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Abstract: Carbon storage (C-storage) is a critical indicator of ecosystem services, and it plays a vital
role in maintaining ecological balance and driving sustainability. Its assessment provides essential
insights for enhancing environmental protection, optimizing land use, and formulating policies
that support long-term ecological and economic sustainability. Previous research on C-storage in
the Yellow River Basin has mainly concentrated on the spatiotemporal fluctuations of C-storage
and the investigation of natural influencing factors. However, research combining human activity
factors to explore the influences on C-storage is limited. In this paper, based on the assessment
of the spatiotemporal evolution of C-storage in the region along the Middle and Lower Yellow
River (MLYR), the influences of anthropogenic and natural factors on C-storage were explored from
the perspective of sustainable development. The findings reflected the relationship between socio-
economic activities and the ecological environment from a sustainable development perspective,
providing important scientific evidence for the formulation of sustainability policies in the region.
We noticed the proportion of arable land was the highest, reaching 40%. The increase of construction
land because of the fast urbanization mainly came from arable land and grassland. During the past
15 years, the cumulative loss of C-storage was 71.17 × 106 t. The high-value of C-storage was primarily
situated in hilly areas, and the area of C-storage hotspots was shrinking. The aggregation effect of
low-value C-storage was strengthening, while that of high-value C-storage was weakening. The
dominant factors (q > 0.5) influencing the spatiotemporal variation of C-storage in the region along
the Middle Yellow River (MYR) were temperature and precipitation, while the primary factor in the
region along the Lower Yellow River (LYR) was temperature. Overall, meteorological factors were the
main determinants across the entire study area. Additionally, compared to the MYR, anthropogenic
factors had a smaller impact on the spatiotemporal evolution of C-storage in the LYR, but their
influence has been increasing over time.

Keywords: carbon storage (C-storage); land use/cover changes; the Middle and Lower Yellow River
(MLYR); sustainable development; sustainability; InVEST model; GeoDetector

1. Introduction

Rapid economic growth and urbanization has brought a rapid expansion of construc-
tion land, led to the dramatic alteration in the composition of land use, and has increased
the emission of carbon dioxide and other greenhouse gases. Worldwide carbon emission
is projected to rise from 2010 to 30% by 2030 [1–3]. As a result, improving C-storage and
reducing carbon emissions have emerged as critical issues in today’s society to help mitigate
global warming and advance sustainable development [4,5].

Land use/cover change (LUCC) is among the crucial factors influencing alterations
in plant and soil C-storage. This, still further, affects the overall C-storage of the whole
region, thereby altering ecosystem structure and function and the ecosystem carbon cycling
process [6]. Early land-use research was primarily supported by the spatial technologies
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of systems for geographic information and remote sensing [7], which allowed researchers
both domestically and internationally to conduct land-use-related surveys, evaluate land
resources [8], and plan and manage land use [9]. As research has advanced, academics have
mostly concentrated on examining the drivers that have shaped land-use patterns at various
sizes [10]. Changes in land usage and C-storage are among the most closely coupled and
interactive components in natural development. Enhancing the ability to sequester carbon
in regional ecosystems can be achieved through the land use structure’s optimization [11].
A growing body of academics has devoted themselves to assessing historical land-use
changes and forecasting future changes, as well as exploring the connection amidst changes
in land utilization and modifications in C-storage. This holds significant implications for
implementing rational land planning and management policies at the regional level and
promoting socio-economic development in a healthy manner [12,13].

The C-storage of a terrestrial ecosystem serves as a crucial metric for assessing the
functionality of regional ecosystem services. Accurate quantification of C-storage at var-
ious scales holds significant scientific importance in formulating strategies to mitigate
global warming. In this regard, scholars from both domestic and international arenas have
embarked upon exploring diverse methodologies for C-storage estimation. A plot-based
inventory method was utilized in determining the quantity of C-storage of forest [14], while
field measurement techniques of soil carbon density was used to quantify the soil organic
carbon content [15]. These methods, which are based on field measurements, are more
accurate on a small scale, but have the disadvantage of a long data-collection period and a
heavy workload, making it difficult to apply them on a large scale. With the development
of remote sensing technology, the FORCCHN model has been used to quantify ecosystem
C-storage by simulating carbon cycling processes in forest ecosystems [16]. However, it
has high computational complexity and requires large amounts of data. Additionally, the
DNDC model was widely used to simulate soil carbon and could model the impact of
different management practices and climate change on C-storage [17]. Despite this, it re-
quires extensive input data and complex parameter settings, and its regional applicability is
limited. Similarly, the BEPS model also has high computational complexity and is primarily
applied to northern ecosystems, limiting its use in other regions [18]. In contrast, the In-
VEST model is favored for its faster operation, lower data requirements, high applicability,
and well-visualized results, making it widely used in ecosystem C-storage estimation [19].
The InVEST model has been widely applied to ecosystem C-storage studies across various
scales, including provinces [11], cities [20], counties [21], and urban agglomerations [22], as
well as different landforms such as wetlands [23], coastal areas [24], and plateaus [25].

