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Abstract: This study applied Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
multispectral data and ZY1-02D hyperspectral data to map the structural distribution and hydrothermal
alteration in the polymetallic ore district in southern Shangri-La City, Yunnan Province, China. The
study area hosts several polymetallic deposits, including the Mahuaping tungsten–beryllium deposit,
which has significant mineral exploration potential. The deposit type is mainly magmatic–hydrothermal,
with average grades of 0.41% WO3 and 0.22% BeO, and substantial reserves, prominently controlled by
faults. Based on this, this study employed ASTER data for the visual interpretation of structures through
false-color composites combined with DEM data. Additionally, ASTER and ZY1-02D data were processed
using the principal component analysis and spectral angle mapper methods to extract anomalies related
to tungsten mineralization such as carbonate alteration, sericitization, chloritization, and hematization of
the hydrothermal origin. The results indicated that the structural trends in the study area predominantly
align in north–south and northeast directions, with alteration anomalies concentrated in the central and
fold areas. Our analysis of typical deposits revealed their close association with north–south faults and
east–west joints, as well as the enrichment level of alteration anomalies, identifying five high-potential
target areas for mineral exploration. Further evaluation involved field validation through the spectral
scanning of samples, field verification, and a comparison with known lithology. These assessments
confirmed that the spectral curves matched those in the USGS database, the structural interpretations
aligned with the field observations (84% accuracy from 25 sampling points, with 21 matching extracted
alteration types), and the alteration results corresponded well with the lithological units, indicating high
accuracy in alteration extraction. Finally, a comparative discussion highlighted that the results derived
from ZY1-02D data were more applicable to the local area. The outcomes of this study can support
subsequent mineral exploration efforts, enhancing the sustainability of important mineral resources.

Keywords: Mahuaping tungsten–beryllium deposit; Yunnan province; multispectral–hyperspectral
analysis; magmatic–hydrothermal deposits; structural alteration mapping; mineralization prediction
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1. Introduction

Remote sensing plays a crucial role in mineral resource prediction and exploration,
integrating geological, geophysical, geochemical, and remote sensing data [1]. The theo-
retical basis of remote sensing lies in electromagnetic radiation, and the spectral radiation
characteristics of objects are the main basis for remote sensing technology to identify and
differentiate by measuring the spectral information of minerals. The application of remote
sensing in mineral exploration dates back to early studies overseas [2,3]. Typically, remote
sensing interpretation relies on terrain texture, color, and other visual features, necessitating
high image quality and expertise from researchers. Currently, remote sensing for mineral
exploration often utilizes alteration information extraction techniques. By analyzing the
spectral characteristics of selected minerals, target areas of interest can be identified [4–7].

Modern multispectral remote sensing data, such as those from ASTER (Advanced Space-
borne Thermal Emission and Reflection Radiometer), are widely used in remote sensing inter-
pretation. Since its launch in 1999, ASTER has been instrumental in geological and mineral
exploration due to its high-resolution spectral imaging capabilities and infrared data [8,9]. Ad-
vancements have also brought high-spatial-resolution hyperspectral data into play. For instance,
China’s ZY1-02D satellite, launched with a spatial resolution as low as 1 m and a spectral resolu-
tion of 10 nanometers, operates on a data acquisition cycle of approximately seven days [10].
Despite its extensive use in mineral exploration, there remains a scarcity of studies specifically
dedicated to extracting hydrothermal alteration information using these advanced datasets.

Therefore, future research in remote sensing for mineral exploration should not only refine
data processing and interpretation algorithms, but also explore and utilize new high-precision
hyperspectral data to enhance the accuracy and efficiency of mineral resource predictions.

For multispectral data, the band ratio method and principal component analysis (PCA)
are commonly used techniques. The band ratio method calculates ratios between different
bands to eliminate effects such as illumination and atmospheric scattering, effectively
enhancing and highlighting specific spectral characteristics of materials [11,12]. PCA is a
widely used technique for data dimensionality reduction and analysis in remote sensing.

Current research on high-spectral-resolution mineral alteration extraction can be broadly
classified into three aspects based on the study of spectral characteristic information: the param-
eterization of spectral features, statistical learning methods, and spectral feature matching [13].

The accurate identification of altered minerals based on spectral feature parameters relies
on effectively extracting spectral absorption characteristics, which imposes high environmental
requirements [14,15]. Machine learning techniques adaptively model relationships between
inputs and outputs, particularly advantageous in handling nonlinear high-dimensional data.
However, they heavily depend on the quality and quantity of training samples, which deter-
mines the accuracy of the results [16,17]. Spectral feature matching involves selecting spectral
libraries or field-measured spectra as reference spectra and directly identifying spectral char-
acteristics of land cover in hyperspectral data using various spectral metrics and matching
criteria [18], with the spectral angle method being particularly advantageous.

