Nematode Communities in Soils of the Same Volcanic Origin across a Gradient of Naturalization: From Intensive Agriculture to Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methods
2.3. Soil Chemical and Physical Analysis
2.4. Nematode Communities
2.5. Data Analysis
3. Results
3.1. Soil Chemical and Physical Properties
3.2. Nematode Communities
3.3. Relationship between Soil Variables and Nematode Community Structure
4. Discussion
4.1. Effect of Different Soils on Nematode Community Structure
4.2. Soil Factors Influencing Soil Nematode Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manachini, B. Biodiversity of nematofauna associated with the rice field agro-ecosystem in north Italy. Redia 2008, 41, 151–153. [Google Scholar]
- Ockleford, C.; Adriaanse, P.; Berny, P.; Brock, T.; Duquesne, S.; Grilli, S.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Klein, M.; Kuhl, T.; et al. Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Panel on Plant Protection Products and their Residues (PPR). EFSA J. 2017, 15, e04690. [Google Scholar] [CrossRef] [PubMed]
- Urzelai, A.; Hernández, A.J.; Pastor, J. Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Sci. Total Environ. 2000, 247, 253–261. [Google Scholar] [CrossRef]
- Landi, S.; d’Errico, G.; Binazzi, F.; Di Salvatore, U.; Gordin, L.; Marchi, M.; Mazza, G.; Roversi, P.F.; Simoncini, S.; Torrini, G.; et al. The short-term impact of different silvicultural thinnings on soil nematode and microarthropod biodiversity in artificial black pine stands. Forest 2020, 11, 1212. [Google Scholar] [CrossRef]
- Wilson, M.J. Benefits and uses of nematodes in grassland soils. In Proceedings of the 22nd International Grassland Congress 2013, Sydney, Australia, 15–19 September 2013. [Google Scholar]
- Mulder, C.; Schouten, A.J.; Hund-Rinke, K.; Breure, A.M. The use of nematodes in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Saf. 2005, 62, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, S.; Coyne, D.; Rodríguez, M.G.; Peteira, B.; Ciancio, A. Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture-A Review. Diversity 2021, 13, 64. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Chen, R.; Wang, W.; Wang, D.; Tian, X. Plant genotype shapes in the soil nematode community in the rhizosphere of tomatoes with different resistance to Meloidogyne incognita. Plants 2023, 12, 1528. [Google Scholar] [CrossRef]
- Landi, S.; d’Errico, G.; Papini, R.; Cutino, I.; Simoncini, S.; Rocchini, A.; Brandi, G.; Rizzo, R.; Gugliuzza, G.; Germinara, G.S.; et al. Impact of super-high density olive orchard management system on soil free-living and plant-parasitic nematodes in central and south Italy. Animals 2022, 12, 1551. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qianqian, L.; Qiao, B.; Jia, K.; Li, C. Advances in plant-soil feedback driven by root exudates in forest ecosystems. Forest 2024, 15, 515. [Google Scholar] [CrossRef]
