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Abstract: The accurate detection of ancient artifacts is very crucial in recognizing and tracking the
origin of these relics. The methodologies used in engraving characters onto these objects are different
from the ones used in the modern era, prompting the need to develop tools that are accurately tailored
to detect these characters. The challenge encountered in developing an object character recognition
model for this purpose is the lack of sufficient data needed to train these models. In this work, we
propose Styleformer-ART to augment the ancient artifact character images. To show the performance
of Styleformer-ART, we compared Styleformer-ART with different state-of-the-art data augmentation
techniques. To make a conclusion on the best augmentation method for this special dataset, we
evaluated all the augmentation methods employed in this work using the Frétchet inception distance
(FID) score between the reference images and the generated images. The methods were also evaluated
on the recognition accuracy of a CNN model. The Styleformer-ART model achieved the best FID
score of 210.72, and Styleformer-ART-generated images achieved a recognition accuracy with the
CNN model of 84%, which is better than all the other reviewed image-generation models.

Keywords: imprinted ship characters; automatic recognition; recognition accuracy; dataset
augmentation; machine learning classifiers

1. Introduction

The detection of characters engraved, embedded, or etched onto ancient artifacts is
paramount in unraveling the mysteries of ancient civilizations. As shown in Figure 1, these
characters serve as vital clues, enabling researchers to decipher the origins, meanings, and
historical significance of artifacts. Epigraphy, the study of inscriptions directly engraved on
durable materials like stone, pottery, and metal by ancient individuals, groups, and institu-
tions, is fundamental to understanding historical texts. While thousands of inscriptions
have survived to present times, many have suffered damage over the centuries, resulting
in fragmented texts that are not easily discernible [1]. Additionally, inscriptions can be relo-
cated or trafficked far from their original sites, making radiocarbon dating ineffective due
to the inorganic nature of most inscribed materials and their automatic tracking requires
a large amount of data [2,3]. Ancient artifacts and relics, often considered proprietary
objects, are not readily available for extensive data collection and annotation, hindering
the development of robust detection models. In this context, training machine learning
models to accurately detect such characters poses a significant challenge due to the scarcity
of labeled data [1,4]. In this research paper, we address the deficiency of labeled data for
training object recognition models by leveraging data augmentation techniques to generate
synthetic images [5,6]. By artificially expanding the available dataset, we aimed to enhance
the performance and robustness of machine learning algorithms in detecting characters on
ancient artifacts.
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Figure 1. Extracted characters from ancient artifacts—ring, coin, and a tablet.

Our study proposes the use of synthetically generated images to alleviate the problem
of the scarcity of data. In this study, we introduced a new model, Styleformer-ART, to
augment the ancient artifact character images. We developed our model specifically for
generating synthetic images tailored to augment the training data for artifact character
detection. We explored the efficacy of our model in enhancing model performance and
generalization capabilities in the context of archaeological research and artifact analysis.
Moreover, we investigated a critical question: does the classical generative adversarial
network (GAN) outperform newer generations of GANs that utilize transformers and
diffusion architecture in augmenting artifact character images? This comparative analysis
seeks to shed light on the effectiveness of different synthetic image generation approaches
in enhancing the detection accuracy of machine learning models, particularly in scenarios
with limited labeled data and inherent challenges such as image blurriness and artifact
degradation over time [5–9]. Through this research endeavor, we aim to contribute to the
advancement of computational methods in archaeology and cultural heritage preservation.
By harnessing the power of synthetic data generation techniques and innovative machine
learning architectures, we strive to overcome the data scarcity inherent in the study of
ancient artifacts and empower researchers with enhanced tools for artifact analysis, origin
tracing, and historical interpretation [1,2]. The following points highlight the main findings
and contributions of our research:

• We introduce Styleformer-ART—a transformer-based model: we modified the en-
coder architecture of the Styleformer model with StyleGAN2 to suit the intricate
requirements involved in generating high-quality synthetic artifact character images;

• We demonstrate the use of augmented images for training a recognition model for
ancient artifact characters, demonstrating how the use of augmented images can
enhance the training and performance of recognition model, which was, in our case, a
CNN model for artifact character recognition tasks;

• Through an evaluation, we demonstrate that our Styleformer-ART model outperforms
all the other cutting-edge GAN models that are suitable for artifact character recognition.

In the subsequent sections of this paper, we provide a comprehensive overview of the
methodologies employed, the experimental setup, the results analysis, and the implications
of our findings in the domain of ancient artifact character detection and interpretation. We
believe that this research will not only enrich scholarly discourse in archaeology but also
improve the development of more robust and accurate computational tools for studying
and preserving our rich cultural heritage.

2. Related Work

The task of character detection on ancient artifacts using machine learning techniques
has garnered significant interest in recent years, driven by the need to automate and
enhance the analysis of archaeological materials. In this section, we review relevant
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studies and methodologies that contribute to the understanding of character detection,
data augmentation, and synthetic image generation within the context of artifact analysis.