The Mahuaping area has been evaluated for tungsten and beryllium polymetallic mineral
exploration potential, identified mainly as high- to medium-temperature magmatic–hydrothermal-
vein-type tungsten–beryllium deposits [19]. The ore-forming temperature in the study area is
approximately 350 ◦C to 151 ◦C [20]. The mineralization bodies are significantly controlled by
faults, occurring as vein-like and fissure-like distributions along them, with minerals such as
calcite, dolomite, chlorite, and sericite commonly present within the ore bodies [21–23].

However, the area’s rugged terrain, with elevations ranging from 3400 m to 4050 m, and
challenging accessibility make traditional exploration methods resource-intensive. This is where
the advantages of remote sensing for exploration, such as independence from terrain influence,
large coverage, and lower costs, can be effectively utilized. Moreover, previous studies in this
area have primarily focused on ore-forming mechanisms, fluid inclusions [24], geochemical
characteristics, and mineralization structures [25], with limited exploration using multispectral
and hyperspectral remote sensing technologies [26].
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Therefore, this study aims to explore and summarize a set of alteration information
extraction and mineral exploration methods suitable for harsh mountainous canyon envi-
ronments like Mahuaping. Using ASTER, visual interpretation was conducted to delineate
linear and circular structures in the study area. ZY1-02D data, processed using spectral
angle methods, and ASTER data, through principal component analysis, were employed to
extract alteration anomaly information, including the carbonate alteration, sericitization,
chloritization, and iron staining types.

Subsequently, field verification involved on-site rock sample collection to validate
the interpreted structural and alteration extraction results. The close match between the
actual scanned mineral spectral curves and those in the spectral library used confirms
the obtained results [27]. Minerals such as scheelite and sericite were observed under a
polarizing microscope, verifying the high accuracy of the alteration extraction in this study.
Based on our research findings, a mineralization model for the region can be constructed to
explore potential ore-bearing target areas [28]. The delineation of these five target areas
provides significant guidance for subsequent fieldwork.

2. Geological Overview
2.1. Regional Geological Overview

The India–Asia collision began 65 million years ago (Ma), triggering a series of tectonic
and magmatic activities, along with mineralization responses, in the Sanjiang region.
The research area of this study is located at the junction of the Tibet–Sanjian orogenic
belt and the Upper Yangtze Block, spanning four major tectonic units: the Middle Zan
Microcontinent, the Yidun Island Arc southern segment (Geza Island Arc), the Garze-
Litang Junction Belt, and the western margin of the Yangtze Block, encompassing the
Yanyuan–Lijiang Depression Belt (Figure 1). This geological setting hosts a variety of
mineral resources, including Cu-Au, Cu-W-Mo, and Pb-Zn deposits, among others. The
study area experienced two phases of tectonic stress. The first phase occurred during
the early to late Eocene at the onset of the Himalayan Movement I, characterized by
predominantly east–west horizontal compression, resulting in the formation of the Tiger
Leaping Gorge anticline (Figure 2) and the SN shear fault zone. The second phase occurred
during the mid–late Himalayan period, characterized by intense vertical uplift, causing
the originally formed SN faults from compression thrust to transform into normal slip-
extensions, forming a series of ore-controlling structures. Under such tectonic influences,
the Sanjiangkou–Jianchuan deep fault was generated, with its southern and northern
segments trending NNE and the central segment NNW, forming a distinctive Z-shaped
pattern. The Mahuaping ore deposit is located precisely at the bend of this fault trend.
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Figure 2. Geological sketch map of Mahuaping area. (a) Location of the northwestern part of Yunnan
Province, China; (b) Location of the study area; (c) Geological sketch map of Mahuaping area.

2.2. Geological Overview of the Mahuaping Mining Area

The study area is located at the junction of Deqin Prefecture and Lijiang City in
the northwestern part of Yunnan Province, China. The Mahuaping tungsten–tin deposit
is situated on the western limb near the axis of the SN Tiger Leaping Gorge anticline
(Figure 2). The core of the anticline consists of the Ordovician Haidong Formation, with
Ordovician, Silurian, Devonian, and Permian strata occurring sequentially on its flanks,
totaling a thickness of nearly 10,000 m (>9662 m). Within the Mahuaping mining area, the
predominant outcrops consist of shallow metamorphic rocks from the Lower Devonian
and Middle to Upper Devonian limestone formations.

(1) Lower Devonian low-grade metamorphic clastic rocks (D1): The lower section consists
of a suite of metamorphic fine sandstone–metamorphic siltstone, predominantly
interbedded with ribboned phyllites, and laminated fine metamorphic siltstones,
with metamorphic siderite quartz siltstones. The top section includes interbedded
metamorphic calcareous phyllite siltstone, lensoidal marbleized gray sandstone, and
metamorphic siderite quartz siltstone. The upper section comprises gray to gray-black
siltstone phyllites interbedded with carbonaceous phyllites, calcareous phyllites, and
lensoidal marbleized schists. The rocks exhibit banded marbleized schists.