- Steinauer, K.; Chatzinotas, A.; Eisenhauer, N. Root exudate cocktails: The link between plant diversity and soil microorganisms? Ecol. Evol. 2016, 6, 7387–7396. [Google Scholar] [CrossRef]
- Neher, D.A.; Campbell, C.L. Nematode communities and microbial biomass in soils with annual and perennial crops. App. Soil Ecol. 1994, 1, 17–28. [Google Scholar] [CrossRef]
- Moreno, M.; Ferrero, T.J.; Gallizia, I.; Vezzulli, L.; Albertelli, G.; Fabiano, M. An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar. Coast. Shelf Sci. 2008, 77, 565–576. [Google Scholar] [CrossRef]
- Sroczyńska, K.; Chainho, P.; Vieira, S.; Adao, H. What makes a better indicator? Taxonomic vs functional response of nematodes to estuarine gradient. Ecol. Indic. 2021, 121, 107113. [Google Scholar] [CrossRef]
- Lynch, J.M.; Hobbie, J.E. Micro-Organisms in Action: Concepts and Applications in Microbial Ecology; Blackwell Scientific Publications: Oxford, UK, 1988; pp. 1–380. [Google Scholar]
- Stöckli, A. Der Boden als Lebensraum. Vjschr. Naturf. Ges. Zürich 1946, 91, 1–18. [Google Scholar]
- Höss, S.; Nematodes, T.W. Bioindicators and Biomonitors: Principles, Concepts and Applications, Trace Metals and other Contaminants in the Environment; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 529–554. [Google Scholar]
- Biswal, D. Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices. Appl. Biochem. Biotechnol. 2022, 194, 2357–2417. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; De Goede, R.G.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S.; et al. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Sohlenius, B. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 1980, 34, 186–194. [Google Scholar] [CrossRef]
- Basyoni, M.M.; Rizk, E.M. Nematodes ultrastructure: Complex systems and processes. J. Parasit. Dis. 2016, 40, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. App. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Gray, C.; Baird, D.J.; Baumgartner, S.; Jacob, U.; Jenkins, G.B.; O’Gorman, E.J.; Lu, X.; Ma, A.; Pocock, M.J.O.; Schuwirth, N.; et al. Ecological networks: The missing links in biomonitoring science. J. Appl. Ecol. 2014, 51, 1444–1449. [Google Scholar] [CrossRef]
- Jordana, R.; Arbea, J.I.; Moraza, L.; Montenegro, E.; Mateo, M.D.; Hernandez, M.A.; Herrera, L. Effect of reforestation by conifers in natural biotopes of middle and south Navarra (Northern Spain). Rev. Suisse Zool. 1987, 94, 491–502. [Google Scholar]
- Rusek, J. Distribution dynamics of soil organism across ecotones. In Landscape Boundaries, Consequences for Biotic Diversity and Ecological Flows; Hansen, A.J., Di Castri, F., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 1992; pp. 196–214. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Springer, U.; Klee, J. Prufung der Leistungsfa higkeit von einigen wichtigen Verfahren zur Bestimmung des Kohlenstoffs mittels Chromschwefelsaure sowie Vorschlag einer neuen Schnellmethode. J. Plant Nutr. Soil Sci. 1954, 64, 1–26. [Google Scholar]