In China, the Yellow River Basin holds considerable significance as it serves as a vital
ecological security barrier and plays a pivotal role in population activities and economic
development. It is a key component of China’s overall socialist modernization efforts.
Currently, numerous scholars have been conducting research on C-storage in the Yellow
River Basin. Initially, remote sensing and GIS technology were used to assess the distri-
bution and change of C-storage in urban trees [26]. The current and future LULC change
processes and their impact on C-storage in the Yellow River Basin were explored [27].
Moreover, the influence of land use change on blue carbon accumulation along the Yellow
River Delta coast was studied [5,28]. In summary, previous research primarily focused on
single-factor land use studies regarding C-storage in the Yellow River Basin, lacking an
in-depth exploration of multiple influencing factors. Specifically, there is a lack of previous
research on the impact of the sustainable interaction between human activities and the
natural environment on C-storage. Instead, this paper selected influencing factors based on
both the natural environment and human activities and explored C-storage drivers from a
sustainable development perspective.

Over 40% of the entire region’s area along the MLYR is covered by forest and grassland,
and the region is crucial for carbon sequestration in China’s land-based ecology. Moreover,
the region along the MLYR is characterized by frequent human activities, active socio-
economic development, and rapid urbanization. Among them, the region along the MYR is
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an important implementation area for the policy of converting farmland back into forests,
while the region along the LYR has experienced rapid socio-economic development and
urban expansion, and the land-use types across the region have changed drastically due to
human intervention. Therefore, human activity’s intervention in the C-storage within the
area along the MLYR cannot be overlooked.

In this paper, the C-storage in the region along the MLYR was first measured using land
use and corrected carbon density data by the InVEST model. Subsequently, GeoDetector
was applied to detect and analyze the factors influencing C-storage in the region along the
MYR and LYR, respectively. In the selection of driving factors, not only natural factors but
also those reflecting the interaction between human activities and the natural environment
were considered, with the aim of helping the region achieve sustainable development goals
by harmonizing economic development with environmental protection.

2. Study Area and Data Sources
2.1. Overview of the Study Area

The study region (107◦18′~119◦18′ E, 33◦36′~39◦42′ N) includes 24 prefectures in
Shandong, Henan, Shanxi, and Shaanxi province, with a total area of about 3.016 × 105 km2

(Figure 1). The principal watercourse of the Yellow River runs through the study area, with
the Loess Plateau in the west and the North China Plain in the east. The topography of the
research region decreases gradually spanning from the northwest towards the southeast,
with a mean elevation of 1500~3000 m in the northwest, 500~1000 m in the southwest,
and about 50~1000 m in the east. The region experiences an average yearly temperature
recorded at 10.03 ◦C and an average yearly rainfall of 481.4 mm. The region along the
MLYR has nurtured different topographical features and rich human resources, and the
resident population reached 111.5 × 106 in 2021.
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2.2. Data Sources and Processing

(1) Land use/cover data were derived from 30 m resolution land cover products
obtained using Landsat satellite imagery on Google Earth Engine by Prof. Huang’s research
team at the School of Remote Sensing and Information Engineering, Wuhan University [29].
In this study, the land use/cover data for four periods were clipped to the study area.
Subsequently, the data were reclassified into six categories based on Liu Jiyuan’s land
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use classification method [30]: arable land (AL), forest land (FL), grassland (GL), water
(WL), construction land (CL), and unused land (UL). This reclassified data serves as the
basis for analyzing land-use changes and estimating C-storage. Additionally, we calcu-
lated the composite land-use extent index data based on the processed land-use data [31].
(2) Digital Elevation Model (DEM) data were obtained from the Resource and Environment
Science Data Center, and slope data were derived from the DEM. (3) Temperature and
precipitation data were obtained from the National Tibetan Plateau Data Center [32,33].
Due to the interannual variability of these meteorological factors, the 20-year average
temperature and precipitation data (20002020) were calculated and used for analyzing the
factors influencing C-storage. (4) Fractional vegetation cover data were obtained from
the National Tibetan Plateau Data Center [34]. (5) Human footprint data depict the im-
pact of human activities on the Earth’s surface, sourced from the annual dataset provided
by the Urban Environmental Monitoring and Modeling (UEMM) team at the College of
Land Science and Technology, China Agricultural University [35]. The values range from
0 to 50, with higher values indicating more frequent human activities. (6) Carbon density
data were primarily referenced from the National Ecosystem Science Data Center and
regions similar or adjacent to the study area [27,36], and they were corrected using a carbon
density correction model.

In this study, the raster data were projected into a unified coordinate system
(WGS_1984_UTM_Zone_49N) and clipped to the study area’s extent using ArcGIS, ensur-
ing consistency in projection and data coverage. Additionally, since a fishnet was created
based on the study area to extract point data for various factors, the spatial resolution of
different data was not unified to ensure data accuracy. The data types and sources are
shown in the following table (Table 1).

Table 1. Data types and sources.