(2) Middle to Upper Devonian marble (D2+3): Mainly light gray to gray-white thin to
medium-thick layers, composed of partially blocky marbles interspersed with dark
gray marbleized limestone. The lower part contains banded or lensoidal marbleized
dolomitic limestone, with localized interbeds of metamorphic carbonaceous siltstone
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in the middle part. The top part consists of bioclastic rocks, metamorphic carbona-
ceous muscovite siltstone, and carbonaceous phyllites.

The surrounding rocks exhibit significant alteration characterized by silicification,
pyritization, sericitization, carbonatization, sericite–fluorite alteration, and decolorization
alteration. Silicification is common in the dolomites or lower part of the clastic rocks
near the tungsten deposits or alongside quartz veins; pyritization is impregnated in the
metamorphic clastic rocks of the Lower Devonian and dolomites of the Middle to Upper
Devonian. Dolomites near the ore bodies commonly exhibit carbonatization and decol-
orization alteration, with calcite veins and nodules developed in the veins; sericite and
fluorite are the main hydrothermal alteration minerals, often occurring together without
clear boundaries, generally appearing as vein-like occurrences; due to hydrothermal action,
dolomites near ore bodies and dolomitized limestone commonly undergo recrystallization,
resulting in decolorization into white micro-fine crystalline dolomites.

The mineralization of the Mahuaping tungsten–tin deposit mainly contains scheelite,
wolframite, galena, and sphalerite. Altered minerals primarily include sericite, fluorite, quartz,
chlorite, biotite, pyrite, and calcite. Surface-exposed quartz veins and sericite–fluorite veins
locally display tungsten–tin mineralization, serving as direct exploration indicators.

3. Data and Methods

This study utilized ZY1-02D and ASTER data to visually interpret linear and circular
structures. It employed principal component analysis and spectral angle mapping to extract
alteration information (Figure 3). Building upon existing data, the study summarized the
remote sensing geological features of the ore deposit and ultimately delineated prospective
exploration targets.
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cant advantages in the field of mineral alteration extraction, particularly in areas unique to
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China and that are less studied. ASTER data include four bands with a spatial resolution
of 15 m, which can be used for structural analysis and interpretation. Comparisons can
be made between these bands and ZY1-02D to explore differences in mineral alteration
information extraction between the two datasets.

3.1. Utilizing the Data

ASTER is an advanced optical sensor on the Terra satellite, a collaboration between NASA
and Japan’s Ministry of Economy, Trade, and Industry (METI), with active participation from
both countries’ scientific and industrial sectors. It includes 14 spectral channels from visible to
thermal infrared (Table 1) [31], providing scientific and practical satellite data for various fields
of Earth environmental resource research. Based on this foundation, Mahdi et al. [32], Abubakar
et al. [33], and Ghosh et al. [34] utilized ASTER data to study mineral alteration zones in selected
regions. The ASTER data for this study were obtained from USGS EarthExplorer, consisting of
two images captured on 23 November 2000 and 6 October 2000.

Table 1. Parameters of utilized data.

Item Terra (ASTER) ZY1-02D (AHSI)

Spectral range

VL/NIR
0.52~0.60 µm 0.396–1.04 µm (b1–b76)
0.63~0.69 µm
0.76~0.86 µm

SWIR

1.60~1.70 µm 1.005–2.501 µm (b77–b166)
2.145~2.185 µm
2.185~2.225 µm
2.235~2.285 µm
2.295~2.365 µm
2.360~2.430 µm

TIR

8.125~8.475 µm Null
8.475~8.825 µm
8.925~9.275 µm
10.25~10.95 µm
10.95~11.65 µm

PAN
Spatial resolution VL/NIR 15 m 30 m

SWIR 30 m
TIR 90 m

PAN Null
Spectral resolution VL/NIR Null 10 nm

SWIR 20 nm
TIR Null

PAN

The ZY-1 02D satellite (5 m optical satellite) was successfully launched on 12 Septem-
ber 2019. It is China’s first independently developed and operated hyperspectral business
satellite. Equipped with two cameras, it can effectively capture 9 spectral bands of multi-
spectral data over a swath width of 115 km, and 166 spectral bands of hyperspectral data
over a swath width of 60 km. The data for this study were obtained from the Yunnan
Remote Sensing Center, China, comprising one image captured on 29 October 2021.