- Bremner, J. Nitrogen-total. In Methods of Soil Analysis. Chemical Methods; Sparks, D., Bartels, J., Birham, J., Eds.; SSA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Rutherford, P.; Gill, M.C.; Arocena, W.; Figueiredo, J.; Total Nitrogen, C. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 239–250. [Google Scholar]
- Oostenbrink, M. Estimating nematode populations by some selected methods. In Nematology; Sasser, J.N., Jenkins, W.R., Eds.; University of North Carolina Press: Chapel Hill, NC, USA, 1960; pp. 85–102. [Google Scholar]
- Mai, W.F.; Lyon, H.H. Pictorial Key to Genera of Plant Parasitic Nematodes; Plates Reproduced by Art Craft of Ithaca, Inc. Ithaca: New York, NY, USA, 1962. [Google Scholar]
- Bongers, T. De nematoden van Nederland: Een identificatietabel voor de in Nederland aangetroffen zoetwater-en bodembewonende nematoden. In Stichting Uitgeverij Koninklijke; Knnv Uitgeverij: Zeist, The Netherlands, 1988. [Google Scholar]
- Marinari-Palmisano, A.; Vinciguerra, M. Classificazione dei nematodi. In Nematologia Agraria Generale e Applicata; Ambrogioni, L., d’Errico, F.P., Greco, N., Marinari-Palmisano, A., Roversi, P.F., Eds.; Società Italiana di Nematologia: Bari, Italy, 2014; pp. 23–42. (In Italian) [Google Scholar]
- Yeates, G.; Bongers, T.; De Goede, R.; Freckman, D.; Georgieva, S. Feeding habits in soil nematode families and genera in outline for soil ecologistis. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Bongers, T.; Alkemade, R.; Yeates, G.W. Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the Maturity Index. Mar. Ecol. Prog. Ser. 1991, 76, 135–142. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant Soil 1999, 212, 13–22. [Google Scholar] [CrossRef]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H.; Bongers, T.; de Goede, R.G. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. App. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Yeates, G.W.; Bird, A.F. Some observations on the influence of agricu1tural practices on the nematode faunae of some South Australian soils. Fundam. Appl. Nematol. 1994, 17, 133–145. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Magurran, A.E. Measuring Biological Diversity; Black-Well Publisher: St. Clair, Australia, 2004; p. 256. [Google Scholar]
- Pielou, E.C. Ecological Diversùy; John Wiley: New York, NY, USA, 1975; p. 165. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Pielou, E.C. Niche width and niche overlap: A method of measuring them. Ecology 1972, 53, 687–692. [Google Scholar] [CrossRef]
- Rodríguez-Murillo, J.C. Organic carbon content under different types of land use and soil in peninsular Spain. Biol. Fertil Soils 2001, 33, 53–61. [Google Scholar] [CrossRef]
- Martens, D.A.; Reedy, T.E.; Lewis, D.T. Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob. Chang. Biol. 2004, 10, 65–78. [Google Scholar] [CrossRef]