Data Types Years Sources

Vector

Population 2021 <<Shandong Statistical Yearbook>>/<<Henan Statistical Yearbook>>
/<<Shanxi Statistical Yearbook>>/<<Shaanxi Statistical Yearbook>>

Administrative Divisions
2015

National Catalogue Service for Geographic Information
https://www.webmap.cn/ (accessed on 6 January 2023)River

Land Use LULC (30 m) 2005/2010
/2015/2020

<<The 30 m annual land cover datasets and its dynamics in China from
1985 to 2022>>

https://doi.org/10.5281/zenodo.8176941

Terrain
DEM (90 m)

-
Resource and Environment Science and Data Center

https://www.resdc.cn/ (accessed on 10 January 2023)

Slope (90 m)
Calculated from land-use data

Vegetation

Composite Land-use Extent
Index (30 m) 2005/2010

/2015/2020Fractional Vegetation Cover
(250 m)

<<China regional 250 m fractional vegetation cover data set (2000–2023)>>
https://doi.org/10.11888/Terre.tpdc.300330

Meteorology
Temperature (1 km)

2000–2020

<<1-km monthly mean temperature dataset for china (1901–2022)>>
https://doi.org/10.11888/Meteoro.tpdc.270961

Precipitation (1 km) <<1-km monthly precipitation dataset for China (1901–2022)>>
https://doi.org/10.5281/zenodo.3185722

Human
Activities Human Footprint (30 m) 2005/2010

/2015/2020

<<A global record of annual terrestrial Human Footprint dataset from
2000 to 2018>>

https://doi.org/10.1038/s41597-022-01284-8

Carbon Density Original carbon density -

National Ecosystem Science Data Center
http://www.cnern.org.cn (accessed on 8 January 2023)

<<Spatial and temporal variation of carbon stocks in the Yellow River basin
based on InVEST and CA-Markov models>>
http://doi.org/10.13930/j.cnki.cjea.200746

<<Effects of land use/cover change on carbon storage between 2000 and 2040
in the Yellow River Basin, China>>

https://doi.org/10.1016/j.ecolind.2023.110345

https://www.webmap.cn/
https://doi.org/10.5281/zenodo.8176941
https://www.resdc.cn/
https://doi.org/10.11888/Terre.tpdc.300330
https://doi.org/10.11888/Meteoro.tpdc.270961
https://doi.org/10.5281/zenodo.3185722
https://doi.org/10.1038/s41597-022-01284-8
http://www.cnern.org.cn
http://doi.org/10.13930/j.cnki.cjea.200746
https://doi.org/10.1016/j.ecolind.2023.110345
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3. Methodology

Based on the matrix of land utilization transfer, these time-space variations of land
use were analyzed from 2005 to 2020. Then, combined with adjusted carbon density data,
the C-storage was calculated with the InVEST model across different time periods. Finally,
the C-storage drivers in the MYR and LYR were probed with the GeoDetector model,
respectively, to find the heterogeneity and assist in the formulation of carbon-sequestration
schemes based on local conditions (Figure 2).
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3.1. InVEST Model

InVEST is applied extensively to quantify ecosystem service value under different
land-use scenarios, and its Carbon module is used extensively in the calculation and
analysis of C-storage. Within this article, C-storage in the region along the MLYR was
calculated with the InVEST model. Then, an analysis was conducted on the characteristics
pertaining to the allocation of C-storage, and C-storage was categorized into four primary
carbon reservoirs: aboveground, belowground, soil, and dead organic carbon. Data on
land utilization and carbon density dictate the amount that each carbon pool holds. Each
carbon pool’s capacity for C-storage is ultimately combined to get the total C-storage
(Ct, t ha−1) over the research region. The calculating formula is as follows:

Ct = Ca + Cb + Cs + Cd (1)

where Ct indicates the overall C-storage; Ca indicates C-storage above the surface;
Cb indicates subterranean biological carbon sequestration; Cs indicates storage of organic
carbon in the soil; and Cd indicates C-storage in deceased organic matter.

Since the carbon density data in this study reference results from different regions,
and carbon density values vary due to differences in soil types, vegetation, and climate
conditions, we need to correct the original carbon density values based on the long-term
average temperature and precipitation data for the region along the MLYR and China.
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Based on meteorological data [32,33], we calculated the multi-year average temperature
and precipitation for the region along the MLYR to be 10.03 ◦C and 481.40 mm, respec-
tively, and for China to be 8.93 ◦C and 672.00 mm, respectively. We used the formulas
from Alam [37] (Equations (2) and (3)) to adjust for precipitation and the formula from
Giardina and Chen [38,39] (Equation (4)) to adjust for average annual temperature and
biomass carbon density. The specific formulas are as follows:

CAx = 3.398 × P + 1996.1
(

R2 = 0.11
)

(2)

CBx = 6.7981e0.00541P
(

R2 = 0.70
)

(3)

CBy = 28 × T + 398
(

R2 = 0.47, P < 0.01
)

(4)

where CAx is the soil carbon density (kg m−2) obtained from annual precipitation; CBx and
CBy are the biomass carbon density (kg m−2) obtained from annual precipitation and mean
annual temperature, respectively; P is the mean annual precipitation; and T is the mean
annual temperature (◦C). The average annual temperature and annual precipitation of the
region along the MLYR and China, respectively, are substituted into the above equation,
and the ratio of the two is the correction factor. The product of the carbon density data and
the correction factor is the carbon density data of this study area.