Using Envi 5.6 remote sensing image processing software, the preprocessing of ASTER
L1T data involves radiometric calibration, atmospheric correction, and image enhancement.
For ZY1-02D AHSI L1 data, radiometric correction, bad pixel repair, and spectral correc-
tion have been performed, but systematic geometric correction has not been carried out.
However, correction can be achieved using the RPC (Rational Polynomial Coefficients) file
provided and referencing other image data as needed. Preprocessing requires radiometric
calibration, atmospheric correction, and orthorectification (Figure 4).
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3.2. Method
3.2.1. Structural Interpretation

Using satellite remote sensing technology for interpretation requires geological fea-
tures to be reflected primarily in remote sensing images through aspects such as tone, shape,
and texture. In remote sensing geology, these are manifested as linear structures, circular
structures, and other signatures [35]. The Mahuaping tungsten–tin deposit is situated in an
area where tectonic activities are generally intense, characterized by prominent faults, folds,
and joints. It has undergone multiple episodes of superimposed tectonic activities, with
frequent volcanic activities creating necessary conditions for ore-forming hydrothermal
fluids [36]. This suggests that regions with a higher distribution of such structures are
more likely to contain mineral deposits. Therefore, if structural interpretations frequently
appear in a particular area, subsequent prospecting efforts should prioritize these areas.
Structural interpretation in this study utilizes ASTER remote sensing imagery, enhanced
through principal component analysis. Based on established interpretation criteria (Table 2),
structural interpretation work in the Mahuaping mining area has commenced.

Table 2. Structural interpretation markers for Mahuaping mining area.

Interpretation Marker Type Data/Method Used Description Characteristics
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Table 2. Cont.

Interpretation Marker Type Data/Method Used Description Characteristics
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rock
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ring

Principal component analysis of
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Translated intrusive rocks, which are
magma products that have not surfaced

in the region, closely related to
underground rock bodies. They exhibit a
distinct center, with radial fractures and
joints around them, resembling a radial

bursting pattern

3.2.2. Alteration Information Extraction

The characteristic spectral features of rock minerals form the basis for lithological
interpretation, and the reliability of extraction results depends on analyzing the spectral
curves of altered characteristic minerals. The selected characteristic minerals for this study
were sericite, chlorite, calcite, and goethite. A portable near-infrared mineral analyzer
developed by the Nanjing Institute of Geology and Mineral Resources was employed, with
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a scanning spectral wavelength range of 350 to 2500 nm and a spectral resolution of 2 nm.
Field samples from the Mahuaping mining area were spectrally measured on site.

From the scanned spectral curves, smooth and continuous curves matching the spectral
characteristics of sericite, chlorite, and calcite were selected (Figure 5). However, due to
the instrument’s inability to capture the absorption features of goethite within the scanned
spectral range, it was not possible to distinguish goethite using this mineral analyzer.
Therefore, the spectral curve for goethite is absent. For the subsequent extraction of
alteration information related to goethite, spectral curves from the US Geological Survey
(USGS) were utilized for analysis.
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After determining the absorption features of the measured spectral curves, this study
employed ASTER for principal component analysis (PCA) and ZY1-02D for spectral angle
mapping (SAM) research. Spectral angle mapping extracts alteration information for
individual minerals, while principal component analysis extracts alteration information
for specific mineral groups. By overlaying these two results, their respective strengths can
complement each other, enhancing the overall outcome [37,38].

Principal component analysis (PCA) is one of the commonly used methods for ex-
tracting the alteration information of surrounding rocks [39,40]. PCA involves performing
correlation statistical analysis on the raw multispectral images generated by multiple
spectral channels, producing a set of linearly uncorrelated combinations of the original
input images—principal components [41]. Useful information from various bands is com-
pressed into the first few principal components, achieving decorrelation and allowing
the enhancement effect of specific principal components on the spectral characteristics of
ground objects to be assessed. Using this method, scholars such as Abdelkareem et al. [42]
and Gabr et al. [43] have refined different lithological units using PCA and other techniques.
Honarpazhouh et al. [44] employed PCA and hierarchical clustering analysis to compress
information into a few maps, aiding in the determination of multi-element associations
with good results. This study utilized the PCA method with Envi 5.6. To perform PCA, we
must perform the following steps: Open the remote sensing image in Envi, and activate
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the PCA module (“Forward PCA Rotation New Statistics and Rotate”). Select the spectral
bands corresponding to altered minerals, and specify the output location for the results
and the Statistics File. Use the module (“View Statistics File”) to examine the feature vector
matrix. Identify a component that matches the spectral characteristics of altered minerals
for density slicing. Choose an appropriate threshold to obtain the final information on the
altered minerals.