- Garcia, N.; Grenier, E.; Buisson, A.; Folcher, L. Diversity of plant parasitic nematodes characterized from fields of the French national monitoring programme for the Columbia root-knot nematode. PLoS ONE 2022, 17, e0265070. [Google Scholar] [CrossRef] [PubMed]
- Umesh, K.C.; Ferris, H.; Bayer, D.E. Competition between the Plant-parasitic Nematodes Pratylenchus neglectus and Meloidogyne chitwoodi. J. Nematol. 1994, 26, 286–295. [Google Scholar] [PubMed]
- d’Errico, F.P. I nematode delle colture floricole—Nematodi che attaccano la parte ipogea delle piante. Clamer Inf. 1994, 11, 783–796. [Google Scholar]
- Garcia, N.; Grenier, E.; Sarniguet, C.; Buisson, A.; Ollivier, F.; Folcher, L. Impact of native plant-parasitic nematode communities on the establishment of Meloidogyne chitwoodi. Plant Pathol. 2018, 67, 2019–2027. [Google Scholar] [CrossRef]
- Landi, S.; Papini, R.; d’Errico, G.; Brandi, G.; Rocchini, A.; Roversi, P.F.; Bazzoffi, P.; Mocali, S. Effect of different set-aside management systems on soil nematode community and soil fertility in North, Central and South Italy. Agric. Ecosyst. Environ. 2018, 261, 251–260. [Google Scholar] [CrossRef]
- Čerevková, A. Diversity and Distribution of Nematode Communities in Grassland in Relation to Its Establishment Age and Utilization. Nematodes Morphology, Functions and Management Strategies; Nova Science Publisher: Hauppauge, NY, USA, 2011; Volume 9, pp. 1–16. [Google Scholar]
- Hiltpold, I.; Jaffuel, G.; Turlings, T.C.J. The dual effects of root-cap exudates on nematodes: From quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. J. Exp. Bot. 2015, 66, 603–611. [Google Scholar] [CrossRef]
- Manachini, B. Nematode diversity in vineyard soil under different agricultural management regimes. IOBC Bull. Wprs. 2001, 27, 253–261. [Google Scholar]
- Thoden, T.C.; Korthals, G.W.; Termorshuizen, A.J. Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology 2011, 13, 133–153. [Google Scholar] [CrossRef]
- Landi, S.; Valboa, G.; Vignozzi, N.; d’Errico, G.; Pellegrini, S.; Simoncini, S.; Torrini, G.; Roversi, P.F.; Priori, S. Response of nematode community structure to different restoration practices in two vineyard soils in Tuscany (Italy). Biol. Agric. Hortic. 2023, 39, 149–169. [Google Scholar] [CrossRef]
- Festa, M.; Abbruscato, P.; Manachini, B. Use of PCR-DGGE-Based Molecular Methods to Analyze Nematode Community Diversity. In Plant-Nematode Interactions; Springer: New York, NY, USA, 2024; pp. 247–255. [Google Scholar]
- Landi, S.; d’Errico, G.; Papini, R.; Gargani, E.; Simoncini, S.; Amoriello, T.; Ciccoritti, R.; Carbone, K. Communities of plant parasitic and free-living nematodes in Italian hop crops. REDIA 2019, 102, 141–148. [Google Scholar] [CrossRef]
- Bruel, F.; Baudry, J.; Butet, A. Comparative biodiversity along a gradient of agriculture landscapes. Acta Oecologica 1998, 19, 47–60. [Google Scholar] [CrossRef]