KBx =
C′

Bx
C′′ Bx

(5)

KBy =
C′

By

C′′ By
(6)

KB = KBy × KBx (7)

KA =
C′

Ax
C′′ Ax

(8)

where KBx and KBy are the correction coefficients of precipitation factor and temperature
factor for biomass carbon density; C′

Bx and C′′ Bx are the biomass carbon density data
obtained from annual precipitation in the region along the MLYR and China, respectively;
C′

By and C′′ By are the biomass carbon density data obtained from the annual mean tem-
perature in the region along the MLYR and China, respectively; C′

Ax and C′′ Ax are the soil
carbon density data obtained from annual precipitation in the region along the MLYR and
China, respectively; and KB and KA are the biomass carbon density correction coefficients
and soil carbon density correction coefficients, respectively. The corrected carbon density
data in the region along the MLYR are shown in the following table (Table 2).

Table 2. Carbon density of each land-use type used in the InVEST model (t ha−1).

Land-Use Type Ca Cb Cs Cd

Arable land (AL) 6.6 31.4 97.2 3.8
Forest land (FL) 16.5 45 142.4 5.5
Grassland (GL) 13.7 33.6 89.6 2.8

Water (WL) 0.1 0 0 0
Construction land (CL) 1 10.7 0 0

Unused land (UL) 0.5 0 19.4 0

3.2. GeoDetector

GeoDetector serves as a statistical method for measuring the diversity in geographical
layering [40]. GeoDetector can combine quantitative data with qualitative data, and this
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approach also clarifies the effects of a pair of explanatory factors interacting with each other
on a particular target variable [41].

In this study, we selected natural factors from terrain (Elevation X1, Slope X2), meteo-
rology (Temperature X3, Precipitation X4), and vegetation (Fractional Vegetation Cover X5).
In addition, based on the sustainable development perspective, we also selected anthro-
pogenic factors (Composite Land-use Extent Index X6, Human Footprint X7). The study
area features significant variations in elevation and slope, which directly affect regional
vegetation types and land-use types, so elevation and slope were chosen as topographic
factors. Temperature and precipitation are key determinants of soil moisture and vegetation
growth, with considerable differences in meteorological conditions between the region
along the MYR and LYR, so they were chosen as meteorological factors. Instead of the
Normalized Difference Vegetation Index (NDVI), we selected Fractional Vegetation Cover
(FVC) as the vegetation factor, which more accurately reflects actual vegetation conditions.
Given that the region along the MLYR is densely populated and economically active, we se-
lected the Composite Land-use Extent Index (CLEI) to reflect the impact of various human
activities on land types and ecosystems and the human footprint to quantify the overall
impact of human activities on the natural environment. Based on this, we explored the
main driving factors and interaction between factors of C-storage within the region along
the MYR and LYR with GeoDetector, respectively.

3.2.1. Factor Detection

In order to reveal the degree to which the independent variable (X) is influential on
the dependent variable (Y), its explanatory power is commonly expressed statistically as
the q-value, which varies between 0 and 1. An elevated q-value signifies a more robust
explanatory capacity of factor X for the dependent variable Y, which is computed as
follows [42]:

q = 1 −

G
∑

Z=1
FZβ2

Z

Fβ2 = 1 − BBW
BBT

(9)

BBW =
G

∑
Z=1

FZβ2
Z (10)

BBT = Fβ2 (11)

where Z = 1, ..., G is the univariate stratification of Y or the factor X; FZ represents the
number of cells in layer Z, whereas F represents the number of cells in the overall area;
β2

Z and β2 represent the fluctuations in the Y values within layer Z and the entire area, in
that order; and BBW and BBT represent the within-layer variation and the total fluctuation
across the entire region, respectively.

3.2.2. Interaction Detection

The current research used the interaction detection approach to evaluate if the in-
teraction between two independent variables, X1 and X2, amplifies or reduces the ex-
planatory capacity of the dependent variable, Y. The interactions between two factors
were classified by comparing the q-values of the single factors q(X1) and q(X2). Interac-
tion types of factors are available on the GeoDetector software tool description website:
http://www.geodetector.cn/ (accessed on 25 April 2023) [43].

4. Results
4.1. Temporal and Spatial Evolution of Land Use

AL, GL, and FL were the main types of land usage in the region along the MLYR and
more than 80% of the entire surface area. The AL had the biggest share, followed by GL and
FL. WL and UL made up less than 5% of the overall land (Table 3). AL continually decreased,
featuring a yearly average alteration of 0.80 × 105 ha a−1 and CL, FL, and UL continually

http://www.geodetector.cn/
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increased, with CL seeing the biggest average annual change of 0.65 × 105 ha a−1, while
GL and WL were largely stable. Considering the aspect of view of geographical dispersion,
the distribution of AL was mostly concentrated in the Guanzhong Plain region in the west
and the North China Plain region in the central-east, GL in the western Loess Plateau
region, and FL in the south and east of the Loess Plateau and the Qinling Mountains. In
addition, a small amount of FL was also distributed in the central hilly areas of Shandong
Province (Figure 3).

Table 3. Area changes for different land-use types from 2005 to 2020.

