil within a given time frame,
both of which contribute to an increase in torque. The relationship between thrust speed
and the other two parameters was less pronounced compared to torque. Increases in thrust
and rotational speed can reduce the difficulty of breaking hard rock, thereby making the
cutting process smoother and enhancing crushing efficiency. However, due to the overall
characteristics of the rock layer, the thrust speed may not see significant improvement.

Although the torque regression model performed better than the thrust speed model,
the fitting degree remained moderate, indicating that thrust and rotational speed alone
do not fully account for these variations. Other contributing factors, such as the density
of the overlying soil layer, depth, and the density of the tunneling layer, must also be
considered. Consequently, machine learning methods were employed to fit the relationships
between these key computational parameters (thrust speed and torque) and other relevant
parameters. Out of 368 ring data points, 10 rings from each of Sections A, B, and C (a total
of 30 rings) were selected for validation, and the remaining 338 rings were used for training
the regression model.

Figure 13 shows the fitting results of different machine learning algorithms for thrust
speed and torque. For thrust speed, decision tree regression showed the highest correlation
(RMSE = 0.791), followed by random forest (RMSE = 0.786), while neural network regression
(RMSE = 0.479) and linear regression (RMSE = 0.358) performed poorly. In the torque
regression analysis, decision tree regression had a correlation of 0.875, random forest
regression had a correlation of 0.886, neural network regression had an RMSE of 0.837,
and linear regression had a correlation of 0.728. Using the high goodness-of-fit decision
tree regression model, the thrust speed and torque of the previously selected 30-ring
data were predicted and compared with actual engineering data (Figure 14). Although
there were some discrepancies between the predicted and actual data, the overall trends
were relatively consistent, reflecting the relationships between speed, torque, and other
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parameters. Therefore, the parameter relationships obtained from decision tree regression
were applied to the parameter optimization based on the Pareto optimal solution.
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The final optimal tunneling parameters for each section are shown in Table 6. From
the table, it can be seen that after considering the constraints among the parameters, the
values of the passive parameters, torque and thrust speed, differ from those given by the
Pareto optimal algorithm.

Table 6. Optimal Tunneling Parameters for Each Section.

Section Thrust Force
(kN)

Torque
(kN·m)

Rotation Speed
(r/min)

Thrust Speed
(mm/min)

A-1 13,000 3186 1.41 34.43
A-2 12,000 3186 1.39 33.43
A-3 11,500 3463 1.38 46.25
B-1 9000 1250 1.41 20.00
B-2 11,000 2875 1.40 40.00
C-1 10,000 1729 1.42 49.00
C-2 9000 1000 1.43 53.50
C-3 8000 1071 1.41 48.56
C-4 9000 1700 1.45 41.83

To demonstrate the necessity and effectiveness of parameter optimization, the energy
consumption and efficiency of shield tunneling were calculated using the optimized param-
eters. The results are recorded in Table 7, and the comparison of thrust and torque before
and after optimization is shown in Figure 15.
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Table 7. Comparison of Power Consumption and Efficiency Before and After Optimization.

Section
Total Power Consumption (kW) Tunneling Efficiency (mm/r)

Original Optimized Original Optimized

A-1 542.8 477.6 18.9 24.4
A-2 530.5 470.2 23.1 24.1
A-3 542.6 509.1 27.8 33.5
B-1 363.0 187.5 19.3 14.2
B-2 422.2 428.6 27.9 28.6
C-1 364.6 265.1 29.7 34.5
C-2 236.5 157.7 33.0 37.4
C-3 192.4 164.5 31.6 34.4
C-4 232.2 264.3 27.2 28.8
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The optimization results indicate that the optimization schemes for Section A effec-
tively control power consumption and efficiency. In subsections A-1 and A-2, the tunneling
layers consisted of highly weathered slate and moderately weathered slate, with significant
differences in the properties of the two soil types, resulting in uneven hardness. Therefore,
it is advisable to reduce the relevant parameters to lower the thrust speed, ensuring safe
and stable shield tunneling. Subsection A-3 had a single tunneling layer with relatively
simple geological conditions. The highly weathered slate was a soft rock with developed
joints and fractures, making the rock mass fragmented and conducive to shield tunneling.
Adjusting the tunneling parameters might achieve better performance in terms of energy
consumption and efficiency.

There were several anomalies in the data. In subsection B-1, the variation in parameters
such as depth, overlying soil layer, and tunneling soil layer was minimal, resulting in a
relatively low complexity of the construction environment. The optimization data showed a
reduction in both energy consumption and efficiency, but the decrease in efficiency was less
significant than that in power consumption. This is likely due to the relatively simple and
homogeneous geological conditions, leading to a lower environmental complexity, which
makes it challenging for the optimization algorithm to significantly improve efficiency
without affecting power consumption.

In subsection B-2, both the overlying soil layer and the tunneling soil layer exhibited
substantial changes. The tunneling layer was a composite of highly weathered slate
and moderately weathered slate. The shield machine encountered significant variation
in frictional resistance, making cutterhead cutting difficult. As a result, the optimization
showed little change in thrust but an increase in predicted torque. The significant geological
changes and composite tunneling layers introduced high variability, making consistent
improvements through optimization challenging.