- Jiménez-García, L.; Sánchez-Rojas, G.; Villarreal, O.; Bernal, H.; Jiménez-García, D. Agroecosystems management and biodiversity loss in an intensification gradient in traditional agriculture in Mexico. J. Agric. Environ. Sci. 2014, 14, 401–420. [Google Scholar]
Soil Managements | |||
---|---|---|---|
OF | PG | CG | |
Sand (g kg−1) | 802.00 ± 0.96 a | 785.00± 0.82 b | 700.00 ± 1.41 c |
Loam (g kg−1) | 147.00 ± 0.82 b | 140.00 ± 0.82 c | 201.00 ± 0.81 a |
Clay (g kg−1) | 51.00 ± 0.82 c | 75.00 ± 0.82 b | 99.00 ± 0.50 a |
pH (in H2O) | 6.52 ± 0.006 c | 7.27 ± 0.006 b | 7.41 ± 0.01 a |
EC (dS m−1) | 0.08 ± 0.02 b | 0.085 ± 0.005 b | 0.930 ± 0.01 a |
Total calcium carbonate (g kg−1) | 6.00 ± 0.06 a | 6.20 ± 0.20 a | 5.70 ± 0.06 b |
CSC (mequiv 100 g−1) | 15.93 ± 0.02 a | 15.74 ± 0.04 b | 14.71 ± 0.02 c |
TOC (g kg−1) | 3.96 ± 0.006 a | 1.68 ± 0.02 b | 0.90 ± 0.10 c |
Organic matter (%) | 6.83 ± 0.02 a | 2.90 ± 0.06 b | 1.55 ± 0.01 c |
Total N (g kg−1) | 3.81 ± 0.01 a | 1.61 ± 0.01 b | 0.85 ± 0.02 c |
C/N | 1.04 ± 0.006 a | 1.05 ± 0.01 a | 1.06 ± 0.02 a |
Available P (mg P kg−1) | 45.90 ± 0.06 a | 32.70 ± 0.10 b | 13.70 ± 0.15 c |
Trophic G. | Genera | Management | Season | p Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OF | PG | CG | Spring | Summer | Fall | Winter | M | S | M + S | ||
B | Acrobeles | 32.0 ± 3.8 a | 17.0 ± 2.0 b | 0 c | 20.7 ± 5.5 a | 17.3 ± 4.0 a | 19.3 ± 6.0 a | 8.0 ± 2.0 b | 0.00001 | 0.00001 | 0.00001 |
B | Alaimus | 8.0 ± 2.3 a | 2.3 ± 2.8 b | 0 b | 7.3 ± 3.2 a | 2.3 ± 0.7 b | 4.0 ± 1.1 b | 0 c | 0.00001 | 0.00001 | 0.00001 |
B | Cephalobus | 28.0 ± 2.3 a | 20.3 ± 3.2 b | 1.8 ± 0.45 c | 21.7 ± 4.8 a | 14.0 ± 4.9 b | 14.7 ± 2.8 b | 16.3 ± 3.7 b | 0.00001 | 0.007 | 0.00001 |
B | Diplogaster | 2.5 ± 0.3 a | 0.5 ± 0.3 b | 0 b | 2.7 ± 1.2 a | 0 c | 0 c | 1.3 ± 0.5 b | 0.00001 | 0.00001 | 0.00001 |
B | Mermis | 1.3 ± 0.6 a | 0 b | 0 b | 1.7 ± 0.8 a | 0 b | 0 b | 0 b | 0.0001 | 0.00001 | 0.00001 |
B | Plectus | 34.3 ± 3.1 a | 0 b | 0 b | 15.0 ± 6.6 a | 13.0 ± 5.7 a | 7.3 ± 3.3 b | 10.3 ± 4.7 ab | 0.00001 | 0.008 | 0.002 |
B | Rhabditis | 20.5 ± 3.1 c | 162.5 ± 14.6 b | 319.5 ± 40.4 a | 129.0 ± 24.1 b | 211.0 ± 53.3 a | 204.3 ± 64.5 a | 125.7 ± 25.0 b | 0.00001 | 0.00001 | 0.0001 |
B | Steinernema | 13.5 ± 2.4 a | 0 b | 0 b | 8.3 ± 3.8 a | 2.3 ± 1.10 b | 2.3 ± 1.14 b | 5.0 ± 2.4 | 0.00001 | 0.0005 | 0.00001 |
B | Others Bact. | 24.3 ± 1.8 a | 6.0 ± 1.6 c | 10.5 ± 2.2 b | 17.7 ± 1.8 a | 9.3 ± 3.8 b | 10.7 ± 3.1 b | 16.7 ± 2.9 | 0.00001 | 0.0002 | 0.00001 |
H | Aphelenchoides | 39.0 ± 2.2 a | 12.0 ± 1.3 b | 0 c | 17.3 ± 4.6 | 17.7 ± 5.4 | 18.0 ± 6.4 | 15.0 ± 4.1 | 0.00001 | 0.88 | 0.04 |
H | Aphelenchus | 31.3 ± 2.6 b | 41.3 ± 4.4 a | 1.3 ± 0.4 c | 26.7 ± 5.7 ab | 31.0 ± 8.1 a | 21.7 ± 5.0 bc | 19.0 ± 4.8 c | 0.00001 | 0.0008 | 0.00001 |
H | Ditylenchus | 28.8 ± 2.0 a | 4.5 ± 1.1 b | 0 c | 11.0 ± 3.2 b | 14.7 ± 4.9 a | 9.7 ± 4.3 b | 9.0 ± 3.6 b | 0.00001 | 0.008 | 0.004 |