Land-Use Type
2005 2010 2015 2020 Area Change

(105 ha)Area (105 ha) Proportion Area (105 ha) Proportion Area (105 ha) Proportion Area (105 ha) Proportion

Arable land (AL) 152.69 48.60% 147.84 47.06% 143.31 45.62% 140.63 44.77% −12.06
Forest land (FL) 49.19 15.66% 50.50 16.08% 52.48 16.71% 54.13 17.23% 4.94
Grassland (GL) 81.81 26.04% 82.93 26.40% 82.78 26.35% 80.72 25.70% −1.09

Water (WL) 3.68 1.17% 4.11 1.31% 4.27 1.36% 4.78 1.52% 1.10
Construction land

(CL) 23.68 7.54% 26.78 8.53% 30.09 9.58% 33.49 10.66% 9.81

Unused land (UL) 3.10 0.99% 1.97 0.63% 1.21 0.38% 0.39 0.12% 2.71
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Figure 3. Spatial distribution of land-use types in the region along the MLYR from 2005 to 2020.

There was an obvious spatial heterogeneity of land-use change in the region along the
MLYR. In the past 15 years, there were main transfers of four land-use types,
“AL—CL”, “AL—GL”, “GL—AL”, and “GL—FL” (Figure 4). Among others, the pre-
dominant conversion was observed between AL and CL, with the subsequent conversion
occurring between AL and GL. Specifically, the largest decrease in AL (4.85 × 105 ha)
occurred from 2005 to 2010 due to the enactment of the “Grain for Green” strategy; a signifi-
cant portion of the AL had been transformed into areas for CL and GL. The largest increase
in CL (9.81 × 105 ha) occurred from 2005 to 2020 under the influence of urbanization. The
conversion of AL, resulting in the reduction of CL in the central and eastern regions of the
country, and the extension of CL in the western region, were reflected in space. In addition,
GL exhibited an upward trajectory from 2005 to 2010 followed by a downward trend from



Sustainability 2024, 16, 6409 9 of 19

2010 to 2020, and mainly shifted to AL and FL. As a whole, the expansion of CL occurred
more quickly than the expansion of FL and WL, which adversely affected the growth of
regional C-storage.
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4.2. Temporal and Spatial Evolution of C-Storage
4.2.1. Temporal Variation Characteristics of C-Storage

From 2005 to 2020, the C-storage in the region along the MLYR showed a general
trend of continuous decrease, but the decrease was not significant. During the 15 years,
the cumulative loss of C-storage was 71.17 × 106 t, exhibiting a mean yearly decline rate of
0.14%. Of these, total C-storage was reduced by 28.41 × 106 t from 2015 to 2020, which is
the largest stage of C-storage loss (Table 4). From a municipal scale, as the execution of this
policy “returning farmland to forest” and “Three Norths”, carbon density in Yulin, Xinzhou,
Linfen, and Yan’an demonstrated a progressive incline from 2005 to 2020. However, the
carbon density of the remaining prefecture-level cities showed a decreasing trend (Table 5).

Table 4. Changes in C-storage of ecosystems in the region along the MLYR from 2005 to 2020 (106 t).

Year 2005 2010 2015 2020
2005–2010 2010–2015 2015–2020 2005–2020

Amount/Rate of
Change

Amount/Rate of
Change

Amount/Rate of
Change

Amount/Rate of
Change

Total 4221.13 4199.00 4178.47 4150.06
−22.22 −20.53 −28.41 −71.17

0.53% 0.49% 1% 1.69%
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Table 5. Carbon intensity of 24 prefecture-level cities from 2005 to 2020 (t ha−1).

City 2005 2010 2015 2020 City 2005 2010 2015 2020

Dongying 8.591 8.297 7.893 7.200 Xinxiang 10.664 10.503 10.300 10.105
Jining 9.408 9.103 9.081 8.926 Zibo 10.838 10.550 10.427 10.333

Binzhou 9.508 9.231 8.981 8.648 Yulin 11.450 11.681 11.784 11.773
Puyang 9.744 9.588 9.348 9.087 Yuncheng 12.184 12.037 11.938 11.841
Dezhou 9.762 9.638 9.442 9.334 Weinan 12.195 12.103 11.991 11.858

Liaocheng 9.905 9.739 9.529 9.340 Jiyuan 12.756 12.798 12.409 12.450
Zhengzhou 10.101 9.848 9.392 8.923 Xinzhou 12.956 12.958 12.977 13.050

Heze 10.124 9.917 9.670 9.442 Linfen 13.197 13.199 13.249 13.278
Taian 10.245 10.069 9.959 9.793 Lvliang 13.264 13.226 13.239 13.229

Kaifeng 10.279 10.126 9.913 9.662 Luoyang 13.771 13.670 13.563 13.593
Jinan 10.531 10.252 10.118 9.992 Yanan 14.005 14.054 14.199 14.277