2.1. Character Detection on Artifacts

Prior research in the field of archaeology and computer vision has explored various
approaches to character detection on artifacts. For instance, Fontanella et al. [10] employed
deep learning models for character recognition on historical steles, demonstrating the
feasibility of applying convolutional neural networks (CNNs) to decipher ancient inscrip-
tions. Similarly, Huang et al. [3] utilized object detection techniques to identify and classify
characters on archaeological relics, highlighting the importance of the accurate localization
and recognition of textual elements on fragmented surfaces. Yalin et al. [11] introduced the
method of enhancing the denoising of ancient Chinese character images by adding four
local branches to the global branch. The global branch captures overall noise, while local
branches focus on specific regions near stroke structures, improving detail preservation.
Simulated ancient document noise and various loss functions are used for adversarial
training and optimizing the model to produce high-quality, authentic denoised images.

2.2. Data Augmentation Techniques

The scarcity of labeled data in archaeological studies necessitates the use of data
augmentation to expand training datasets. Traditional augmentation methods, such as
rotation, translation, and scaling, have been widely adopted [12]. Recent advancements
in generative models, particularly GANs, have enabled the generation of synthetic im-
ages that closely resemble real artifacts, offering a promising avenue for enhancing model
performance in character detection tasks. Studies have explored the effectiveness of syn-
thetic image generation in various domains, including medical imaging and natural scene
understanding. Ding et al. introduced CCGAN, a conditional GAN architecture for image-
to-image translation, which has been adapted for generating characters [13,14]. Moreover,
advancements in transformer-based models [15] and diffusion architectures [16] have
shown promise in generating high-quality synthetic images, albeit with varying degrees
of success in preserving artifact-specific details and textual characteristics. To address the
question of whether classical GANs outperform newer generations of GANs in augmenting
blurry artifact character images, recent studies have compared the performance of different
GAN architectures. For example, Karras et al. [8] introduced StyleGAN2, an improved
version of GANs that exhibits superior image fidelity and diversity compared to traditional
GAN models. Park et al. introduced Styleformer, a transformer-based model that incorpo-
rated StyleGAN2 with the transformer architecture as the generator. This model achieved
state-of-the-art performance [17,18]. However, the model performed poorly on the artifact
character dataset.

2.3. Challenges and Opportunities

While the existing literature provides valuable insights into character detection and
synthetic image generation, several challenges persist [1–3,19]. These include the preserva-
tion of artifact-specific textures and details, the mitigation of data imbalance in archaeologi-
cal datasets, and the adaptation of machine learning techniques to accommodate varying
levels of artifact degradation and deterioration over time. In this work, we modified the
encoder architecture in the Styleformer [17] model to accurately capture the global structure
of the limited artifact character dataset and proposed Styleformer-Art, which is tailored to
generating augmented images for artifact character images.

3. Dataset

Curating a dataset of images of ancient artifacts with engraved or etched characters,
as described in the given context, poses several significant challenges:

• The Scarcity of Data: The primary challenge lies in the limited availability of labeled
images of ancient artifacts. Such data are not readily available in large quantities,
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which is crucial for training machine learning models effectively [2,11]. Ancient
artifacts with detailed and verified annotations are rare, making the collection process
difficult and time-consuming;

• Historical and Geographical Diversity: The dataset encompasses artifacts from various
historical periods and geographical locations, introducing significant variability in
artifact types and character styles [1,11]. This diversity, while valuable for training
robust models, complicates the collection process as it requires sourcing from a wide
array of periods and locations;

• Condition of Artifacts: Many artifacts may be in poor condition due to age, leading to
incomplete or degraded engravings. This necessitates careful selection and possibly
even digital restoration efforts to ensure the data are usable for model training [20,21];

• Character Frequency: The restriction to the 10 most frequently encountered English
characters highlights the difficulty in obtaining a balanced dataset with all English
alphabet characters. The distribution of characters, as shown in Table 1, is uneven,
with some characters being much more prevalent than others. This imbalance can
affect the model’s ability to generalize across all characters.

In this work, we curated a dataset consisting of images of ancient artifacts containing
engraved or etched characters. Due to the limited availability of labeled data, we supple-
mented our dataset with publicly accessible archaeological image repositories from the
Internet. The dataset encompasses artifacts from diverse historical periods and geographi-
cal locations, ensuring variability in artifact types and character styles. In this work, we
focused on artifacts with engravings in the English language due to their availability in
public repositories on the Internet. Due to the restricted availability of all English alphabet
characters, our focus was on the 10 most frequently encountered English characters that
were accessible. Table 1 illustrates the distribution of each of these 10 characters.

Table 1. Number of samples for each character.

