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Abstract: This study focuses on the ‘short-inverted transportation’ scenario of intermodal transport.
It proposes a vehicle unloading reservation mechanism to optimize the point-of-demand scheduling
system for the inefficiency of transport due to the complexity and uncertainty of the scheduling
strategy. This paper establishes a scheduling strategy optimization model to minimize the cost
of short backhaul and obtain the shortest delivery time window and designs a hybrid NSGWO
algorithm suitable for multi-objective optimization to solve the problem. The algorithm incorporates
the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm based on the Grey Wolf
Optimizer (GWO) algorithm, compensating for a single algorithm’s premature convergence. The
experiment selects a logistics carrier’s actual road–rail intermodal short-inverted data and compares
and verifies the above data. The results show that the scheduling scheme obtained by this algorithm
can save 41.01% of the transport cost and shorten the total delivery time by 46.94% compared with
the original scheme, which can effectively protect the enterprise’s economic benefits while achieving
timely delivery. At the same time, the optimized scheduling plan resulted in a lower number of
transport vehicles, which positively impacted the sustainability of green logistics.

Keywords: road–rail intermodal transport; short-inverted transport; scheduling strategy;
multi-objective optimization

1. Introduction

Currently, China’s logistics hub is a new hotspot in the field of logistics and a new
trend in the development of the logistics industry [1]. It is also an important place and
carrier for gathering regional logistics service elements. The development of the supply
chain industry and the surge in demand for product distribution have led to the continuous
adjustment and optimization of China’s transport structure, and road–rail intermodal
transport has become an emerging mode of efficient and green logistics. At the same
time, it has the advantages of low cost and the large capacity of railway transport, as
well as the mobility and flexibility of road transport. The combination of the two can
effectively alleviate the pressure of road transportation and fully use the surplus capacity
of railroads [2]. It continues to be in the stage of innovation and development. With the
in-depth promotion of the “Road-Railway-Road” transport mode, the proportion of the
national railway freight volume has been increasing. Figure 1 shows the cargo turnover of
China’s railroads and highways in the past five years. It is easy to see that China’s railroad
and highway transportation market demand shows a rapid growth trend. However,
compared with developed countries in Europe, the United States, and other places, it is still
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in the backward stage. In such a market background and building the trunk transportation
channels between hubs, the essence lies in developing and improving the trunk and branch
lines for the organic convergence of the problem. Moreover, road–railway intermodal
transportation integrates the high timeliness of railroad transportation and the substantial
convenience of road transportation, adjusting the transportation proportion of the two.
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What is more, there are many carbon emission sources in logistics transportation.
The balanced development of road–rail intermodal transportation can alleviate the traffic
congestion problem of road transportation caused by complicated road conditions to a
greater extent. Reducing the logistics industry’s dependence on road freight transportation
can effectively enhance the greening of logistics in the region. Giving full play to the rail-
road’s green transportation advantages will drive the freight market’s sustainable operation
and break the resistance to the circulation of goods that restricts economic development.
However, there still needs to be a significant gap in the infrastructure construction of road–
railway intermodal transportation waiting to be improved. In some countries, including
China, intermodal terminals and warehousing centers are geographically dispersed and
difficult to integrate for unified organization and management [3]. Today, the transport
industry is yet to address the pain point of the smooth and collaborative management of
rail and road transport operations while meeting customers’ growing service level needs.

Road–railway intermodal transportation usually covers the three processes of “collec-
tion”, “evacuation”, and “transportation” [4]. Although road transport is more expensive
than rail transport, there are various constraints on constructing railway lines in the more
remote areas of some countries, such as western China, and road transport has a clear
advantage in the transshipment process. As a result, a business process that applies to
transshipment—short-inverted transport—has emerged in the operational flow of road–rail
transport. Short-inverted transport mainly involves the circulation of goods in the two
sections of the journey from the place of origin to the train departure station and from the
train departure station to the demand point, and it can realize the function of transporting
goods in a short distance and at a high frequency. Typically, vehicles travel to and from the
supply and demand end for replenishment, reversal, and recycling. At the same time, road
transport’s efficiency and effectiveness directly impact the system’s economic functioning.
Although the overall development trend of road freight transport has been good in recent
years, from a macro point of view, it still stays in the low-efficiency stage. China’s rail
container freight volume is also far below the level of about 40% of freight volume in
developed countries [5].

Road–railway intermodal transport is containerized chiefly, with a diverse range of
cargo types, including front- and rear-end transport operations at this stage. In the case of
coal, for example, the front-end transportation operations are mainly based on coal mines
as suppliers. They load the output resources into containers secured to dump trucks by
cranes and transport them to train terminals. The dispatching station uses the railroad as
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the transportation medium, assigns train shipments to each station, and provides regular
cargo for the carriers. In turn, there are limits to the supplier’s production capacity and
available stock of each type of goods, alongside changes in customer demand. During
transportation, objective factors such as the vehicle’s condition and the road can also limit
the total transportation time of the car. This back-end transportation operation is in the
start-up phase when the carrier receives the shipment. The airline calculates the daily coal
transportation volume based on the customer’s pre-submitted cargo demand and station
receipt volume. The exact shipment is delivered within the same time window requirement
and transported by the same type of vehicle.

The scheduling efficiency of short-inverted transportation is affected by carriers’ ex-
isting capacity resources and transportation capability [6]. Whether it is the front-end
vehicle loading or the back-end vehicle unloading, it is necessary to operate according to
the sequence of orders. At the same time, this consumes a certain amount of loading and
unloading time. This time mainly includes the mechanical and manual operation time
and waiting time for the operation to start. Regarding its practical application value, each
short-pour transportation order usually has a fixed service time and quantity constraint.
Suppose the front- and back-end operation time should be shorter. In that case, it will
directly affect the total service time window of the carrier for the delivery of the order,
reduce customer satisfaction, and, thus, affect the service quality and operating costs of the
whole enterprise.

In particular, when short-distance vehicles are on the road, there is a specific route
plan between the supply and demand points. The vehicle dispatch plan relies on the
decision-maker’s preferences for transportation costs, time, service levels, and subjective
experience [7]. The customer has a daily capacity demand, which makes it challenging to
coordinate the extension of the delivery window of the order, which puts forward higher
requirements for the timeliness of the transport fulfillment. However, as analyzed in many
conflicting objectives studies, it is often difficult to continue to achieve the saturation of
customer satisfaction while prioritizing costs. Cost reduction at the expense of customer
satisfaction does not bring the desired gain to the business. Therefore, decision-makers need
to plan for scheduling drivers’ transport options. Rational decision making on scheduling
strategies reduces high costs and responds positively to the ‘dual-carbon’ goal proposed by
the 75th session of the United Nations General Assembly in 2020 [8] and closes the loophole
of energy overconsumption.