Jiaozuo 10.622 10.425 10.081 9.867 Sanmenxia 14.562 14.485 14.478 14.553

4.2.2. Spatial Variation Characteristics of C-Storage

This spatial distribution of C-storage had a relatively significant spatial heterogeneity
in the region along the MLYR. As a whole, the C-storage showed a geographical distribution
characterized by elevated levels in the western regions and diminished levels in the eastern
regions, with increased levels in mountains and decreased levels in plains (Figure 5). The
eastern and southern Loess Plateau and Qinling Mountains regions exhibited a significant
concentration of C-storage’s high value, and the hilly areas of Shandong Province also had
a relatively high C-storage value. The primary factor contributing to the high C-storage
in the above region was the land-use types, which consists mostly of FL with dense plant
cover, and where the carbon density can be as high as 18 t ha−1. Areas exhibiting minimal
C-storage capacity were predominantly located in the central Guanzhong Plain and the
eastern North China Plain region, where land-use types were mainly AL and CL, with
large disturbances from human activities and low carbon sink capacity.
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At the municipal scale, the carbon density values of 24 prefecture-level cities in the
region along the MLYR ranged from 7 to 15 t ha−1 and exhibited a geographical distribution
pattern that declined in magnitude from west to east. The only city with carbon density
values lower than 9 t ha−1 was Dongying in Shandong province, mainly because it is
situated in the mouth of the Yellow River, with a relatively large area of wetlands, mudflats,
and other waters, and a high level of urban development that made its CL represent a
relatively large proportion. The cities with carbon density values higher than 11 t ha−1

included Yulin, Yuncheng, Weinan, Jiyuan, Xinzhou, Linfen, Lvliang, Luoyang, Yan’an,
and Sanmenxia in the region along the MYR because of the high proportion of WL. The
carbon density values in other cities were in the range of 9 to 11 t ha−1, mainly due to
their location in the region along the LYR plain area with low vegetation cover and intense
human disturbance (Table 5).

4.2.3. Spatial Clustering Characteristics of C-Storage

Hotspot analysis is a hidden-space clustering that identifies significant hotspots (high
values) and cold spots (low values) within a given region by considering the distance
between observed samples [44,45]. According to the size of the study area, this study
conducted hotspot analysis at a specified distance of 5 km, determined the aggregation of
C-storage, and identified the geographical distribution characteristics of hotspots and cold
spots of C-storage.

Between 2005 and 2020, the arrangement of C-storage in the ecosystem within the area
along the MLYR showed obvious clustering characteristics. The significant hotspot areas
under 90% and 95% confidence levels were mostly distributed in the eastern, southern of
the Loess Plateau, and southwestern Qinling Mountains and showed high-high aggregation
characteristics, meaning that neighboring patches within high values of C-storage have a
tendency to have similar values. The reasons are mainly due to the high altitude, undulating
terrain, mainly FL, high vegetation coverage, and rich soil organic matter content (Figure 6).
The cold spot area under confidence levels of 90%, 95%, and 99% was patchy, mainly in the
form of clusters in the central-eastern North China Plain, and the C-storage showed the
characteristics of low-low aggregation. The reason for this is that these regions were greatly
influenced by human activities, with lower vegetation coverage, high land hardening or
water, and low soil organic matter content.
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The spatial agglomerations of low-value C-storage in the area along the MLYR increased
and those of high-value C-storage decreased from 2005 to 2020. The cold spot region demon-
strated a gradual increment trend, and the percentage of cold-spot area under the 90%, 95%,
and 99% confidence level increased by 0.86% from 12.10 × 105 ha to 14.75 × 105 ha. Overall,
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a decreasing trend was observed in the hotspot area, from 28.70 × 105 ha to 26.05 × 105 ha.
The hotspot area at 90% confidence level increased by 1.63% and the hotspot area at 95%
confidence level decreased by 2.51%, but there was no hotspot area at 99% confidence level
in both periods (Table 6).

Table 6. Cold spot and hotspot area statistics under different confidence levels.

Cold Hotspot Significance
2005 2020

Area (105 ha) Proportion Area (105 ha) Proportion

Cold Spot—99% Confidence 5.25 1.73% 5.65 1.86%
Cold Spot—95% Confidence 3.30 1.09% 5.20 1.71%
Cold Spot—90% Confidence 3.55 1.17% 3.90 1.28%

Not Significant 262.98 86.57% 262.98 86.57%
Hotspot—90% Confidence 9.30 3.06% 14.25 4.69%
Hotspot—95% Confidence 19.40 6.39% 11.80 3.88%
Hotspot—99% Confidence 0 0 0 0

4.3. Analysis of the Drivers of Temporal and Spatial Changes in C-Storage

There are huge differences in terrain and climate between the region along the MYR
and the LYR, which will inevitably lead to obvious difference in ecosystem C-storage. In
order to obtain more accurate detection results, this study conducted factor detection for
the region along the MYR and the LYR, respectively.

4.3.1. Dominant Factor Detection Analysis

In the region along the MYR, the spatial variation of ecosystem C-storage was mainly
influenced by precipitation and temperature (we took the factors of q > 0.5 as predominant
factors, factor of 0.3 < q < 0.5 for the secondary factors), followed by FVC and elevation
(Figure 7). It is worth mentioning that the impact of each component was decreased
between 2005 and 2020 (Table 7). Precipitation and temperature could affect ecosystem
C-storage by limiting vegetation productivity. Due to the predominant land utilization
in the MYR area being FL and GL, which is rich in vegetation, meteorological factors
had the most significant influence on C-storage in the area. FVC characterizes the degree
of vegetation density and directly affects the accumulation of biological C-storage. The
increase in elevation leads to a decrease in temperature that limits the proliferation of plants
and the breakdown of organic carbon in the soil [6,46], especially in the loess plateau gully
area; the difference in elevation will have a more significant effect on the spatial variation
of C-storage.
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Table 7. The q-value of each factor in the region along the MYR.