Characters Number of Samples

A 85
D 24
E 75
I 46
L 37
N 45
T 58
S 31
R 57
O 43

4. Methodology

Figure 2 highlights the various steps involved in our methodology. We collected
the artifact images and processed them. This was followed by model design. We then
generated images with the augmentation techniques using various cutting-edge GANs. For
the final step, the augmented images were evaluated with the FID score and the accuracy
of the CNN model when trained on the augmented images. A detailed discussion of each
step is presented in the subsections below.
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Figure 2. Overview of the steps involved in our approach.

4.1. Dataset Preparation

Before model training, as shown in Figure 3, we performed preprocessing steps
to enhance the quality and interpretability of the artifact images. This involved noise
reduction and contrast enhancement tailored to preserve textual details and enhance
character visibility.

Figure 3. Preprocessing steps: cropping, noise reduction, and contrast enhancement to generate the
character images.

Additionally, we conducted data normalization and standardization to ensure consis-
tency in image features and facilitate model convergence during training.

4.2. Model Design

In this section, we discuss the architecture of our proposed Styleformer-ART model
and the design of the CNN model used in the evaluation.

4.2.1. Styleformer-ART for Data Augmentation

Our image augmentation model consists of a generator and a discriminator estab-
lished by Goodfellow et al. [5] and utilizes a transformer instead of a convolution neural
network [22–24]. The Styleformer encoder network [17] serves as the fundamental block of
Styleformer. As shown in Figure 4a, our generator is conditioned on a learnable constant
input similar to the synthesis networks in existing StyleGAN models. However, unlike the
conventional approach, the continuous input (originally 8 × 8) is flattened to 64 before en-
tering the transformer-based encoder. Subsequently, this input is augmented with learnable
positional encoding and then traverses through the Styleformer-Art encoder. Based on the
Styleformer encoder [17], Styleformer-ART was implemented by modifying styleformer [17]
to enhance its efficiency in artifact character image generation, as detailed in Figure 4.

The Styleformer [25] encoder implements a modified residual connection and scales
the input feature map with a style vector (Mod Input in Figure 4b). In Attention Style
Injection, unlike the vanilla GAN, StyleGAN2 utilizes layer-wise style vectors to enable
controllable generation through style vectors. In the modulation process for self-attention,
similar to the StyleGAN2 [8] style block, the input feature map in the Styleformer encoder
is scaled by a style vector. However, unlike the convolution operation in StyleGAN2 [8], the
self-attention operation involves two steps: the dot product of query and the key to create
an attention map (i.e., the kernel), and the weighted sum of the value with the calculated
attention map. The style vector applied to each operation step should be different; thus,
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style modulation is performed twice (Mod Input, Mod Value). Similarly, in demodulation
for the query, key, and value, demodulation operations are necessary to remove the scaled
effect of the input. Additionally, demodulation operations are applied to the encoder
output to maintain unit standard deviation.

(a) (b)

Figure 4. The architecture of the components of the Styleformer-ART generator: (a) the architecture
of Styleformer-ART; (b) the Styleformer-ART encoder.

To address the efficiency problem with image resolution, Styleformer [17] introduces
two techniques: the Linformer application and the combination of Styleformer [17] and
StyleGAN2 [8]. Linformer reduces the time and space complexity from O(n2) to O(nk),
where k is fixed to 256, making it feasible for high-resolution image generation. Combining
Styleformer and StyleGAN2 [8] serves as the discriminator and allows for generating
extremely high-resolution images, leveraging the strengths of both models.

In our investigation, focusing on the domain of artifact character augmentation, char-
acterized by low-resolution images (below 32 × 32 pixels), we posited that the utilization
of Linformer may not yield a discernible improvement in image quality. To empirically
validate this hypothesis, we conducted a comparative analysis of images generated using
Styleformer with Linformer and Styleformer without Linformer. We named the resulting
model without Linformer, “Styleformer-Art”. We then conducted an ablation study to
select the right hyperparameter for training the Styleformer-Art, as shown in Table 2. This
study was conducted over three (3) characters: A, D, and E, and the average of the FID
score was computed.
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Table 2. Results of the ablation study on the Styleformer-Art generator architecture, which shows the
performance of Linformer models with different depths and minimum heads.

Linformer Depth Minimum Heads FID

✓ 32 1 191
✗ 32 1 141
✗ 64 1 140
✓ 64 1 198
✓ 32 2 194
✗ 32 2 165
✓ 64 2 201
✗ 64 2 175

As shown in Table 2, the configuration without Linformer outperformed all the other
ones that incorporate Linformer. This observation from the ablation study corroborates our
initial hypothesis, i.e., removing Linformer will result in better qualities of generated images.

Across all configurations, the removal of Linformer consistently resulted in lower
(better) FID scores. For instance, at a depth of 32 and with one attention head, the FID score
improved from 191 to 141 upon removing Linformer. Similarly, at a depth of 64 with one
attention head, the FID score improved from 198 to 140 without Linformer.