The spectral angle mapper (SAM) calculates the vector angle between the spectral
signatures of pixels within a study area and those in a spectral library, determining the
similarity between two spectra and identifying potential mineralized areas [45]. SAM
employs spatial feature vectors to characterize each multidimensional spatial point, using
the similarity of angular distances between these vectors as a basis for classification, which
falls under supervised classification [46]. It requires known reference spectra for each class,
typically sourced from databases like the USGS spectral library used in this study. SAM not
only finds broad application in land type classification [47], but is also extensively utilized
in extracting mineral alteration information [48–56]. Using Envi 5.6, since ZY1-02D data are
from Chinese satellites, we must perform the following steps: Download a specific plugin
(China Satellites) to open the remote sensing image. In the Spectral Library Viewer, select
the appropriate spectral curve for altered minerals. Next, utilize the SAM module (spectral
angle mapper classification). Choose the bands involved in the calculation, input suitable
thresholds, and generate the output. If the results are not satisfactory, perform density
slicing again to obtain the final results.

4. Results
4.1. Structural Interpretation Results

In this structural interpretation project, a total of 55 linear structures were interpreted,
including faults and joints. Among them, there are 34 faults trending in the NE direction,
7 faults trending approximately N-S, and 14 faults trending in the NW direction. There are
three volcanic rings, three tectonic rings, and one concealed rock mass ring.

Through a comparison with known faults, these linear structures interpreted to coin-
cide or closely coincide with known structures are defined as fault structures, while the
rest are categorized as remotely sensed interpreted linear faults.

The mineralization of the Mahuaping tungsten–beryllium deposit is primarily con-
trolled by the transverse tension fractures and shear fractures trending nearly east–west,
which are associated with the local Wan anticline and the western wing of the anticline. The
degree of fracture development is closely related to the strength of mineralization, showing
a proportional relationship: stronger mineralization is observed where fractures are well
developed. According to the interpreted structural rings (Figure 5), areas with structural
clustering exhibit higher potential for mineralization.

4.2. Principal Component Analysis (PCA)

To match the spectral curves with different sensors, the measured spectral curve
(Figure 6a) was resampled to match ASTER (Figure 6b) and ZY1-02D (Figure 6c). Spectral
feature analysis was performed on the resampled ASTER spectral curve in specific ranges:
500 nm to 900 nm (Figure 6d) and 2100 nm to 2400 nm (Figure 6e).

Sericite, characterized by its Al-OH content, exhibits absorption features in the sixth
spectral band, while showing reflective characteristics in the third band. Carbonate rocks,
due to their CO32 content, display strong absorption features at 2.35 µm, corresponding to
the eighth band of ASTER data. In ASTER bands 1 to 3, carbonate-bearing minerals exhibit
enhanced reflection, forming a peak in the third band and showing weak absorption in
the fifth band. For iron-bearing minerals across ASTER bands 1 to 4, reflection is generally
enhanced, with peaks corresponding to ASTER bands 2 and 4, and an absorption valley
between these two peaks. Chlorite forms absorption valleys in the second and eighth bands
of ASTER data.
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Principal component analysis (PCA) extracted four types of alteration: iron stain-
ing [57], sericitization, chloritization, and carbonatization. Each type was analyzed by
selecting characteristic spectral segments and choosing the principal components (PCs)
that best fit these characteristics (Table 3). PC4 was selected for sericitization, PC2 for
carbonatization, PC4 for chloritization, and PC3 for iron staining. RGB color synthesis of
the selected principal components for each type (Figure 7) effectively delineated the extent
and intensity of weathering processes [58].

Table 3. Principal component analysis feature statistics table: (a) PCA results for sericite alteration.
(b) PCA results for carbonate alteration. (c) PCA results for chlorite alteration. (d) PCA results for
iron staining.

(a) Eigenvectors PC1 PC2 PC3 PC4

Band 1 −0.478906 −0.539819 −0.692171 −0.011992
Band 3 −0.814557 −0.020538 0.579694 −0.005393
Band 6 −0.230614 0.615599 −0.308632 −0.68746
Band 7 −0.2323 0.573769 −0.299333 0.726104

(b) Eigenvectors PC1 PC2 PC3 PC4

Band 1 −0.448528 −0.514381 −0.719857 −0.126653
Band 3 −0.790672 −0.152735 0.58637 0.087638
Band 5 −0.351592 0.725998 −0.201973 −0.555443
Band 8 −0.223705 0.43013 −0.311742 0.817167

(c) Eigenvectors PC1 PC2 PC3 PC4

Band 1 0.63034 0.204404 0.744642 0.079998
Band 2 0.730161 0.17149 −0.656654 −0.079134
Band 5 0.194764 −0.727934 0.104675 −0.649016
Band 8 0.177776 −0.631603 −0.057944 0.752407

(d) Eigenvectors PC1 PC2 PC3 PC4

Band 1 −0.510673 −0.373236 0.312665 0.708624
Band 2 −0.596764 −0.30381 0.248685 −0.699806
Band 3 −0.617865 0.562234 −0.542232 0.090113
Band 4 −0.03646 0.672523 0.739176 0.001801
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alteration; (b) carbonate alteration; (c) chlorite alteration; (d) iron staining.