Elevation (X1) Slope (X2) Temperature
(X3)

Precipitation
(X4)

Fractional
Vegetation
Cover (X5)

Composite
Land-Use

Extent
Index (X6)

Human
Footprint (X7)

2005 0.3616 0.0283 0.5369 0.7168 0.4582 0.1805 0.1238
2010 0.3560 0.0279 0.5292 0.7127 0.4068 0.1772 0.1230
2015 0.3525 0.0276 0.5264 0.7112 0.3875 0.1764 0.1228
2020 0.3501 0.0274 0.5240 0.7092 0.3231 0.1747 0.1215

Total changes −0.0115 −0.0010 −0.0129 −0.0076 −0.1350 −0.0058 −0.0023

In the region along the LYR, the spatial variation of ecosystem C-storage was mainly
influenced by temperature, followed by FVC. Although the explanatory efficacy of most
of the factors decreased, the explanatory power of human footprint, which characterizes
human activity, increased (Figure 7 and Table 8). The primary cause is that the primary
land-use type was arable dry land in the region along the LYR; crop development primarily
hinges on appropriate temperature conditions. FVC directly affects net primary produc-
tivity (NPP) of vegetation, and NPP is the key to ecosystem C-storage. Something that
deserves to be mentioned is that the human footprint is partly a reflection of the extent
and intensity of the impact of human activities. Despite the lower explanatory power of
the human footprint in this region compared to the region along the MYR, it increased by
0.0079 over the study period. Because of the rapid economic development in the region
along the LYR, urban expansion caused by human activities had profoundly affected the
land use pattern, which in turn affected C-storage. Moreover, elevation indirectly affected
the distribution of C-storage by constraining the distribution of AL and FL.

Table 8. The q-value of each factor in the region along the LYR.

Elevation (X1) Slope (X2) Temperature
(X3)

Precipitation
(X4)

Fractional
Vegetation
Cover (X5)

Composite
Land-Use

Extent
Index (X6)

Human
Footprint (X7)

2005 0.2273 0.1603 0.8086 0.1166 0.3204 0.1118 0.0203
2010 0.2329 0.1602 0.7670 0.1057 0.3250 0.0973 0.0267
2015 0.2301 0.1586 0.7589 0.1033 0.3159 0.0866 0.0284
2020 0.2274 0.1570 0.7508 0.1014 0.2102 0.0790 0.0282

Total changes 0.0001 −0.0034 −0.0578 −0.0152 −0.1103 −0.0328 0.0079

4.3.2. Interaction Factor Detection Analysis

The outcomes of the detection of interactions among the driving forces in different
periods showed non-linear enhancement or two-factor enhancement, and there was no
mutual independence or weakening. This signifies that the explanatory strength of the
interaction among the factors on the spatial distribution changes of C-storage was increased
to different extents in comparison to the impact of a single factor. Thus, the spatial arrange-
ment of C-storage undergoes alterations is a complex process of factor interaction that
was confirmed.

In the region along the MYR, the interaction between slope and elevation, CLEI, and
human footprint showed non-linearly enhanced in 2005–2015. In 2020, the interaction
between FVC and CLEI also showed non-linearly enhanced. For the interaction of all
other factors, there was two-factor enhancement in four different time periods, and the
interaction of precipitation and temperature exhibited the strongest explanatory capacity
for the variation in C-storage across the space-time variation (Figure 8). The effects of
the correlation between precipitation and other variables on the space-time variation of
C-storage all exceeded 0.7, and the effects of the interaction between temperature and other
factors on the space-time variation of C-storage all exceeded 0.5.
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In the region along the LYR, the interaction between precipitation and elevation, slope,
FVC, CLEI, and human footprint showed non-linearly enhanced in four different periods,
as did between human footprint and elevation, slope, and CLEI. For the interaction of
all other factors, there was a two-factor enhancement in four different time periods. The
interaction between precipitation and temperature had the strongest explanatory power for
the space-time variation of C-storage (Figure 9). As well as the interaction effects between
temperature and other factors on the space-time variation of C-storage, all exceeded 0.7.
The dominant factor in this region was temperature, and the q-values indicating the inter-
action between temperature and the various other elements reached their peak values in
each period.
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5. Discussion

This study used the InVEST model and GeoDetector to systematically analyze the
spatiotemporal evolution of C-storage and its influencing factors in the region along the
MLYR. By comparing results from similar regions, the accuracy of this study’s findings was
validated to some extent. Duan et al. [47] explored ecosystem C-storage before and after the
Grain for Green Project in the Yellow River Basin, concluding that carbon density in Yulin,
Xinzhou, Linfen, and Yan’an increased from 2000 to 2020. Despite differing study periods,
these findings coincide with our conclusions. A comparison reveals that the C-storage
distribution in the region along the MYR in 2020, as found in this study, is consistent with
Xu et al.’s [27] spatial distribution for the corresponding area. Li et al. [48] highlighted
the significant influence of elevation and precipitation on C-storage in the Loess Plateau.
Similarly, our study identified precipitation as the dominant factor in the region along
the MYR, with elevation also being a critical factor. Additionally, our study revealed the
dynamic impact of human activity on C-storage over long-term scales, providing a more
comprehensive analysis of influencing factors. In the analysis of C-storage aggregation
characteristics, we found a significant increase in low-value C-storage aggregation in the
Yellow River Delta, consistent with Ma et al.’s [28] findings on coastal blue carbon in the
Yellow River Delta. Nonetheless, carbon density has always been the key to accurately as-
sessing C-storage [49]. Measured data is an essential source for the evaluation of C-storage
and their changes, and although the carbon-intensity data in the present study have been
corrected for climate data, their accuracy is still difficult to compare with measured values.
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Therefore, in future research, we will adopt the way of quadrat measurement to obtain the
carbon density values of different land types and soil types and correct them to increase
the precision of C-storage output results.