P | Discolaimus | 22.8 ± 1.8 a | 1.3 ± 0.3 b | 0 c | 9.0 ± 3.5 | 6.7 ± 3.1 | 9.7 ± 3.9 | 6.7 ± 2.8 | 0.00001 | 0.17 | 0.42 |
P | Iotonchus | 1.5 ± 0.5 a | 0 b | 0 b | 1.0 ± 0.6 a | 1.0 ± 0.6 a | 0 b | 0 b | 0.0007 | 0.04 | 0.02 |
P | Labronema | 4.8 ± 1.1 b | 17.5 ± 2.0 a | 0 c | 10.7 ± 3.5 a | 8.7 ± 2.6 ab | 3.7 ± 1.1 c | 6.7 ± 2.5 bc | 0.00001 | 0.0005 | 0.0008 |
P | Mononchus | 10.0 ± 1.3 a | 1.5 ± 0.3 b | 0 b | 2.3 ± 0.7 | 4.3 ± 1.8 | 4.0 ± 1.7 | 4.7 ± 1.7 | 0.00001 | 0.18 | 0.06 |
P | Seinura | 17.0 ± 1.7 a | 7.8 ± 1.3 b | 0.3 ± 0.2 c | 7.3 ± 1.2 | 8.3 ± 2.2 | 7.7 ± 3.1 | 10.0 ± 2.5 | 0.00001 | 0.44 | 0.01 |
P | Others Pred. | 10.0 ± 1.7 a | 1.8 ± 0.4 b | 0 b | 2.7 ± 1.0 | 4.7 ± 2.1 | 5.3 ± 2.3 | 3.0 ± 1.1 | 0.00001 | 0.18 | 0.02 |
O | Dorylaimus | 34.8 ± 2.7 a | 7.3 ± 0.9 b | 2.3 ± 0.6 c | 18.0 ± 5.5 a | 16.0 ± 5.5 a | 14.7 ± 4.2 a | 10.3 ± 3.1 b | 0.00001 | 0.002 | 0.00001 |
O | Eudorylaimus | 30.3 ± 2.1 a | 6.8 ± 0.8 b | 0 c | 10.3 ± 3.0 | 17.7 ± 4.9 | 10.7 ± 4.0 | 13.7 ± 4.4 | 0.00001 | 0.04 | 0.006 |
O | Diphterophora | 15.3 ± 1.7 a | 0 b | 0 b | 5.3 ± 2.4 ab | 3.0 ± 1.4 b | 7.0 ± 3.1 a | 5.0 ± 2.4 ab | 0.00001 | 0.06 | 0.03 |
O | Others Omniv. | 10.0 ± 1.6 a | 6.3 ± 0.8 b | 0 c | 7.0 ± 1.9 | 6.7 ± 2.2 | 4.7 ± 1.3 | 3.3 ± 1.0 | 0.00001 | 0.06 | 0.03 |
PP | Criconemoides | 10.0 ± 2.2 a | 0 b | 0 b | 5.0 ± 2.3 a | 1.7 ± 0.9 b | 5.7 ± 2.9 a | 1.0 ± 0.6 b | 0.00001 | 0.009 | 0.002 |
PP | Criconema | 5.3 ± 1.4 a | 0 b | 0 b | 0 b | 1.7 ± 0.9 ab | 3.7 ± 1.9 a | 1.7 ± 0.9 ab | 0.00001 | 0.02 | 0.04 |
PP | Helicotylenchus | 6.5 ± 1.6 a | 9.0 ± 1.3 a | 0 b | 9.0 ± 2.32 a | 4.3 ± 1.6 b | 5.0 ± 1.6 b | 2.3 ± 0.8 b | 0.00001 | 0.003 | 0.17 |
PP | Heterodera | 0 b | 0 b | 1702.2 ± 307.2 a | 1035.7 ± 444.5 a | 0 d | 799.7 ± 341.7 b | 434.3 ± 188.9 c | 0.00001 | 0.00001 | 0.003 |
PP | Longidorus | 3.0 ± 0.7 a | 3.3 ± 0.4 a | 0 b | 1.7 ± 0.6 | 2.3 ± 0.8 | 1.7 ± 0.6 | 2.3 ± 0.8 | 0.00001 | 0.51 | 0.02 |
PP | Paratylenchus | 8.5 ± 2.3 b | 16.5 ± 1.3 a | 0 c | 11.3 ± 2.9 a | 8.0 ± 2.2 ab | 8.0 ± 3.2 ab | 6.0 ± 2.0 b | 0.00001 | 0.005 | 0.00001 |
PP | Pratylenchus | 0 b | 8.5 ± 0.7 a | 0 b | 2.3 ± 1.1 | 2.3 ± 1.0 | 3.0 ± 1.4 | 3.7 ± 1.6 | 0.00001 | 0.010 | 0.07 |
PP | Rotylenchus | 12.8 ± 2.4 a | 6.5 ± 1.6 b | 0 c | 12.3 ± 3.7 a | 7.3 ± 2.2 b | 3.3 ± 1.0 b | 2.7 ± 1.4 b | 0.00001 | 0.0001 | 0.02 |
PP | Tylenchus | 26.3 ± 2.3 b | 76.8 ± 6.5 a | 3.5 ± 0.6 c | 33.7 ± 8.9 a | 42.3 ± 12.3 a | 23.7 ± 5.9 b | 42.3 ± 11.8 | 0.00001 | 0.0004 | 0.0002 |
PP | Tylenchorhynchus | 14.8 ± 2.9 b | 209.8 ± 14.1 b | 0 b | 98.0 ± 35.7 a | 76.3 ± 32.1 ab | 57.0 ± 22.5 b | 68.0 ± 28.3 b | 0.00001 | 0.006 | 0.03 |
PP | Tricodorus | 1.5 ± 0.7 a | 0 b | 0 b | 0 b | 0 b | 1.7 ± 1 a | 0.3 ± 0.3 b | 0.002 | 0.009 | 0.002 |
PP | Xiphinema | 29.3 ± 2.7 a | 9.3 ± 1.4 b | 0 c | 17.3 ± 4.5 | 10.3 ± 3.5 | 11.7 ± 3.6 | 12.0 ± 4.8 | 0.00001 | 0.06 | 0.27 |