(1) In this paper, based on considering the delivery process of “rail to the road,” we
propose the problem of a scheduling strategy for the short-inverted transport of goods
based on the existing point-of-demand scheduling system and adding the reservation
mechanism for unloading vehicles. Foreseeing the quota of allowed operations in
each time slot and sending requests in advance can effectively alleviate the common
vehicle queuing and congestion problems at the demand point.

(2) We aimed to establish a scheduling strategy optimization model with total transport
cost and delivery time window minimization as the objective function, improve the
GWO algorithm, mix the NSGA-II algorithm based on the GWO algorithm, and carry
out numerical experiments on multiple sets of data to validate the beneficial effects of
the model to enhance the efficiency of the integrated logistics service of enterprises.

This paper is further organized as follows: Section 2 presents the literature review.
Section 3 describes the short-inverted transport problem and explains the variables and
parameters of the model. Section 4 designs the NSGWO algorithm for the model solution,
and Section 5 analyzes an experimental case of the operation of an actual carrier enterprise.
Section 6 discusses the vehicle scheduling plan and the conflicting relationship between
the objectives obtained from the experiment. Finally, Section 7 summarizes the conclusions
of this study.
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2. Literature Review

Logistics scheduling focuses on the coordinated planning of relevant vehicles and
human resources based on the requirements of the type of cargo, weights, specifications,
and delivery speeds to achieve both efficiency and effectiveness. Most existing studies
use traditional scheduling theory and mathematical methods to solve logistics scheduling
problems. Standard objective functions of scheduling models include cost [9–13], time
window [14–19], and energy consumption [20,21]. More specifically, establishing the
objective function includes both single-objective and multi-objective aspects.

First, recent academic research and industry surveys have shown that cost reduc-
tion and efficiency improvement are essential research directions in logistics scheduling
management [22–25]. Many scholars have conducted cost–benefit analyses of logistics
transportation and scheduling in different scenarios. Wu et al. [26] considered the schedul-
ing problem in delayed delivery, customer heterogeneity was taken as an influencing factor,
and a vehicle rescheduling model was constructed with penalty cost as an objective. Chen
et al. [27] introduced the strategy of the simultaneous loading and partial charging of
electric vehicles. Their research results, combined with market electricity prices, reduced
logistics and electricity costs.

In addition, the operation of vehicles is complicated and cumbersome, and many fac-
tors affect management costs. Rahman et al. [28] analyzed the interactions between distance,
order quantity, delivery frequency, and transportation costs by combining logistics costs
with full-truck (TL) and less-than-truckload (LTL) transportation modes. Ishii et al. [29]
used a local case study in Japan to investigate the impact of collection, transportation,
and storage factors on the logistics costs of renewable energy. The results show that the
selling price is heavily dependent on production capacity. At the same time, scholars have
also become interested in the logistics scheduling of drones under unique geographical
constraints. Hosang et al. [30] considered the uncertainty of multimodal transport based
on UAVs. They found that the operating cost decreased with the increased operating
time of UAV delivery in the cost analysis. Arne [31] compared the flight costs of UAV
transportation in urban and rural models.

Some studies have shifted their focus to time constraints, such as order immediacy and
production planning timing. Bac et al. [32] integrated the characteristics of long charging
times for electric vehicles, considering the charging scheduling problem of electric cars
in multiple charging stations and heterogeneous fleet structures. Li et al. [33] proposed
a logistics scheduling algorithm that minimizes the total downtime of the bottleneck
process machine, improving the production capacity of the photovoltaic cell production
workshop. Yu et al. [34] designed a scheduling strategy from a game perspective to
minimize the completion time of steel coil storage and retrieval. Dai et al. [35] developed
a personalized crowdsourcing delivery time prediction model to solve the O2O real-time
logistics scheduling decision-making problem. Bac et al. integrated the characteristics of
long charging times for electric vehicles, considering the charging scheduling of electric
vehicles with multiple charging stations and heterogeneous fleet structures. Yu et al. [36]
used the maximum completion time as the optimization goal to solve the distributed
flexible job shop scheduling problem of the transportation time between machines.

As research results have continued to accumulate, scholars have no longer been
satisfied with studying single-objective scheduling problems. They have considered more
and more constraints and combined single-objective functions to study conflicting multi-
objective scheduling models. Alireza et al. [37] modeled slot allocation and selective
pick-up/delivery integration with time windows, significantly reducing the cost of pick-
up/delivery vehicle usage. Zhang et al. [38] designed a function that considers time-
varying road conditions and vehicle energy consumption while considering the time
window requirement, which is used to dispatch fuel and electric vehicles. Zhang et al. [39]
comprehensively considered the dual objectives of scheduling cost and vehicle loading rate
in urban commercial logistics to build a heterogeneous vehicle logistics scheduling model.
Wei et al. [40] shifted their research focus to inland container transportation systems and
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established a mixed-integer linear programming (MILP) model that can effectively reduce
the cost of selecting transfer stations and container transportation costs. Xu et al. [41]
established an order allocation decision model that includes three aspects: transportation
mode selection, vehicle loading, and supplier selection, in the context of the intelligent
scheduling of vehicle logistics. Liu et al. [42] used a joint-scheduling algorithm that can
reduce the average response time and maximum completion time while ensuring the
success rate of the scheduling.

Other scholars are working to reduce carbon emissions and study sustainable develop-
ment trends in transportation and scheduling in green logistics. Lu et al. [43] comprehen-
sively summarized the current status of research on energy transportation scheduling for
green vehicles in the harbor area. Zhang et al. [44] designed a multi-autonomous guided
vehicle with green indicators in energy-saving flexible workshop scheduling.