Depth Variation: Both depths (32 and 64) showed improvements when Linformer was
removed. This indicates that the positive impact of removing Linformer was consistent
regardless of the model’s depth. Notably, the lowest FID score (140) was achieved with
a depth of 64 and one attention head, indicating that while increasing depth generally
benefited the model, the exclusion of Linformer still held the key to better performance.

Number of Attention Heads: Increasing the minimum number of attention heads from
one to two generally resulted in higher (worse) FID scores for both configurations with and
without Linformer. However, even in these cases, the models without Linformer performed
better. For example, with two heads and a depth of 32, the FID score improved from 194 to
165 without Linformer. This suggests that for low-resolution images, a simpler attention
mechanism with fewer heads may be more effective.

The ablation study provides clear evidence that removing Linformer from the Style-
former architecture results in better performance for low-resolution image generation.
This improvement is consistent across different depths and numbers of attention heads,
suggesting that the benefits of excluding Linformer are robust and not dependent on spe-
cific hyperparameter settings. The outstanding performance of Styleformer-Art (without
Linformer) can be attributed to the simplified architecture, which might be more suited
to handle the low complexity of low-resolution images. The overhead introduced by Lin-
former, designed to handle high-dimensional data efficiently, may not be necessary for this
domain and could introduce unnecessary computational complexity.

4.2.2. CNN Model for Data Recognition

As shown in Figure 5, the architecture of the CNN model, which is the most commonly
used model in character recognition and artifact recognition [25–27], was developed to
evaluate the performance of each image augmentation method. We chose it due to its
simplistic nature and the conclusion made will be generalizable across other recognition
models. The first layer has 64 filters/kernels of size 3 × 3 with ReLU activation, using a
uniform initializer and takes input images of size 32 × 32 with one channel (grayscale).
The subsequent layer has 128 filters of size 3 × 3 with ReLU activation and a uniform
initializer. These layers perform max pooling with a pool size of 2 × 2 to downsample the
spatial dimensions of the feature maps. The flatten layer flattens the 2D feature maps into a
1D vector to prepare for the fully connected (Dense) layers. The model was incorporated
with a ReLU activation and He uniform initialization. The second Dense layer includes L2
regularization (with a penalty of 0.001) to help prevent overfitting. The final Dense layer
has 10 units with SoftMax activation for multi-class classification (outputting probabilities
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of each class) since we were calculating on 10 classes. Dropout layers with a rate of 0.5 were
added after the first and second Dense layers. The Dropout helps prevent overfitting
by randomly setting a fraction of input units to zero during training [12,28,29]. Finally,
the model was compiled with an Adam optimizer (with learning rate = 0.001) and the
categorical cross-entropy loss function in Equation (1) below:

L =
N

∑
i=1

k

∑
j=1

yij log(p(ij)) (1)

which penalizes the difference between the predicted and the true class, and the accuracy
metric for evaluation during training.

Figure 5. The architecture of the CNN model.

4.3. Data Augmentation

Given the scarcity of labeled data, we employed data augmentation techniques to
expand our training dataset. We conducted an extensive review of both traditional augmen-
tation methods, including rotation, translation, scaling, and flipping, and recent augmenta-
tion techniques, including the generative adversarial network, CCGAN [13], WGANGP [7],
WGANDIV [30], and ACGAN [31], to introduce variability and increase the diversity of
artifact images. These models were selected because they represent the image generation
benchmark and are most suitable for character augmentation. Additionally, we explored
the use of transformer-based models, and introduced Styleformer-ART for synthesizing
realistic artifact-like character images from a limited dataset. We compared different GAN
architectures, including the classical ACGAN [13,31], WGANDIV [30], WGANGP [8], and
transformer-based GANs, with Styleformer to generate synthetic artifact images with
varying levels of fidelity and textual clarity [17].

4.4. Experimental Setup

Our experiments were conducted using Pytorch Version 2.4 (a Python-based deep
learning framework) on two Nvidia TITAN RTX GPU-accelerated computing platforms
manufactured by Nvidia Inc. for model training and inference. Hyperparameter tuning
and optimization were performed to maximize model performance and convergence. We
employed a systematic approach to experimental design, ensuring the reproducibility and
reliability of our results.

4.5. Evaluation Metrics

To assess the performance of the synthetic image generation model, we evaluated
the performance of the generated images by FID and visual inspection. While evaluating
our CNN models, we utilized standard evaluation metrics, including precision, recall,
and F1-score, for character detection tasks. We conducted cross-validation experiments
and evaluated model robustness across different artifact categories and degradation levels.
Furthermore, we compared the effectiveness of synthetic image augmentation techniques
in improving model generalization and reducing overfitting on limited labeled data.
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5. Result and Evaluation

Figure 6 presents the original images, and the top-performing augmentation tech-
niques: Styleformer-Art, WGANDIV, and WGANGP. Upon visual inspection, it becomes
evident that the images generated by Styleformer-Art closely resemble the original images
in terms of visual characteristics.