The mineral alteration zones mostly exhibit dot-, belt-, and block-like distributions.
Iron-stained alteration anomalies appear in belt-like patterns (Figure 7a), distributed mainly
on ridges and both sides of valleys, with scattered occurrences elsewhere. Carbonatization
is predominantly found in the northwest of the study area (Figure 7b). Sericitization
alteration anomalies are observed in patchy and belt-like patterns (Figure 7c), occurring not
only on ridges but also along both sides of river channels. Chloritization has a relatively
small distribution area (Figure 7d).

4.3. Spectral Angle Method (SAM)

In the study area, the typical alteration minerals selected include calcite, limonite, sericite,
and chlorite. The spectral curves of these alteration minerals were chosen from the USGS
spectral library as reference spectra. The processed images, already subjected to complete
preprocessing, were analyzed using spectral angle mapping to obtain the extracted anomaly
results (Figure 8). The results from the spectral angle complement the principal component
analysis and have indicative significance for delineating target areas later on.
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4.4. Comprehensive Analysis

Our analysis of the alteration information extraction results (Figure 9) indicates that
the Mahuaping mining area exhibits the characteristic of multiple types of remote sensing
alteration anomalies overlaid and developed in combination. Various types of wall-rock
alterations occur simultaneously, increasing the likelihood of discovering tungsten and
beryllium deposits. Taking into account the distribution of structures, five target areas
were delineated within these overlapping regions of remote sensing anomalies. The focus
of this study is primarily on the area north of the Jinsha River; therefore, the southern
region of the Jinsha River is not included in the target area. Alteration information along
the northern coast of the Jinsha River is distinct and concentrated; however, due to higher
levels of human development along the coast, anthropogenic structures could significantly
impact the alteration results and are therefore excluded from the target area.
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The Ba1 target area is located in the western part of the study area, characterized by
well-developed sericite and iron staining alterations, with minor chlorite alteration. These
alterations are predominantly blocky in distribution and are situated at the intersection of three
faults, which trend approximately north–south. The N-S faults serve as favorable mineralizing
structures within the area. The Ba2 and Ba3 target areas are situated on the western flank
of the fold axis, similar to typical ore deposits. Multiple primary N-S faults traverse these
areas, with transverse fractures developed between two fault structures, making them favorable
for ore hosting. Ba2 predominantly exhibits sericite and iron staining alterations, along with
significant chloritization and scattered carbonate alterations in vein-like and blocky distributions.
Ba3 shows similar conditions but with less widespread iron staining alterations, appearing as
scattered dots. Ba4 is adjacent to concealed rock bodies, exhibiting a complete range of alteration
types but in a more scattered distribution. The presence of concealed rock bodies suggests
potential underlying acidic rock bodies, indicating significant exploration potential. The Ba5
target area, near the Jinsha River, features widespread alterations sandwiched between three
faults. Sericite and iron staining alterations are predominant, with significant chloritization also
present. These alteration characteristics resemble those of the Mahuaping tungsten–bismuth
deposit, suggesting promising exploration prospects.

5. Discussion
5.1. Accuracy of Spectral Scanning Results

The scanning spectrometer used in this study is the CSD-350A wide-band hyperspectral
spectrometer developed by the Nanjing Center of China Geological Survey. It offers advantages
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such as high efficiency, low cost, and the capability to handle large volumes of data, collecting
mineral reflection characteristics within the spectral range of 350 to 2500 nm. Prior to spectral
scanning, samples were initially screened visually, and their spectral features were input into
the instrument using a probe to generate curves. Mineral identification was then automated
using the MSA (v3.6) software, specifically designed for use with the spectrometer, ensuring the
accuracy of the spectral curve and mineral correspondence. Spectral curves for sericite, chlorite,
and calcite were obtained in this scanning process.

This scan yielded characteristic wavelength positions that are largely consistent with
those obtained by other researchers. For sericite, there are two distinct absorption peaks
located around 2200 nm and 2350 nm [59], while the measured spectral curve peaks are
observed at 2204 nm and 2339 nm. The chlorite spectra exhibit diagnostic absorption
features of Fe-OH and Mg-OH, with wavelengths ranging from 2245 to 2260 nm and 2320
to 2360 nm [60]. In the measured spectra, absorption peaks are found at 2286 nm and
2350 nm. Carbonate minerals show prominent absorption features near 2330 nm [61], with
measured spectral curve peaks observed at 2336 nm.