In addition, the emergence of big data, cloud computing, and artificial intelligence
has gradually shifted the research focus of scheduling strategy optimization from tradi-
tional mathematical algorithms to high-quality optimization methods based on intelligent
algorithms [45]. The research methods for solving scheduling models are generally swarm
intelligence algorithms. For example, Guerrero Carlos et al. [46] proposed a resource elastic-
ity management method based on a non-dominated sorting genetic algorithm (NSGA-II) in
the cloud architecture of container allocation. Choi et al. [47] used an improved ant colony
algorithm to optimize the operational routes of RMC transport vehicles, consider carbon
emissions, and plan a vehicle delivery scheduling scheme. Hu et al. [48] investigated
the joint vehicle scheduling and stockpile allocation problem in an automated container
terminal, established a hybrid linear programming model, and developed a three-stage
decomposition method based on greedy search to solve the problem. Hu et al. [49] ana-
lyzed the extensive container cluster loading and unloading operation scenarios, proposed
a multi-objective mathematical model for multi-vessel container loading and unloading
planning, and verified the model validity using a heuristic adaptive genetic algorithm. The
differential evolution (DE) algorithm developed by Chen et al. [50] simplifies the empty
container allocation model in the logistics supply chain of containers. Wang et al. [51]
optimized the logistics scheduling and orderly charging collaborative management of
existing automated guided vehicles (AGVs) in automated terminals using an improved
particle swarm algorithm. Zhao et al. [52] incorporated the vehicle model into the main
influencing factors to establish a cooperative scheduling optimization model for transport
paths and solve it with an improved particle swarm algorithm. Zhou et al. [53], meanwhile,
considered the particular cyclic pickup pattern in the supply chain center and constructed
an adaptive artificial bee colony algorithm to solve the problem so that the total energy
consumption and distribution time penalty of EVs is minimized.

In addition to the generally applicable intelligent algorithms, some scholars are also
working on mining new algorithmic models. Islam et al. [54] used a meta-heuristic chemical
reaction optimization algorithm (CRO) to solve the transportation scheduling problem in
the third-party logistics supply chain. Zhuang et al. [55] developed a two-stage memetic
algorithm (TSMA) to analyze the integration of production transportation and equipment
operation in third-party logistics.

Compared with the existing literature, the innovations of our research are summarized
as follows: This study considers a particular short-inverted transportation scenario in
combined rail–road transportation, which considers the impact of the unloading process of
vehicles in the park warehouse on the operation of third-party carriers under the back-end
transportation of “rail to the road”. Secondly, we introduce a new unloading appointment
mechanism to solve the continuous impact relationship between more extended congestion
queuing times, transportation costs, and delivery time windows. Finally, this study pro-
poses a new intelligent method that can effectively solve the choice of scheduling strategy
in the actual short-distance transfer of enterprises. In summary, the existing research on
transport scheduling strategy optimization considering the short distance and the multi-trip
situation in this article is relatively limited. Regarding road–rail intermodal transport as
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a scenario of theoretical support, there is still ample research space. Transport and traffic
are closely linked, and short-inverted freight transport involves changes in the process
handover of multiple modes of transport, which significantly impacts the order completion
time and the total cost of the enterprise.

3. Problem Description and Modeling
3.1. Scenario Construction

Under road–rail intermodal transport, Figure 2 illustrates the specific execution process
of loading vehicles involved in short-haul backhaul transport at the dispatching station.
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Figure 2. Vehicle inbound loading process.

According to the flowchart, inbound approvals are usually operated directly by an
intelligent management system, which makes the process fast and easy.

In actual production operations, the unloading areas of the park warehouses at each
demand point are geographically limited. Short-inverted vehicles generally contain con-
tainers and other large transportation equipment. Their volume is significant, and vehicle
parking space is limited. This also leads to waiting for the unloading of vehicles in front of
the warehouse or even the warehouse around the road queue, and ultimately following
the order of entry into the factory to work. As a result, it reduces the turnover efficiency
of short-term transportation and extends the deadline for the final delivery of each order.
Vehicles in the queuing process are still out of work. The decision maker, to ensure that the
customer-specified hard delivery time window is adhered to, will choose to send other ve-
hicles to participate in the short-inverted transport. The increase in the number of transport
vehicles will also lead to higher transportation costs.

At the same time, in actual short-inverted transport, each vehicle can only serve one
demand point at a time and return to the site immediately after unloading at the demand
point warehouse to replenish the goods so that the pickup and delivery of goods alternate
many times in a cycle until the completion of the order of the specified amount of freight,
and the vehicle arrives at the customer’s specified unloading point of the unloading process,
as shown in Figure 3. According to the flow chart, the queue after the driver arrives at the
receiving point accounts for a significant proportion of the transport process.
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3.2. Description of the Problem

The problem of scheduling under a supply chain for short-inverted cargo transport
consisting of freight terminals, carriers, and customers is studied. The network structure of
short-distance logistics and transport is shown in Figure 4. In this supply chain, the airline
is responsible for storing goods. In addition, since the airline has the decision-making
power over the transport program, many uncertainties influence factors in the operation,
such as the number of transfers and vehicle configuration. Constructing a short-inverted
transportation scheduling model can help the decision-maker set each vehicle’s short-
inverted transportation time. Moreover, it also enables planning the quota for inbound
unloading at each demand point. The model helps to screen out time-consuming and
inefficient vehicles from the transportation program. Therefore, this study further considers
the queuing problem of vehicle arrival for unloading by setting up a booking mechanism.
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At the same time, this study takes into account the characteristics of actual short-
inverted transport scenarios and makes the following assumptions:

Assume that there is a single train depot in the supply chain network, that the customer
locations are known, that there is a demand for short-inverted transport at each customer
point, that the vehicle loads are standard cargo, that the capacity of a single vehicle is
sufficient for single transport, and that each car travels at a constant speed. The vehicle
arrives at the customer’s warehouse, completes the unloading, and then returns to the
shipping station for replenishment, allowing one vehicle to serve the same demand point
multiple times. Specifically, the modeling also needs to satisfy the following constraints:

(1) The place of origin or the supplier shall be in a normal state during the supply period
so that the total volume of supply from the dispatching station cannot be less than the
total demand of the customer.

(2) Stopping platforms allow trains to leave the station only after the goods have arrived
and have been fully unloaded, irrespective of empty or overrun orders.

(3) The customer’s total demand for the day divided by the vehicle load capacity shall be
no greater than the number of vehicles available to the carrier for daily transport.

(4) The carrier’s logistics company has a sufficient number of vehicles available for short
backhaul transport, i.e., the number of cars owned by the carrier is equal to the number
of vehicles waiting or in transit at each time point.