To identify the causative factors influencing C-storage in the region along the MLYR,
the whole study area was initially selected. However, only a subset of the factors demon-
strated an explanatory power that exceeded 0.1. Furthermore, the driver analysis revealed
that the p-values of certain factors were not statistically significant. Through the analysis of
the research results, we believed that the results do not precisely reflect the influence of
each factor on the spatial arrangement of C-storage. Therefore, we considered that the main
reason the results were less than satisfactory was that the natural environment, human
activities, and ecological characteristics of the region along the MYR and LYR were vastly
different and had few commonalities, resulting in large inaccuracies in the detection of
factors across the study area. Therefore, the whole study area was split into two sections,
the region along the MYR and the region along the LYR, for which the space-time variation
drivers of C-storage were analyzed separately, and the zonal detection can greatly improve
the research accuracy.

This paper identified and analyzed the cold spot and hotspot areas of C-storage, and
the results indicated that the aggregation effect of low values of C-storage strengthened
and the aggregation effect of high values of C-storage weakened. Therefore, we should
adopt relevant protection measures for the hotspot areas of C-storage, such as returning
farmland to forests or grasses, and strictly adhering to the “red line” of forestry. In the
cold spot area of C-storage, the predicted area should be protected as far as possible, the
development of CL should be carried out in accordance with national land space planning
to avoid blindness as far as possible, and development should be combined with protection
in the process of regional construction. As for the increase in the cold spot area in the
eastern region, especially at the Yellow River Estuary, we considered that the increase in the
area of water which is about the primary cause is the establishment of wetland protection
policies. In addition, the Yellow River Delta in China exhibits the highest level of dynamic
changes between land and sea among all deltas in the world. The coastline of the Yellow
River Delta from 1976 to 2020 demonstrated a spatial configuration of retreat to land in
the north and expansion to sea in the south. Overall, the Yellow River Delta is currently
experiencing a phase of decline since 1990 [50,51], which implied that the waters in this
study area tended to increase during the study time period, leading to the intensification of
the agglomeration effect of low C-storage.

6. Conclusions

Based on LUCC data, C-storage in the region along the MLYR from 2005 to 2020 was
measured and patterns of spatiotemporal variation in C-storage were analyzed. Then,
we were able to detect key drivers of spatiotemporal variation in C-storage and their
interactions. The primary research findings are listed below:

(1) Between 2005 and 2020, there was a consistent reduction in the expanse of AL, with
CL, FL, and UL all exhibiting a rising trend and the area of GL and WL being basically
stable in the region along the MLYR. The largest increase of CL mainly transferred from
AL; The area of AL decreased the most and was mostly attributed to its transformation
into GL and CL.

(2) During the period of 2005–2020, the C-storage exhibited a continuous reduction trend.
The total C-storage decreased at a rate of 1% in 2015–2020, which was the phase with
the largest change in C-storage. The C-storage in the region along the MLYR exhibited
a consistent geographical distribution pattern, characterized by high values in the
western region and low values in the eastern region. With the development of time,
the agglomeration effect of low-value C-storage strengthened and the aggregation
effect of high-value C-storage weakened.

(3) From 2005 to 2020, meteorological factors were the dominant factors influencing
the spatiotemporal variation of C-storage in the region along the MYR, with ele-
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vation and FVC as secondary factors; slope had the least explanatory power. The
primary determinant affecting the spatiotemporal variation of C-storage along the
LYR was temperature, with FVC as a secondary factor; human footprint had the least
explanatory power.

(4) The results of interaction detection among drivers in all four periods showed nonlinear
enhancement or double-factor enhancement. We discovered that the correlation
between temperature and precipitation exhibited the highest degree, and both factors
had the greatest ability to explain the spatiotemporal variation of C-storage within
both the MYR and LYR regions.

C-storage and carbon emission are crucial components of ecological balance, which
is fundamental to sustainable development. Investigating C-storage in the region along
the MLYR not only enhances our understanding of regional land resource utilization, but
also aids in the formulation of policies for promoting sustainability in the area. By eluci-
dating the connections between C-storage dynamics, human activities, and sustainable
land management, this study provided scientific evidence for policymakers to develop
strategies that balance economic development with environmental conservation, ensuring
long-term sustainability in the region. Moving forward, efforts will be made to refine mea-
surement methodologies related to C-storage and to promote the formulation of regional
sustainability development plans based on more precise data.
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