The measured spectral curves (Figure 10a) were compared with those from the USGS
spectral library (Figure 10b), showing similar overall shapes and matching characteristic
band positions. For instance, sericite exhibits an absorption peak at 2203 nm in the USGS li-
brary (Figure 10c), while the measured spectral curve shows a peak at 2204 nm (Figure 10d),
a difference of 1 nm. Similarly, calcite shows an absorption peak around 2336 nm in the
measured curve (Figure 10e) compared to 2338 nm in the USGS curve (Figure 10f), a differ-
ence of 2 nm. However, significant discrepancies exist in some characteristic absorption
peak positions. For chlorite, the measured peak is at 2286 nm, whereas in the USGS data, it
is at 2257 nm, a difference of 29 nm. These discrepancies in peak positions may arise due to
the presence of different mineral mixtures in the tested rock samples, as the USGS tests use
finely ground pure minerals, which are more accurate for identifying single minerals. In
contrast, field samples typically consist of combinations of multiple minerals, making the
measured spectral curves more representative of actual conditions in the study area.
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5.2. Accuracy of Extraction Results

Due to the high altitude and rugged terrain in the study area, many target areas are
difficult to access. Considering safety and transportation factors, validation points were
established as much as possible within the distribution zones of the obtained alteration
results (Figure 11). In this fieldwork, 30 validation points were planned, but actually, 42
were established. Additionally, 30 field sampling points were planned, but only 25 were
realized (Table 4). Out of these, 21 validation points were correctly matched with the
alteration extraction results, demonstrating the accuracy of the alteration information
extraction process.
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Table 4. Sampling points of various field routes.

Line Number Field Verification Points Field Sampling Points

L01 1–11 1–10
L02 12–22 16–18, 21
L03 22–32 23, 28–31
L04 33–42 33–38

Through field verification, the L01 survey route revealed extensive sericite alteration
(Figure 12a), mostly within sericite schist. Carbonatization was also prevalent, predomi-
nantly in carbonate schist (Figure 12b), often accompanied by quartz veins, aligning well
with the alteration results. On the L02 survey route, direct observations included scheelite
crystals (Figure 12c) and one of the alteration minerals associated with tungsten–beryllium
ores, namely blue tourmaline. The scheelite crystals exhibited good crystal forms, albeit
small in size, occurring in clusters and showing strong fluorescence under ZGD-8C ul-
traviolet light (Figure 12d), appearing sky-blue. Limestone was more prevalent along
the L03 survey route, featuring karst erosion channels (Figure 12e), while the L04 survey
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route revealed chlorite-altered schist (Figure 12f). A total of 42 field survey points were
established, with 48 samples collected. Probes from samples numbered 16, 17, 18, 21, 25, 28,
33, and 38 were prepared and examined under polarized light microscopy, confirming the
presence of minerals such as quartz, tourmaline, sericite, pyrite, and scheelite (Figure 13),
further verifying the high accuracy of the alteration information extraction process.
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(f) Sample 37—sericite chlorite schist.
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Figure 13. Microscopic identification photos of field samples in the study area (a) Sample 16—Gn (galena)
2.5× (reflected light); (b) Sample 17—Hm (hematite), Py (pyrite) 2.5× (reflected light); (c) Sample 18—Wf
(scheelite) 2.5× (reflected light); (d) Sample 21—Ber (beryl) 2.5× (single polarization); (e) Sample 28—Qtz
(quartz) 2.5× (cross-polarized light); (f) Sample 28—Cal (calcite) 2.5× (single polarization); (g) Sample
33—Bit (biotite) 2.5× (single polarization); (h) Sample 38—Ser (sericite) 5× (cross-polarized light).

5.3. Comparison Analysis of Alteration Extraction Results and Lithology

According to the lithological information provided by the geological map, a compar-
ative analysis with the extraction results (Figure 14) reveals finer details beyond what is
depicted on the geological map. To enhance visualization, the results from the spectral
angle mapper (SAM) were merged with the principal component analysis (PCA) results.
Carbonatization alteration is primarily distributed in Permian and Ordovician formations
containing various carbonate minerals such as limestone and dolomite. Chlorite alteration
predominates in Permian strata, with minor occurrences in tuffaceous and argillaceous
shale, often containing pockets of chlorite, consistent with lithological descriptions on the
geological map. Sericitization is mainly found in Devonian and Ordovician formations,
with Devonian layers comprising sericite schist and carbonaceous sericite slate, and Or-
dovician layers containing shale with minor sericite content. Iron staining alteration is
concentrated in Devonian metamorphic breccia and marble, with widespread occurrences
elsewhere, possibly due to surface weathering leading to iron mineral enrichment.
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Comparing the geological map with remote sensing mapping highlights significant
and minor differences, which supplements traditional fieldwork by revealing detailed
information that may be challenging to detect otherwise. The extraction results in areas
with sparse vegetation, no snow cover, and minimal shadow provide supplementary
insights to existing geological maps.