3.3. Description of Parameters

Based on the above problem description and assumptions, Table 1 describes each
variable and parameter used in the model to facilitate the optimization model building for
short-inverted transport scheduling.

Table 1. Parameters and variables of the proposed model.

Notation Instructions

Collection:
J The set of all demand points, J = {j|j = 1,2,3,. . ., n}
S The set of all time windows s, S = {s|s = 1,2,3,. . ., 12}, s = 1 means the time window is between 0 and 2 h
H The set of all transport vehicles h, H = {h|h = 1,2,3,. . ., n}

Related parameters:
i The originating station

dij The transport distance from the point of dispatch i to the end of customer demand j, km
v The average speed at which the vehicle is traveling, km/h
T1 The time at which vehicle 1 completes loading at the point of dispatch, h
T2 The time for vehicle 1 to complete unloading at the point of demand, h

Tijh
The total time for vehicle h to complete the delivery of a short-pour transport order from originating station i to
demand point j, h

atj The lower bound of the time at which demand point J requires goods to arrive, h
btj The upper time limit for the arrival of goods requested by demand point j, h
tijh The time taken by vehicle h to complete a transport order between dispatching station i and demand point j, h
aj The daily demand for goods at the demand point j, ton
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Table 1. Cont.

Notation Instructions

ojs The number of vehicles allowed to book unloading appointments at demand point j in the time window s
ois The number of booking requests initiated by originating station i on the same day
cij The total cost of short-inverted transport of a vehicle from originating station i to demand point j and back, RMB per trip
zh The load capacity of vehicle h
sn The size of the divided single appointment time window, h
Tih The maximum number of hours per day that vehicle h can work at dispatch station i, h
ehij The number of transports of vehicle h from originating station i to demand point j, trip
yjs The number of bookings issued by the sending station to demand point j in time window s

3.4. Objective Function

This model has the objective of minimizing the total cost of short-inverted transport
and minimizing the delivery time, and Equation (1) represents the multi-objective objective
function scheduling model:

Z = min[f 1, f2] (1)

f1= min ∑
h∈H

∑
j∈J

cijehij (2)

f2= min∑
j=1

∑
h=1

Tijh (3)

where Equation (2) represents the minimization of the total cost of short-inverted trans-
portation, in this model, considering the characteristics of short-inverted transportation,
the operation mode of a short-pour transportation business is primarily the demanding
enterprise and the third-party logistics company cooperating. The total cost cij for a vehicle
to complete a short backward transportation order from the dispatching station i to the de-
mand point j includes the total freight and vehicle usage costs. The total freight cost equals
the sum of the freight costs of all vehicles involved in the short backward transportation.
The freight cost of each car is the product of the single-trip short backhaul freight cost and
the actual number of transportation trips. The amount of freight for a single journey is set
and paid by the enterprise according to the actual transportation distance.

Given that demand, companies use a logistics outsourcing model, and freight pay-
ments are usually set based on the number of trips transported. The cost mainly includes
fuel, the driver’s salary, and vehicle maintenance, where driver wages are constant and
priced according to the distance traveled. Vehicle maintenance costs primarily involve the
wear and tear of tires and other infrastructure, and the factors that influence these costs
are the road conditions of the transportation section and the length of vehicle use. In this
study, we calculate the maintenance cost by combining the loss of ordinary fuel vehicles.
Fuel costs are more variable than vehicle maintenance and account for a more significant
proportion of freight costs. Hence, reducing fuel costs plays a leading role in total cost
optimization. Meanwhile, the rational planning of short-inverted vehicle transportation
schemes can reduce the number of vehicles needed in the transfer process, thus reducing
the cost to a certain extent. The cost of vehicle use, which includes the cost of acquisition
of the means of transport, insurance, and user taxes over a 365-day operating period, is
divided by the number of orders and the vehicle turnover rate, and the result is apportioned
equally to the cost of each short-inverted trip.

Equation (3) represents the sum of the total time to deliver vehicles to complete a
short-inverted order from dispatch station i to demand point j. It consists of the sum of the
actual delivery times for each order.

Equations (4)–(10) are the constraint functions:

yjs ≤ ojs, ∀j ∈ J, ∀s ∈ S (4)
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Equation (4) expresses that the number of booking requests sent by the sending station
to the demand point j during the S time window equals the maximum limit on the number
of vehicles booked into the plant at the demand point j during this period.

btj ≤ tijh+T1 + T2 ≤ atj (5)

Tijh =
J

∑
j=1

(
2 × dij

v
+T1+T2

)
· ehij (6)

Equations (5) and (6) indicate that the maximum value of booking requests received at
demand point j per day equals the demand divided by the vehicle’s capacity, where dij and
v are known quantities.

∑
s=1

Ois ≥
∑

j=1
aj

zh
, ∀s ∈ S, j ∈ J (7)

Equation (7) indicates that the total number of transport booking trips initiated by orig-
inating station i per day shall not be less than the number of orders demanded by demand
point j on that day, where the number of orders to be fulfilled by the originating station is
equal to the order demand at each demand point divided by the vehicle’s load capacity.

∑
j=1

tijh ≤ sn ≤ ∑ Tih, ∀h ∈ H (8)

Equation (8) indicates that the division of a single booking time window should be
within the range of a vehicle’s single transport hour and maximum daily working hours.

i

∑
h=1

fhs= 1 (9)

Equation (9) indicates whether vehicle h is operational within the s time window. If
yes, fhs = 1; otherwise, fhs = 0.

i

∑
j=1

xijh = 1, ∀j ∈ J, h ∈ H (10)

Equation (10) indicates whether the logistics company sends a vehicle h to deliver
the goods from the shipping station i to the demand point j. When xijh = 1, it will send a
vehicle; when xijh = 0, it will not.

4. NSGWO Algorithm
4.1. Algorithm Description and Flow

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is based on the theory of
the NSGA algorithm [56,57] and introduces the concepts of a fast, non-dominated sorting
strategy and elite retention strategy in response to its deficiencies. Meanwhile, Seyedali
Mirjalili [58] and other scholars proposed the Grey Wolf Optimization algorithm (GWO) in
2014. It utilizes the predatory behavior and collaborative mechanism of wolf pack groups
to achieve optimization based on preserving population diversity. It performs better in
terms of both convergence speed and solution accuracy [59].