Figure 6. Visualization of the top-performing augmentation techniques.

We evaluated the generated images on the Frétchet inception distance (FID) score. The
FID score for each augmentation method is provided in Table 3. The results of different syn-
thetic image generation techniques for the task of detecting characters are associated with
specific letters on artifacts [32–34]. The evaluation metric used is the FID, which measures
the similarity between real and generated images based on their feature representations
extracted from a pre-trained deep neural network (Inception Net) [33,35]. The FID between
two multivariate Gaussians has a closed formula. The features were extracted from both
the real and fake images by the inception network at the pool3 layer and were fitted to a
Gaussian distribution and computed as follows:

FIDavg =
1
N

N

∑
i=1

(
∥µreal,i − µgen,i∥2 + Tr

(
Σreal,i + Σgen,i − 2 ·

√
Σreal,iΣgen,i

))
(2)

where N is the total number of the character categories, Tr is the trace of a matrix, and
N(µr, Σr) and N(µg, Σg) are the Gaussian fitted to the real and generated images, respectively.

As shown in Table 3, ACGAN and CCGAN, consistently demonstrated lower FID
scores, achieving an average of 459 and 363, respectively, indicating greater divergence
from the real images across most characters. WGANDIV, WGANGP, and Styleformer-ART
achieved average FID scores of 277.36, 274.29, and 210.72, respectively, indicating a closer
resemblance of the generated images to the real image distributions. Notably, characters
such as ‘S’ and ‘D’ exhibited substantially improved performance with Styleformer-ART,
emphasizing the effectiveness of specific approaches for certain character types. Characters
like ‘A’ and ‘I’ consistently displayed higher FID scores across all techniques, indicative of
specific challenges associated with generating these characters faithfully. The range of FID
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scores, spanning from as low as 130 to as high as 460, reflects the diversity inherent in our
dataset, a characteristic not typically encountered in larger datasets such as ImageNet [33,35,36].
This diversity prompted the exploration of alternative metrics for evaluating the fidelity of
generated images.

Table 3. The FID score of the image generated by each synthetic image generation technique.

Characters WGANGP [7] WGANDIV [30] ACGAN [31] CCGAN [13] Styleformer-ART

A 315.88 314.92 456.87 399.71 146.88
D 224.14 225.74 421.86 283.15 106.95
E 291.64 293.71 415.85 352.91 155.80
I 287.84 291.25 488.31 379.81 248.59
L 276.03 282.71 491.18 409.40 215.04
N 301.49 307.07 488.31 408.13 291.00
O 249.46 249.24 396.67 341.99 216.54
R 286.43 288.35 476.93 347.79 135.83
S 224.90 229.34 469.72 341.50 131.50
T 285.08 291.28 484.30 372.63 267.30

Average 274.29 277.36 459.0 363.70 210.72

To further assess the quality of the generated images, we employed a convolutional
neural network (CNN) model trained on images generated using each augmentation
technique. Figure 7 illustrates the loss trajectory of the CNN model trained on datasets
augmented by various techniques. The graph indicates that the Styleformer-Art method
attained the lowest validation loss, averaging 0.0060, with the WGANDIV technique
yielding a close second, at an average loss of 0.0065. This further outlines the quality of the
images generated by our augmentation model.

The loss graph in Figure 7 shows that Styleformer-Art significantly outperformed
both the original dataset and the augmented dataset created with WGANDIV, WGANDIV,
CCGAN, and ACGAN in terms of loss reduction over 30 epochs. Styleformer demonstrated
a sharp and consistent decrease in loss from the beginning to the end of the training period,
highlighting its superior learning capabilities and stability. In contrast, the original dataset,
although it improved substantially over time, started with a much higher loss and did not
achieve as low a final loss as the augmented dataset. This indicates that augmented artifact
character images are more effective and efficient in learning compared to the original dataset.

Figure 7. The validation loss graph of the CNN model for each augmentation technique.
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6. Discussion

When comparing Styleformer-Art to the other augmentation methods, it is clear
that Styleformer-Art maintained a distinct advantage. Techniques like WGANDIV and
Wgangp also showed significant improvements in reducing loss over the epochs, but
they experienced more variability and fluctuations. Similarly, CCGAN and ACGAN
exhibited greater variability while demonstrating effective learning and did not achieve
final loss values that were as low as those of Styleformer-Art. This suggests that, while these
augmentation methods are beneficial, they are not as stable or as efficient as Styleformer-Art
in minimizing loss.