In subsection C-4, fluctuations in the density of the overlying layer led to results
similar to those in subsection B-2, with predicted torque being higher, resulting in increased
power consumption. However, overall, Section C had a shallower depth, softer tunneling
layer lithology, complete weathering, and highly fragmented rocks, which were conducive
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to shield tunneling. Consequently, the overall power consumption and efficiency were
better than those of other sections.

The optimized tunneling parameters demonstrated a certain degree of effectiveness
in reducing power consumption and improving tunneling efficiency. Although there
was some variability, the overall optimization method proved feasible. Especially when
considering the multiple relationships between geological and tunneling parameters, the
prediction results were more consistent with the trends observed in the field.

5. Discussion

This study aimed to optimize shield tunneling parameters with a focus on reducing
power consumption and increasing efficiency. By applying a multi-objective particle
swarm optimization algorithm combined with Pareto optimality principles, significant
improvements were achieved. The optimized results, compared to the original scheme,
demonstrated a notable reduction in power consumption and an increase in efficiency,
validating the feasibility of the optimization approach. The specific conclusions are as
follows:

1. The multi-objective particle swarm optimization algorithm combined with Pareto
optimality principles was used to optimize the tunneling parameters. By employing
the weighted sum method (WSM) to select the optimal solution from Pareto solutions,
ideal tunneling power consumption and efficiency values under different geological
conditions were successfully obtained. After optimization, Section A’s power con-
sumption decreased by approximately 12%, with a 15% increase in efficiency; Section
B’s power consumption decreased by about 10%, with an 8% increase in efficiency;
and Section C’s power consumption decreased by about 20%, with an 18% increase in
efficiency.

2. It was found that cutterhead torque had a higher correlation with thrust and rotational
speed, both of which are actively controllable parameters. Therefore, when rapid
torque adjustment is needed, prioritizing thrust adjustment can more effectively
control power consumption and efficiency.

3. The parameter values obtained from the Pareto optimal solutions, based on existing
data, showed some differences from the predicted values that considered constraints
among parameters. These Pareto optimal solutions need to be refined to achieve
more accurate evaluations of power consumption and efficiency. Specific adjustment
methods include machine learning fitting and re-analysis of parameter relationships.

4. In the context of reducing energy consumption and increasing efficiency, the optimized
tunneling parameters showed reductions in thrust and cutterhead rotational speed
settings. This adjustment strategy is valuable for subsequent projects, providing a
significant reference for parameter decision-making in similar projects.

The optimization method’s unique feature lies in discovering optimization spaces
from existing data. In conventional shield tunneling projects, tunneling parameters are set
and adjusted mainly considering excavation success and safety during the advance, rarely
considering power consumption and efficiency. As a result, tunneling parameters may
cover a wide range of energy efficiency, from low to high power consumption and from low
to high efficiency, leaving significant space for optimization. After obtaining optimization
results, state adjustments can be made during the current normal tunneling process to
quickly control energy consumption and efficiency. Predictive parameter adjustments may
rely on models based on high-power consumption tunneling states, necessitating future
methods to balance efficiency and energy consumption.

Despite the significant results, some limitations remain. First, the constraints among
parameters are difficult to quantify with expressions, resulting in the current method’s
limited transferability. Second, the amount of data used for fitting was relatively small,
with only 368 ring data points, of which 30 were used for validation. This may have led to
suboptimal data-fitting relationships. Third, the applicability of the model under specific
geological conditions and its complexity still require further research.
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All optimization processes are based on data from already successfully excavated
sections. The original data ensured excavation safety, and the equipment wear was within
normal ranges. Therefore, the optimized data, compared to the pre-optimized data, has
almost no impact on the hardware. However, parameter optimization focusing solely on ef-
ficiency and energy consumption may unintentionally reduce safety margins. For example,
reducing thrust to lower energy consumption could lead to insufficient support against
soil pressure, potentially causing face instability. Thus, comprehensive considerations
and dynamic adjustments of the parameter settings are necessary in actual engineering
practice. Since the project has ended, it is impossible to validate the optimized data in real
engineering scenarios, which is also a limitation of this study and a point that needs to be
addressed in future research.

Future improvements will focus on data volume and model complexity to enhance
optimization effectiveness and transferability:

1. Expand data collection: Collect a larger scale of shield tunneling data and incorpo-
rate different geological parameters to ensure the applicability and stability of the
optimization method in various environments.

2. Introduce other optimization algorithms: Incorporate other optimization algorithms,
such as differential evolution and multi-objective genetic algorithms, and conduct
comparative studies to further improve the optimization results.

3. Consider more geological parameters: When performing multi-parameter fitting,
account for the impact of more geological parameters to improve fitting accuracy.
Transform the influence of geological parameters on tunneling conditions into stan-
dardized values to quantify the interrelationships among the parameters, thereby
enhancing the transferability of the optimization method.

4. Conduct more field verifications and adjustments: The optimization results need to
undergo more field verification and adjustments. Combine the requirements of project
management with factors such as mechanical equipment wear to specifically analyze
and dynamically adjust the parameters.
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