The short-inverted transport multi-objective scheduling strategy model is a multi-
decision variable, multi-constraint, two-objective model. In a constrained multi-objective
model, the constraints restrict the feasible domain, making searching and selecting the
optimal solution more complex. The Grey Wolf algorithm (GWO) is more suitable for solv-
ing single-objective problems, while the Non-Dominated Sorting Multi-Objective Genetic
algorithm (NSGA-II) is a representative algorithm for solving multi-objective problems.
NSGA-II and GWO are meta-heuristic algorithms for finding globally optimal solutions
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based on population iteration. The former reflects the advantage of performing more robust
global searches [60] but can significantly slow them down. Although the latter is prone
to premature convergence [61], the structural framework of the algorithm is relatively
simple and stable, has relatively few adjustment parameters, and is easy to implement
while complementarily solving the problems of NSGA-II. Therefore, this paper proposes a
hybrid algorithm based on the GWO algorithm plus the fusion of the NSGA-II algorithm,
which retains the unique advantages of the two algorithms and compensates for the com-
mon deficiencies to achieve better overall optimization results. The selection of the initial
population closely affects the convergence speed and optimization ability of the NSGA-II
algorithm, and a good population is more capable of selecting the best individuals and
transferring their excellent gene segments to other individuals in the crossover process or
for genetic inheritance. In addition, in searching for the optimal solution, the exchange
of adequate coding information can improve the algorithm’s ability to find the optimal
solution and accelerate the algorithm’s computational speed as a whole. On the contrary,
if the initialization of the population is poor, the crossover operator can hardly pass the
promising gene segments when inheriting to the next generation, which will not only fail to
achieve the ideal crossover effect but also increase the output time of the optimal solution.

The steps to implement the NSGWO hybrid algorithm are as follows (Figure 5).
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Step 1: Population initialization. Randomly initialize the NSGWO algorithm popu-
lation and code each grey wolf as a solution, evaluate the population, and calculate the
fitness value of each individual according to the objective function.

Step 2: After the non-dominated sorting, the individuals in the population form
different non-dominated frontiers (fronts). At the same time, it is essential to ensure that the
other individuals in the frontier do not dominate the individuals in each non-dominated
frontier and that the first frontier (frontier 1) is the updated set of optimal solutions. The
solution generated above is the current searched Pareto optimal solution in the objective
function space.

Step 3: Calculate crowding distances. Crowding distances are calculated for each
individual in all non-dominated fronts to maintain diversity in the initial population. Indi-
viduals closer together in the objective function space will have smaller crowding distances.

Step 4: Operator selection. Through the tournament selection method, randomly
screen some individuals in the parent generation, judge the non-dominated ordering and
crowding distance, and preferentially select the individuals with the top non-dominated
ordering and the more considerable crowding distance for genetic operation.

Step 5: Update alpha, beta, and delta wolf positions. Generate new positions based
on the position update formula for alpha, beta, and delta wolves, and then combine the
information of the three wolves to generate a new solution set of individuals to enrich
the diversity of the population at this stage and also introduce randomness to explore the
search space.

Step 6: Create the offspring population. Merge the parent and child populations to
form a combined population of size 2N (N is the size of the population).

Step 7: Fast non-dominated sorting. Perform fast, non-dominated sorting on the
individuals of the merged population and use the principle of non-domination to retain the
N best individuals in the parent generation to form a new population again.

Step 8: Crowding distance sorting. If the best N individuals cannot be contained en-
tirely within the last frontier when selecting the best N individuals, select which individuals
in the previous frontier can enter the new population based on the crowding distance.

Step 9: Repeat the iteration. When performing the next iteration, use the new gen-
eration of populations just obtained. Determine whether the current iteration number
G evolves to the maximum number of iterations; if so, jump out of the algorithm; oth-
erwise, repeat Steps 2–8 until the stopping condition is satisfied by the output of the
optimal solution.

4.2. Algorithm Convergence and Stability Test

To assess the convergence and stability of the NSGWO algorithm, the benchmark
multi-objective test function ZDT [62] (ZDT1-ZDT4 and ZDT6), which is suitable for two
optimization objectives, is chosen in this paper to comprehensively investigate the solving
ability of the NSGWO algorithm in multi-objective optimization problems. The ZDT test
function can support up to 30 inputs of decision variables. Table 2 demonstrates the two
objectives optimized for each test set.

Table 2. Comparison of results of standard test functions for each algorithm.

Test Function Define Decision Variables Best Case Scenario

ZDT1

f1(x) = x1

xi ∈ [0, 1]
i = 1, . . . , n

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

f2(x) = g(x)
[
1 −

√
x1/g(x)

]
g(x) = 1 + 9(

n
∑

i=2
xi)/(n − 1)

ZDT2

f1(x) = x1
xi ∈ [0, 1]

i = 1, . . . , n

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

f2(x) = g(x)
[
1 −

(
x1/g(x))2 ]

g(x) = 1 + 9(
n
∑

i=2
xi)/(n − 1)
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Table 2. Cont.

Test Function Define Decision Variables Best Case Scenario

ZDT3

f1(x) = x1

xi ∈ [0, 1]
i = 1, . . . , n

x1 ∈ [0, 0.0830]
∪[0.1822, 0.2577] ∪
[0.4093, 0.4538] ∪
[0.6183, 0.6525] ∪
[0.8233, 0.8518]

xi = 0
i = 2, . . . , n

f2(x) = g(x)
[

1 −
√

x1
g(x) −

x1
g(x) sin 10πx1

]
g(x) = 1 + 9(

n
∑

i=2
xi)/(n − 1)

ZDT4

f1(x) = x1
x1 ∈ [0, 1]

xi ∈ [−5, 5]
i = 2, . . . , n

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

f2(x) = g(x)
[
1 −

√
x1/g(x)

]
g(x) = 1+ 10(n − 1)+

n
∑

i=2
[x 2

i − 10cos 4(πxi)]

ZDT6

f1(x) = 1 − exp(−4x1)sin6(6πx1
)

xi ∈ [0, 1]
i = 1, . . . , n

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

f2(x) = g(x)
[
1 − (

f1(x)
g(x) )

2
]

g(x) = 1 + 9
[
(

n
∑

i=2
xi)/(n − 1)

]0.25

The shapes of the real Pareto optimal frontier solutions of the above test sets are
known, the population sizes of the test functions are all set to 200, the maximum number
of iterations is 200, and the size of the Pareto frontier solution set is 100. In addition, to
quantify the respective algorithms’ stability, the average values of the performance indexes
of the above test functions are taken after running them independently 30 times. Table 3
shows the specific numerical results.