PP | Others Plant-Par. | 1.5 ± 0.6 b | 4.8 ± 0.4 a | 0 c | 3.0 ± 0.8 | 1.3 ± 0.6 | 2.0 ± 0.7 | 2.0 ± 0.7 | 0.00001 | 0.10 | 0.50 |
Trophic Group | Management | Season | p Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
OF | PG | CG | Spring | Summer | Fall | Winter | M | S | M + S | |
Bacterial feed. | 164.3 ± 11.0 c | 208.5 ± 16.8 b | 331.8 ± 39.2 a | 224.0 ± 17.1 b | 269.3 ± 39.0 a | 262.7 ± 54.1 a | 183.3 ± 13.3 c | 0.00001 | 0.00001 | 0.00001 |
Hyphal feeders | 99.0 ± 4.6 a | 57.8 ± 6.1 b | 1.3 ± 0.4 | 55.0 ± 12.1 ab | 63.3 ± 14.3 a | 49.3 ± 14.9 bc | 43.0 ± 9.4 c | 0.00001 | 0.0003 | 0.00001 |
Predators | 66.0 ± 3.9 a | 29.8 ± 3.4 b | 0.3 ± 0.2 c | 33.0 ± 7.5 | 33.7 ± 9.4 | 30.3 ± 10.5 | 31.0 ± 7.4 | 0.00001 | 0.83 | 0.002 |
Omnivores | 90.3 ± 3.5 a | 20.3 ± 1.5 b | 2.3 ± 0.6 c | 40.7 ± 11.7 a | 40.3 ± 13.6 a | 37.0 ± 11.6 ab | 32.3 ± 9.5 b | 0.00001 | 0.02 | 0.0007 |
Plant-paras. f. | 119.3 ± 8.4 c | 344.3 ± 20.1 b | 1705.7 ± 307.3 a | 1229.3 ± 406.2 a | 158.0 ± 48.3 | 926.0 ± 316.2 b | 578.9 ± 162.3 | 0.00001 | 0.00001 | 0.00001 |
Tot. abundance | 538.8 ± 20.8 c | 660.5 ± 44.5 b | 2041.2 ± 298.6 a | 1582.0 ± 370.0 a | 564.7 ± 43.8 d | 1305.3 ± 346.5 b | 868.6 ± 143.9 d | 0.00001 | 0.00001 | 0.00001 |
Soil Managements | |||
---|---|---|---|
OF | PG | CG | |
Biodiversity indices | |||
Taxa_S | 34 | 28 | 8 |
Individuals | 2156 | 2643 | 8173 |
Dominance_D | 0.04 | 0.18 | 0.72 |
Simpson_1-D | 0.96 | 0.82 | 0.28 |
Shannon_H | 3.26 | 2.23 | 0.50 |
Evenness_e^H/S | 0.76 | 0.33 | 0.21 |
Brillouin | 3.21 | 2.20 | 0.50 |
Menhinick | 0.73 | 0.54 | 0.09 |
Margalef | 4.30 | 3.43 | 0.78 |
Equitability_J | 0.92 | 0.67 | 0.24 |
Fisher_alpha | 5.73 | 4.37 | 0.88 |
Berger–Parker | 0.07 | 0.32 | 0.83 |
Ecological indices | |||
Maturity Index MI | 3.29 | 2.25 | 1.05 |
Enrichment Index EI | 3.96 | 3.67 | 6.09 |
Structure Index SI | 0.58 | 0.13 | 0.04 |
Channel Index CI | 0.04 | 0.29 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landi, S.; d’Errico, G.; Manachini, B. Nematode Communities in Soils of the Same Volcanic Origin across a Gradient of Naturalization: From Intensive Agriculture to Forest. Sustainability 2024, 16, 6307. https://doi.org/10.3390/su16156307
Landi S, d’Errico G, Manachini B. Nematode Communities in Soils of the Same Volcanic Origin across a Gradient of Naturalization: From Intensive Agriculture to Forest. Sustainability. 2024; 16(15):6307. https://doi.org/10.3390/su16156307
Chicago/Turabian StyleLandi, Silvia, Giada d’Errico, and Barbara Manachini. 2024. "Nematode Communities in Soils of the Same Volcanic Origin across a Gradient of Naturalization: From Intensive Agriculture to Forest" Sustainability 16, no. 15: 6307. https://doi.org/10.3390/su16156307
APA StyleLandi, S., d’Errico, G., & Manachini, B. (2024). Nematode Communities in Soils of the Same Volcanic Origin across a Gradient of Naturalization: From Intensive Agriculture to Forest. Sustainability, 16(15), 6307. https://doi.org/10.3390/su16156307