Styleformer-Art’s consistent performance and ability to maintain low loss values
throughout the training period underscore its robustness and effectiveness. In contrast,
WGANDIV, WGANDIV and CCGAN, despite their improvements, showed more fluctua-
tions and higher final loss values. This comparative analysis highlights the superiority of
Styleformer-Art in achieving minimal loss and optimal learning performance, making it
the most preferable model among those evaluated.

Subsequently, Table 4 presents the performance of various data augmentation methods
applied to the CNN model, evaluating the key metrics of accuracy, precision, recall, and
F1-score. Initially, the CNN model’s performance on the original dataset was notably
poor, with all metrics reflecting suboptimal performance. The baseline accuracy, precision,
recall, and F1-score were recorded at 0.23, 0.26, 0.23, and 0.10, respectively, indicating
that the model struggled to learn from the unaugmented dataset. It is obvious from
the table that, after transitioning to the augmented datasets, WGANDIV and WGANGP
yielded substantial improvements. Both methods achieved an accuracy of 0.75, a precision
of 0.77, and a recall of approximately 0.76–0.77. The F1 scores for these methods were
also significantly enhanced, at 0.75 for WGANDIV and 0.76 for WGANGP. These results
suggest that the GAN-based augmentation techniques effectively enhanced the model’s
capability to generalize from the data, contributing to improved performance across all the
evaluated metrics.

Table 4. The performance of each augmentation method on the CNN model.

Metrics Original Dataset WGANDIV [30] WGANGP [7] ACGAN [31] CCGAN [13] Styleformer-ART

Accuracy 0.23 0.75 0.75 0.40 0.73 0.84
Precision 0.26 0.77 0.77 0.53 0.74 0.83

Recall 0.23 0.76 0.77 0.41 0.77 0.84
F1-Score 0.10 0.75 0.76 0.39 0.72 0.82

In comparison, ACGAN showed moderate success, with an accuracy of 0.40 and a
precision of 0.53. Its recall stood at 0.41, its F1-score was slightly lower at 0.39. Although
ACGAN performed better than the original dataset, it did not reach the performance levels
seen with WGANDIV or WGANGP, indicating that while ACGAN could enhance the
model’s performance, it was less effective than other GAN variants.

CCGAN demonstrated notable results, with an accuracy of 0.73, a precision of 0.74, a
recall of 0.77, and an F1-score of 0.72. These metrics indicate that CCGAN provided a well-
rounded improvement in the model’s performance, closely paralleling the effectiveness
of WGANDIV and WGANGP. An F-test was carried out to determine if there was a
significant difference in performance across the different augmentation methods. The test
result, F (5, 18) = 145.01, p < 0.01, indicates that the performance varied across the different
augmentation techniques. This is also evident in the heat map in Figure 8, which highlights
the significant difference among the augmentation methods.

Similarly, the Nemenyi test was also carried out to investigate the differences further.
The critical difference was 3.61, backing up the initial result from the previous test results.
Table 5 shows the rank of each augmentation technique across the evaluation metrics.
The rank sum of 4 for the Styleformer-ART indicates the model’s superiority over the
other techniques.
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Figure 8. The pairwise comparison matrix of the augmentation techniques.

Table 5. The ranks of each augmentation technique across the evaluation metrics.

Metrics Original Dataset WGANDIV [30] WGANDIV [7] ACGAN [31] CCGAN [13] Styleformer-ART

Accuracy 6.0 2.5 2.5 5.0 4.0 1.0
Precision 6.0 2.5 2.5 5.0 4.0 1.0

Recall 6.0 4.0 2.5 5.0 2.5 1.0
F1-Score 6.0 3.0 2.0 5.0 4.0 1.0

Our model, the Styleformer-ART method, emerged as the most effective augmentation
technique. It achieved the highest scores across all metrics: an accuracy of 0.84, a precision
of 0.83, a recall of 0.84, and an F1-score of 0.82. These results signify that Styleformer-ART
not only improved the CNN model’s performance but also did so more efficiently than
the other methods. The superior performance of Styleformer-ART can be attributed to its
advanced augmentation techniques, which likely provide more diverse and representative
training samples.

As observed in Figure 7 and Tables 3 and 4, the experimental findings reveal that
augmenting the artifact character images using WGANDIV, WGANGP, CCGAN, and
Styleformer-ART led to much better performance. The significant accuracy increase ob-
served underscores the efficacy of these synthetic image generation techniques in enhancing
CNN models and other types of recognition models in recognizing artifact characters. More-
over, augmenting the training dataset with synthetic images generated by Styleformer-ART
led to substantial performance improvements, with a notable increase of up to 60%.