Table 3. Comparison of results of standard test functions for each algorithm.

Test Function Performance Indicators NSGA-II NSPSO NSGWO

ZDT1
HV 0.7040 0.7184 0.7193
GD 0.00018 0.0002 8.675 × 10−5

IGD 0.0185 0.0052 0.0047

ZDT2
HV 0.4291 0.4417 0.4442
GD 3.522 × 10−5 4.948 × 10−5 4.471 × 10−5

IGD 0.0197 0.0070 0.0049

ZDT3
HV 0.5803 0.5991 0.5996
GD 7.570 × 10−5 0.00018 0.00017
IGD 0.0358 0.0057 0.0053

ZDT4
HV - - 0.7198
GD 0.3810 5.2272 5.617 × 10−5

IGD 4.9253 11.1861 0.0044

ZDT6
HV 0.3593 0.3851 0.3882
GD 2.363 × 10−5 3.520 × 10−5 3.104 × 10−5

IGD 0.0342 0.0086 0.0038

This paper uses three performance metrics to evaluate NSGWO and compare it with
the NSGA-II and NSPSO algorithms, respectively. The three performance metrics are the
generation distance (GD), inverse generation distance (IGD), and hypervolume metric (HV).

Among them, the generation distance (GD) and inverse generation distance (IGD) are
the more representative convergence metrics [63], and Equation (11) is the expression for
the generation distance (GD):
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GD(N, PF∗) =

(
|N|
∑

i=1
dp

1i

) 1
p

|N| (11)

N is the optimal solution set of the test algorithm; PF* is the optimal solution set of
the natural Pareto frontier; p takes a value of 2; and d1i is the Euclidean distance between
the i-th solution of the solution set N in the target space and the nearest reference point in
the solution set PF*. GD mainly measures the Euclidean distance between the Pareto front
formed by the optimal solution of the test algorithm and the actual Pareto front PFture and
takes the mean of all Euclidean distances after summing them up. The smaller the value
of the GD metric is, the better the algorithm converges. When the target result is 0, then
N = PF*.

Equation (12) is the expression for the inverse generation distance (GD):

IGD(PF ∗ , N) =

(
|PF∗ |
∑

i=1
dp

2i

) 1
p

|PF∗| (12)

N is the optimal solution set of the test algorithm; PF* is the optimal solution set of
the natural Pareto frontier; p takes a value of 2; and d2i is the Euclidean distance between
the i-th solution in the solution set PF* and the nearest position of the reference points
in the solution set N. The inverse generation distance (IGD) metric is the opposite of the
generation distance (GD). It represents the average of the minimum Euclidean distance
between all solutions in the natural Pareto frontier PFture and the optimal Pareto solution
set obtained by the test algorithm. The smaller the value of the IGD metric, the better the
algorithm converges and the more homogeneous the distribution of the solutions. The
hypervolume metric (HV) is a stability metric used to measure the volume of the target
space in the region enclosed by the non-dominated solution set N obtained by the algorithm
and the reference points formed by the actual Pareto front.

Equation (13) is the expression for the hypervolume metric (HV):

HV(N, PF ∗) = λ(∪ |N|
i=1vi

)
(13)

N is the optimal solution set of the test algorithm, λ is the Lebesgue measure, and
vi is the hypervolume formed by the theoretical reference point and the i-th solution in
the solution set N in the target space. The most significant difference between HV, and
GD and IGD is that there is no need to know the actual Pareto front of the theoretical
optimum, which is a comprehensive and robust indicator, and the bigger the value of
the HV indicator is, the better the Pareto front of the algorithm converges, and the more
uniformly distributed the solutions are.

The analysis in Table 3 shows that the NSGWO algorithm proposed in this paper
achieves good optimization results regarding the GD, IGD, and HV metrics. The result
of running the test function 50 times and selecting the optimal solution set, Figure 6,
demonstrates that with this result, this algorithm can obtain the non-dominated Pareto
solution set with better quality and distribution. Through the comparative analysis of the
data of the three indexes, combined with the analysis of the distribution map situation,
the NSGWO algorithm proposed in this paper obtains a better quality and distribution of
the non-dominated solutions, and the stability of the algorithm performs better, compared
with the traditional NSGA-II algorithm and NSPSO algorithm.
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5. Experimental Analysis
5.1. Scenario-Based Problem Analysis

In response to severe congestion and long queues in the unloading area at the point of
demand, this study considers the development of a vehicle unloading booking mechanism
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in the carrier’s existing intelligent platform system for short-inverted vehicle scheduling.
Figure 7 shows the system topology of this platform. Among the relevant information
management of the shipping station, this study reserves the operation management system
for docking the existing business, mainly related to upstream and downstream customers,
to achieve on-demand aggregation and real-time collection of business data, provide
data support for the company’s management decision making, and effectively improve
customer stickiness.
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Figure 7. The system topology of a vehicle short-inverted scheduling platform based on intelligent
station information.

Under the existing platform system, short-inverted vehicles must initiate applications
in advance. At the same time, according to the number of appointments requested for
unloading, based on the scheduling strategy optimization model, the maximum number
of vehicles allowed to enter in each time slot can be obtained at the demand point. This
reservation mechanism enables the carrier to know the real-time congestion conditions of
the back-end of the transport in advance, and then staggered deployment, and reduces
the excessive queuing time spent by truck drivers at the unloading point. This booking
mechanism divides the range of bookable time windows according to a maximum time
limit of 4 h for a single transport as a lower bound. At the unloading point specified
by the customer, the business specialist can set the number of vehicles to be unloaded
for each appointment or randomly select a specific time window for the appointment
in the booking mechanism according to the individual needs and the availability of the
dispatching station. The carrier should provide the customer with the transport vehicle ID
and the day’s delivery volume. In addition to this, when the reservation quota of vehicles
allowed to unload at a demand point is zero, or the car has a reservation failure or is unable
to make a reservation, the dispatcher can screen the system for other demand points that
can receive a reservation within the current time window under this reservation mechanism
and make a re-subscription for that vehicle until there is a demand point that can receive it.
Figure 8 illustrates the flow of the vehicle offloading reservation mechanism.
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5.2. Optimal Scheduling Strategy Solution for Short-Inverted Vehicles

The experiment selects a capital city of a province in western China. As the departure
station, it uses a railway station point, which is mainly responsible for the road–railway
intermodal transportation business. It carries out short-inverted transportation to nine
demand points around the station platform. Figure 9 shows the route program of short-
inverted transport operations the leading carriers undertake.
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In this case, the number of train dispatching stations is one, and the short-inverted
haulage occurs between this platform and the nine surrounding demand points. The
relevant parameters of the carrier are set and the specific values are shown in Table 4. The
capacity of a single vehicle is 32T of standard cargo, and it travels at a constant speed
during the transport. This study specifies that the company’s fleet of short-inverted haulage
vehicles works 365 days per year. The average daily shipment is found based on the annual
demand at each demand point.