5.4. Comparison of Alteration Extraction Results from ASTER and ZY1-02D

The ASTER data, acquired in October 2005, and ZY1-02D data, acquired in October
2021, span a significant 16-year period. Despite both images being captured in October,
there is a stark contrast in snow coverage in high-altitude areas. The ASTER image shows
extensive snow cover, whereas in the ZY1-02D image, snow covers only parts of the
mountaintops, with many areas remaining bare. This disparity explains the considerable
differences in results obtained from the two datasets.

This study utilized ASTER and ZY1-02D data to extract alteration information, includ-
ing iron staining (limonite), chloritization (chlorite), sericitization (sericite), and carbonate
alteration (calcite). By summarizing the distinct characteristics of these alteration types
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extracted using the two datasets and methods, we can roughly compare the advantages
and disadvantages of both results in the local area. ASTER’s alteration information covers
a larger and broader distribution area, often occurring in large patches (Figure 7), while
ZY1-02D provides more refined information with smaller areas (Figure 8), often in blocky
distributions. In areas of relatively concentrated distribution, there are sometimes blank
areas within ZY1-02D’s data, whereas ASTER tends to classify entire concentrated regions
uniformly as one type of alteration. Fieldwork confirms that ZY1-02D’s alteration informa-
tion aligns more closely with the validation results on the ground, thus demonstrating its
finer accuracy.

The wavelength ranges of ASTER (0.52–11.65 µm) and ZY1-02D (0.396–2.501 µm) also
contribute to the differences in their mineral detection capabilities. Minerals with spectral
features beyond 2.501 µm cannot be effectively identified using ZY1-02D data, while ASTER
can cover these minerals well, including quartz, which falls within ASTER’s thermal infrared
band. However, due to ASTER’s lower spatial resolution (90 m), quartz alteration appears
coarse and may exhibit noticeable striping. ZY1-02D excels in spectral resolution, with a 10 nm
resolution in the VNIR range and 20 nm in the SWIR range, enabling more precise selection
of characteristic spectral bands. Additionally, its continuous wavelength coverage (0.396–2.501
µm) ensures no spectral gaps, enhancing its utility for detailed mineralogical studies.

6. Conclusions

This article employed multispectral and hyperspectral remote sensing imagery, specif-
ically utilizing ASTER and ZY1-02D data, to interpret geological structures and identify
prospective target areas in the Mahuaping Mine area of Shangri-La. Our methods included
visual interpretation, principal component analysis (PCA), and spectral angle mapping
(SAM). These techniques successfully identified linear and circular geological structures
as well as minerals with distinctive spectral signatures. The structural interpretation in
this project identified a total of 34 faults trending in the NE direction, 7 faults trending
approximately N-S, and 14 faults trending in the NW direction. There are three volcanic
rings, three tectonic rings, and one concealed rock mass ring.

The interpretation of linear and circular structures was refined using ASTER false-
color imagery, while both ASTER and ZY1-02D data aided in identifying surface lithology
features such as iron staining, chloritization, sericitization, and carbonatization. Anomalies
in alteration patterns were mapped, pinpointing five potential target areas characterized
by pronounced alteration signals indicative of significant mineralization potential. Each
target area contains multiple sets of diverse alteration information, with faults intersecting
or surrounding the area. These faults play a crucial role in ore hosting and mineralization.
These favorable mineralization conditions indicate high potential for exploration in these
regions. These target areas will be the primary focus of subsequent field exploration efforts.

To validate these findings, our fieldwork encompassed 25 sampling points, involving
spectral scans and microscopic analysis. The spectral curves for minerals like chlorite,
sericite, calcite, and pyrite closely matched those in the USGS spectral library. Polarized
microscopy confirmed the presence of minerals such as quartz, tourmaline, sericite, and
pyrite, with the direct discovery of scheelite, affirming the accuracy of the identified
target areas. Furthermore, we compared the results with known lithological units, and
corresponding altered minerals can be well matched with respective rock types in the strata,
showing good agreement. The comparison of the results from the two datasets considered
factors such as the temporal consistency, quality, and resolution of the imagery results.
Based on field validation, the results obtained from ZY1-02D are deemed more reliable in
this region.

The results indicate that preliminary remote sensing surveys are of significant impor-
tance. When used appropriately, they can reduce the required manpower and resources,
and enhance the efficiency of mineral exploration operations. However, some igneous
minerals with similar spectral features are difficult to distinguish and identify. Additionally,
minor minerals with low concentrations exhibit weak alteration anomaly signals. Com-
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bined with issues such as image noise and dense surface vegetation cover that make the
penetration of electromagnetic waves challenging, as well as persistent snow cover in some
areas, fieldwork becomes particularly important under these circumstances.
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