7. Conclusions and Future Work

Styleformer-ART achieved state-of-the-art performance compared to the other image
generation models. To arrive at our conclusion regarding the optimal augmentation method,
we assessed all methods employed in this study by comparing the Frétchet inception dis-
tance (FID) scores between reference and generated images. Additionally, we evaluated
the methods based on the CNN model’s accuracy when trained on the augmented data.
The Styleformer-ART model demonstrated the highest FID score of 210.72 and achieved a
CNN accuracy of 84%. These results have important implications for artifact analysis and
cultural heritage preservation, as they demonstrate the value of leveraging synthetic image
generation techniques to overcome challenges related to data scarcity and artifact degrada-
tion. However, our work was confined to the English language. This raises questions about
the potential application of these techniques in other languages, including syllable-based
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languages like Korean and non-alphabetic ones like Chinese. Further research is needed
to explore how these methods can be adapted and optimized for different linguistic and
cultural contexts, considering the unique characteristics and challenges associated with
each language. In the future, we will explore other character sets from other languages and
evaluate how Styleformer-Art performs in generating good-quality images.

Author Contributions: J.T.S. and I.Y.J. conceived and designed the experiments; J.T.S. performed
the experiments; J.T.S. and I.Y.J. analyzed the data; J.T.S. wrote the paper, and I.Y.J. reorganized and
corrected the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (No. 2021R1F1A1064345) and by the BK21 FOUR project funded
by the Ministry of Education, Korea (No. 4199990113966).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available in
https://github.com/Tundeh/Artifacts_Character_Dataset (accessed on 23 July 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Assael, Y.; Sommerschield, T.; Shillingford, B.; Bordbar, M.; Pavlopoulos, J.; Chatzipanagiotou, M.; Androutsopoulos, I.; Prag, J.;

de Freitas, N. Restoring and attributing ancient texts using deep neural networks. Nature 2022, 603, 280–283. [CrossRef] [PubMed]
2. Narang, S.R.; Kumar, M.; Jindal, M.K. DeepNetDevanagari: A deep learning model for Devanagari ancient character recognition.

Multimed. Tools Appl. 2021, 80, 20671–20686. [CrossRef]
3. Huang, H.; Yang, D.; Dai, G.; Han, Z.; Wang, Y.; Lam, K.M.; Yang, F.; Huang, S.; Liu, Y.; He, M. AGTGAN: Unpaired Image

Translation for Photographic Ancient Character Generation. In Proceedings of the 30th ACM International Conference on
Multimedia, Lisboa, Portugal, 10–14 October 2022.

4. Casini, L.; Marchetti, N.; Montanucci, A.; Orrù, V.; Roccetti, M. A human–AI collaboration workflow for archaeological sites
detection. Sci. Rep. 2023, 13, 8699. [CrossRef] [PubMed]

5. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative
Adversarial Nets. In Proceedings of the Neural Information Processing Systems, Cambridge, MA, USA, 8–13 December 2014.

6. Alqahtani, H.; Kavakli-Thorne, M.; Kumar, G. Applications of Generative Adversarial Networks (GANs): An Updated Review.
Arch. Comput. Methods Eng. 2019, 28, 525–552. [CrossRef]

7. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein GANs. In Proceedings of
the Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017.

8. Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In
Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 8107–8116.

9. Warde-Farley, D.; Bengio, Y. Improving Generative Adversarial Networks with Denoising Feature Matching. In Proceedings of
the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

10. Fontanella, F.; Colace, F.; Molinara, M.; di Freca, A.S.; Stanco, F. Pattern recognition and artificial intelligence techniques for
cultural heritage. Pattern Recognit. Lett. 2020, 138, 23–29. [CrossRef]

11. Yalin, M.; Li, L.; Ji, Y.; Li, G. Research on denoising method of chinese ancient character image based on chinese character writing
standard model. Sci. Rep. 2022, 12, 19795. [CrossRef] [PubMed]

12. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
13. Ding, X.; Wang, Y.; Xu, Z.; Welch, W.J.; Wang, Z.J. CcGAN: Continuous Conditional Generative Adversarial Networks for Image

Generation. arXiv 2020, arXiv:2011.07466.
14. Midoh, Y.; Nakamae, K. Image quality enhancement of a CD-SEM image using conditional generative adversarial networks. In

Proceedings of the Advanced Lithography, San Jose, CA, USA, 24–28 February 2019.
15. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need.

In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
16. Ho, J.; Jain, A.; Abbeel, P. Denoising Diffusion Probabilistic Models. arXiv 2020, arXiv:2006.11239.
17. Park, J.; Kim, Y. Styleformer: Transformer-based Generative Adversarial Networks with Style Vector. In Proceedings of the

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 8973–8982.

18. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 87–110. [CrossRef]

https://github.com/Tundeh/Artifacts_Character_Dataset
http://doi.org/10.1038/s41586-022-04448-z
http://www.ncbi.nlm.nih.gov/pubmed/35264762
http://dx.doi.org/10.1007/s11042-021-10775-6
http://dx.doi.org/10.1038/s41598-023-36015-5
http://www.ncbi.nlm.nih.gov/pubmed/37248310
http://dx.doi.org/10.1007/s11831-019-09388-y
http://dx.doi.org/10.1016/j.patrec.2020.06.018
http://dx.doi.org/10.1038/s41598-022-24388-y
http://www.ncbi.nlm.nih.gov/pubmed/36396783
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TPAMI.2022.3152247


Sustainability 2024, 16, 6455 14 of 14

19. Abdulraheem, A.; Suleiman, J.T.; Jung, I.Y. Generative Adversarial Network Models for Augmenting Digit and Character
Datasets Embedded in Standard Markings on Ship Bodies. Electronics 2023, 12, 3668. [CrossRef]

20. Hidayat, A.A.; Purwandari, K.; Cenggoro, T.W.; Pardamean, B. A Convolutional Neural Network-based Ancient Sundanese
Character Classifier with Data Augmentation. Procedia Comput. Sci. 2021, 179, 195–201. [CrossRef]

21. Jindal, A.; Ghosh, R. An optimized CNN system to recognize handwritten characters in ancient documents in Grantha script. Int.
J. Inf. Technol. 2023, 15, 1975–1983. [CrossRef]

22. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

23. Cazenavette, G.; de Guevara, M.L. MixerGAN: An MLP-Based Architecture for Unpaired Image-to-Image Translation. arXiv
2021, arXiv:2105.14110.

24. Emami, H.; Aliabadi, M.M.; Dong, M.; Chinnam, R.B. SPA-GAN: Spatial Attention GAN for Image-to-Image Translation. IEEE
Trans. Multimed. 2019, 23, 391–401. [CrossRef]

25. Guha, R.; Das, N.; Kundu, M.; Nasipuri, M.; Santosh, K.C. DevNet: An Efficient CNN Architecture for Handwritten Devanagari
Character Recognition. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2052009. [CrossRef]

26. Driss, S.B.; Soua, M.; Kachouri, R.; Akil, M. A comparison study between MLP and convolutional neural network models for
character recognition. In Proceedings of the Commercial + Scientific Sensing and Imaging, Anaheim, CA, USA, 9–13 April 2017.

27. Bhardwaj, A. An Accurate Deep-Learning Model for Handwritten Devanagari Character Recognition. Int. J. Mech. Eng. 2022, 7,
1317–1328.

28. Abdulraheem, A.; Jung, I.Y. Effective Digital Technology Enabling Automatic Recognition of Special-Type Marking of Expiry
Dates. Sustainability 2023, 15, 12915. [CrossRef]

29. Corazza, M.; Tamburini, F.; Valério, M.; Ferrara, S. Unsupervised deep learning supports reclassification of Bronze age cypriot
writing system. PLoS ONE 2022, 17, e0269544. [CrossRef]

30. Wu, J.; Huang, Z.; Thoma, J.; Acharya, D.; Gool, L.V. Wasserstein Divergence for GANs. In Proceedings of the European
Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

31. Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. In Proceedings of the International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

32. Dimitrakopoulos, P.; Sfikas, G.; Nikou, C. Wind: Wasserstein Inception Distance For Evaluating Generative Adversarial Network
Performance. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 3182–3186.

33. Yu, Y.; Zhang, W.; Deng, Y. Frechet Inception Distance (fid) for Evaluating Gans; China University of Mining Technology Beijing
Graduate School: Xuzhou, China, 2021.

34. Benny, Y.; Galanti, T.; Benaim, S.; Wolf, L. Evaluation Metrics for Conditional Image Generation. Int. J. Comput. Vis. 2020,
129, 1712–1731. [CrossRef]

35. Betzalel, E.; Penso, C.; Navon, A.; Fetaya, E. A Study on the Evaluation of Generative Models. arXiv 2022, arXiv:2206.10935.
36. Kynkaanniemi, T.; Karras, T.; Aittala, M.; Aila, T.; Lehtinen, J. The Role of ImageNet Classes in Fréchet Inception Distance. arXiv

2022, arXiv:2203.06026.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/electronics12173668
http://dx.doi.org/10.1016/j.procs.2020.12.025
http://dx.doi.org/10.1007/s41870-023-01247-1
http://dx.doi.org/10.1109/TMM.2020.2975961
http://dx.doi.org/10.1142/S0218001420520096
http://dx.doi.org/10.3390/su151712915
http://dx.doi.org/10.1371/journal.pone.0269544
http://dx.doi.org/10.1007/s11263-020-01424-w

	Introduction
	Related Work
	Character Detection on Artifacts
	Data Augmentation Techniques
	Challenges and Opportunities

	Dataset
	Methodology
	Dataset Preparation
	Model Design
	Styleformer-ART for Data Augmentation
	CNN Model for Data Recognition

	Data Augmentation
	Experimental Setup
	Evaluation Metrics

	Result and Evaluation
	Discussion
	Conclusions and Future Work
	References