Usually, the primary purpose of transport is to fulfill the requirements of the order
placed by the customer, so the number of trips made by one vehicle per day is rounded up-
ward. In addition, if a vehicle’s single trip is less than the standard cargo of 32T, the carrier
must dispatch a car to transport the remaining amount. The customer information in this
study comes from third-party logistics enterprises that carry short-inverted transportation.
Among them, the annual capacity of each demand point is relatively fixed. Therefore, the
average value of the yearly demand for short-inverted cargo at each demand point for
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the past five years is selected. Furthermore, the enterprises price the freight rates. Table 5
shows the customer- and freight-specific information obtained.

Table 4. Basic parameters.

Name Numerical Value Unit

Number of shipping stations 1 -
Number of demand points 9 -
Maximum vehicle weight 32 ton

Average vehicle speed 55 km/h
Maximum number of vehicles available 500 -

Vehicle loading hours 0.25 h
Vehicle unloading hours 0.25 h

Maximum vehicle operating hours 10 h/day

Table 5. Customer information.

Demand Point Annual Demand (T) Distance (km) Average Daily
Departures (Vehicles)

Number of Trips
per Vehicle (Trips)

Freight
(RMB/Trip)

I 55 3 6 8 50
II 220 4 20 10 50
III 160 65 70 2 180
IV 60 35 20 3 130
V 100 35 30 3 130
VI 100 48 30 3 150
VII 200 65 35 2 60
VIII 80 8 9 8 60
IX 30 48 13 2 150

5.3. Analysis of Results

The NSGWO parameter sets the number of initial populations defined as 100 and
the number of iterations as 200. Meanwhile, to ensure the algorithm’s fluency, the short-
inverted transport scheduling problem of road–railway intermodal transport is solved by
simulation with the help of MATLAB 2022b. Table 6 shows the simulation results. The table
reflects the reservation information of each demand point under the reservation mechanism
for a random day during the working day.

Table 6. Status of bookings at each point of demand on a random day.

Demand Point Number of Requests for Appointments
Required (Times/Day)

Transport Time per Vehicle
(Trips/h)

Maximum Bookable Quota
(Vehicles/h)

I 48 0.51 7
II 189 0.55 27
III 137 2.77 137
IV 52 1.67 26
V 86 1.67 43
VI 86 2.15 86
VII 172 2.76 172
VIII 69 0.69 14
IX 26 2.15 26

The NSGWO algorithm was run 30 times for the short-inverted transport optimization
experiments above. The optimal set of non-dominated frontier solutions was selected
among the results obtained, as shown in Figure 10. According to the objective function
values obtained, the NSGWO algorithm used in this study presents a good diversity. The



Sustainability 2024, 16, 6310 19 of 25

distribution of the non-dominated frontier solutions derived by this algorithm is relatively
uniform, which is of some relevance for the decision-maker’s choice.
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As can be seen from Table 7, the use of swarm intelligence algorithms has a specific
optimization effect on multi-vehicle short reversal scheduling for centralized loading and
unloading operations in actual parks. Reducing the number of vehicles for short-inverted
dispatching using the swarm intelligence algorithm is about one-third of the original
scheme compared with the original scheme before optimization. The NSGWO algorithm is
optimized to require the least number of vehicles involved in short-inverted dispatching,
using 10 and 7 fewer cars than the NSGA-II and NSPSO algorithms, respectively. The
results of this experiment reflect the mutual constraints of the queuing time in the unloading
area and the vehicle replenishment trips. Reducing the waiting time for vehicles to unload
in the park helps vehicles to be put on the next trip quickly. The reduction in vehicles
reduces the fuel cost. It also directly affects the total cost of short-inverted transportation.
Using the NSGWO algorithm under the same conditions saves 41.01 percent of the total
transport cost. It reduces the total delivery time by 46.94 percent compared with the
carrier’s current logistics scheduling strategy, effectively improving the short-inverted
scheduling and vehicle turnover efficiency. In addition, compared with the data obtained
by the NSGA-II and NSPSO algorithms, the total transport cost is reduced by 2.3 percent
and 2.25 percent, respectively, and the delivery time window is reduced by 12.4 percent
and 10.4 percent, respectively, by using the NSGWO hybrid algorithm to solve the problem
during the same shift.

Table 7. Comparison of results by algorithm.

Optimization
Algorithm

Total Cost of
Transport/RMB

Delivery Time
Window/h

Number of Vehicles
Transported

Spatial Indicators
(Spacing)

None 203,200 93.86 300 —
NSGA-II 122,618 56 213 1121.37
NSPSO 122,565 55 210 1569.89

NSGWO 119,860 49.8 203 921.23

Secondly, Table 7 gives the values of the spatial metric (spacing) of the three algorithms,
which measures the distributivity of the set of non-dominated solutions based on the
shortest distance between the non-dominated solutions obtained by each algorithm. The
NSGWO algorithm outperforms the other two algorithms in this metric to obtain the
scheduling strategy with the minimum total transport cost and the shortest delivery time
window. When the customer’s acceptable time window allows an extensive range of
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adjustments or the order does not require high timeliness, the enterprise will generally give
priority to the lowest cost as the primary goal; when the delivery time has a mandatory
requirement, or the penalty cost triggered by overtime is too high, it will choose the solution
with a lower delivery time window.

A set of non-dominated frontier solutions is selected from the above experimental
results and the specific results of this experiment are described. Table 8 visualizes the
specific vehicle reservation quotas for each time window in demand points I–IX. For
example, demand point II provides bookable hours for eight time windows. The number of
inbound vehicles allowed to be booked in a single time window is 11 for the first four time
windows and increases to 16 for the last four time windows. According to this table, the
decision-makers of the carrier companies and the drivers of short-inverted transport can
know the real-time arrival working status of the vehicles at the demand points in advance
before receiving the tasks and make a reasonable plan for the transfer tasks.

Table 8. Comparison of results by algorithm.

Time Window 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

I 7 7 7 7 0 0 0 0 0 0
II 11 11 11 11 16 16 16 16 0 0
III 0 0 0 0 137 137 137 137 0 0
IV 0 0 0 0 23 23 23 23 41 41
V 86 86 86 86 0 0 0 0 0 0
VI 86 86 86 86 0 0 0 0 0 0
VII 0 0 0 0 13 13 13 13 2 2
VIII 23 23 23 23 0 0 0 0 0 0
IX 10 10 10 10 18 18 18 18 0 0

The short-inverted scheduling plan obtained based on this intelligent hybrid algorithm
in this study is more specific than the random scheduling plan given by the initial system.
The present model retains the time interval for each vehicle to initiate two consecutive
reservation requests, which further prevents the drawback of the insufficient time interval
for initiating reservation requests and also reserves the necessary rest time for the drivers.

6. Discussion

According to the above experimental results, the newly set appointment mechanism
shortens the time for short-inverted vehicles to unload at the demand point. In the complete
intermodal supply chain formed by suppliers and customers, the working status of vehicles
includes three main stages: front-end loading, in-transit transportation, and back-end
unloading. The smoothness of the unloading process directly affects transportation costs.
Moreover, this reservation mechanism uses an intelligent scheduling system based on
the Internet of Things technology, which can effectively avoid additional hardware and
software costs. At the same time, the NSGWO algorithm designed in Section 3.3 can obtain
a non-dominated frontier with a more stable distribution than the other two algorithms,
whether in terms of the test function or the actual data of the enterprise.

Another objective of this study is to discuss the problem of decision-maker selec-
tion under conflicting objectives. Intelligent scheduling can only partially meet customer
satisfaction with most companies’ plans. Human decision-making is still required. Com-
bined with the actual business operations, it can be found that the total transport cost
and the total delivery time window, as two optimization objectives in the short-inverted
transport scheduling problem, are interrelated but conflicting in the distribution of the
non-dominated frontier solutions. Realizing an equilibrium state in which both objectives
are ideal is impossible. Multiple alternative scheduling solutions are obtained in each run
when solved using an intelligent optimization algorithm. However, the conflict between the
various objectives makes it difficult to obtain the optimal solution with both cost and time.
The carrier can select the optimal solution by choosing the more important objective as the
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primary variable based on the demand of the order placed by the customer. Although the
growth in demand in the market for time-sensitive freight transport indirectly raises the
level of transport services demanded by customers [64], companies generally prioritize
cost minimization as their primary objective when the customer’s acceptable time window
allows for a wide range of adjustments or when the order does not have a high timeliness
requirement. When there are mandatory requirements for the delivery time or the cost
of penalties arising from time overruns is too high, it will choose a solution with a lower
delivery time window.

7. Conclusions

The railway is a vital strategic resource for urban development. However, the railway
transport of bulk goods will become increasingly popular. China’s freight transport still
cannot be wholly divested of road transport. So far, the emergence and promotion of
road–rail intermodal transport have also made the domestic logistics and trading channels
gradually smoother, greatly enhancing the level of facilitation of traditional freight trans-
port. This study considered the requirements of cargo transshipments under intermodal
transportation and combined the characteristics of the high turnover rate of short-dump
transportation. Aiming to address the vehicle congestion queuing problem caused by
the limited location of the unloading area, this study adopted a new vehicle reservation
mechanism, including the vehicle unloading time sequence and the park warehouse un-
loading space scheduling operation problems. The existing intelligent scheduling system
at the demand point was optimized. In addition, this paper’s study of short-inverted
transportation essentially analyzed the scheduling problem of vehicles in a short-inverted,
centralized handling scenario. To react more realistically to the transportation status quo
between the train dispatching station and the demand point, this article visualized the
articulation of various links in the vehicle loading and unloading processes.

This paper constructed a multi-objective optimization model of a short-inverted trans-
port scheduling strategy based on road–rail intermodal transport, with the objectives
defined as the lowest total cost of short-inverted transport and the shortest delivery time
window. It solved the problem using the NSGWO hybrid algorithm, which cleans the
inferior solution and retains the elite solution more in line with the Pareto frontier.

Taking a logistics enterprise in a western region of China as an example, the experi-
mental results show that (i) the algorithm performs well in solving practical problems and
significantly reduces the number of short-inverted transport vehicles. (ii) Compared with
the same non-dominated sorting algorithm, the NSGWO algorithm used in this study can
obtain solutions with lower costs and shorter delivery time windows.

In summary, the vehicle scheduling plan obtained from the experiment can effec-
tively alleviate the congestion of vehicles at the transfer station and the inefficiency of
short-inverted transportation, ensuring the efficiency and economic benefits of enterprise
decision-making. In addition, from the perspective of transportation tools, the reservation
mechanism proposed in this study can directly reduce the number of vehicles involved in
short-inverted transportation scheduling. This also means that the optimized transportation
scheduling plan reduces unnecessary fuel costs in detour transportation and achieves lower
carbon emissions. On this basis, it promotes the spread of the emerging concept of green
logistics. Reducing energy consumption further encourages the sustainable development
of the logistics industry.

However, this paper also has certain limitations. The problem studied in this paper is
suitable for the short-inverted transportation of bulk goods by rail–road combined transport
and needs to distinguish between other types of goods. However, during the actual transfer
process, there may be particular types of goods, such as dangerous goods with high
transportation risks [65–70] or cold chain goods with freshness requirements [71–75]. This
is also one of the hot topics of many scholars at the moment. The transportation of these
goods also needs to consider factors such as the safety of the transfer process, the goods’
storage environment, and the vehicle’s speed. The research results show much room for
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optimization in scheduling short-inverted transportation of “rail to the road”. The multiple
links of short-inverted transportation continue to affect each other. These include the
capacity and service quality of the back-end transportation and the production planning
and scheduling of the front-end supply. This paper focused only on the demand side of
receiving goods. Moreover, in the future, we can consider the scheduling strategy of the
supply side or transshipment side and add the impact of road impedance or multiple
vehicle models on the scheduling efficiency to further improve the transport scheduling
system with road–rail intermodal transport.
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