Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic
Abstract
:1. Introduction
- (i)
- collect a higher amount of CO2 and PM data in the classrooms surveyed to allow the comprehensive investigation of statistically significant associations determining relevant influencing factors for the levels assessed;
- (ii)
- study the impact of increased ventilation through open windows in the thermal comfort for colder months;
- (iii)
- assess the effectiveness of air cleaners with HEPA filters in decreasing the levels of PM in the indoor air of a subset of classrooms that had installed these devices during this study.
2. Materials and Methods
2.1. Study Design and Context
- (i)
- mandatory use of face masks during the entire duration of the lesson, indoors and outdoors (not applicable for preschool children);
- (ii)
- implementation of rigorous practices for infection control, including frequent hand hygiene and recurrent cleaning of surfaces;
- (iii)
- maximizing physical distance to maintain at least 1.5 m distance (whenever possible) through an appropriate spatial distribution of the seats within the classrooms;
- (iv)
- increasing ventilation rates in the rooms by keeping windows and doors open.
- 1st campaign: from 30 September until 27 October 2020;
- 2nd campaign: from 28 October until 24 November 2020;
- 3rd campaign: from 25 November until 22 December 2020.
- What are the IAQ and comfort conditions to which children of different educational levels (pre-, primary, and secondary schools) were exposed during the first 3 months after school reopening due to the COVID-19 pandemic?
- Was the installation of air cleaners with HEPA filters conducted in some surveyed classrooms during this study effective in promoting safe levels of PM?
2.2. Monitoring of Environmental Parameters
2.3. Portable Air Cleaner Characteristics and Operation
2.4. Statistical Analysis
3. Results
3.1. Thermal Conditions and Relative Humidity Levels
3.2. Indoor CO2 Concentrations
3.3. Airborne Particulate Matter
- 7.7 to 96.4 µg PM2.5/m3, 10.4 to 187.9 µg PM10/m3, and 296 to 24,847 #UFP/cm3 in the 1st campaign (average: PM2.5, 34.6 µg/m3; PM10, 54.7 µg/m3; and UFP: 8668 pt/cm3);
- 10.9 to 92.8 µg PM2.5/m3, 16.2 to 138.8 µg PM10/m3, and 2201 to 30,101 #UFP/cm3 in the 2nd campaign (average: PM2.5, 48.1 µg/m3; PM10, 68.1 µg/m3; and UFP: 9932 pt/cm3);
- 7.1 to 69.5 µg PM2.5/m3, 10.2 to 110.0 µg PM10/m3, and 2611 to 23,557 #UFP/cm3 in the 3rd campaign (average: PM2.5, 30.1 µg/m3; PM10, 41.9 µg/m3; and UFP: 8670 pt/cm3).
3.4. Impact of the Use of Air Cleaners
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef]
- Miller, S.L.; Nazaroff, W.W.; Jimenez, J.L.; Boerstra, A.; Buonanno, G.; Dancer, S.J.; Kurnitski, J.; Marr, L.C.; Morawska, L.; Noakes, C. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air 2020, 31, 314–323. [Google Scholar] [CrossRef]
- Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 2020, 139, 105730. [Google Scholar] [CrossRef] [PubMed]
- Rowe, B.R.; Canosa, A.; Drouffe, J.M.; Mitchell, J.B.A. Simple quantitative assessment of the outdoor versus indoor airborne transmission of viruses and COVID-19. Environ. Res. 2021, 198, 111189. [Google Scholar] [CrossRef]
- WHO. Roadmap to Improve and Ensure Good Indoor Ventilation in the Context of COVID-19; WHO: Geneva, Switzerland, 2021; p. 38. ISBN 9789240021280. [Google Scholar]
- UKHSA UK Health Security Agency. COVID-19: Ventilation of Indoor Spaces to Stop the Spread of Coronavirus—GOV.UK. 2021. Available online: https://www.gov.uk/government/publications/covid-19-ventilation-of-indoor-spaces-to-stop-the-spread-of-coronavirus (accessed on 24 September 2021).
- USEPA. Healthy Indoor Environments in Schools during the COVID-19 Pandemic and Beyond. 2021. Available online: https://www.epa.gov/coronavirus/healthy-indoor-environments-schools-during-covid-19-pandemic-and-beyond (accessed on 24 September 2021).
- Junta de Comunidades de Castilla-La Mancha (JCCM); Regional Government of Castilla La Mancha. Información de Inicio de Curso 2020/21 en Castilla-La Mancha—Portal de Educación de la Junta de Comunidades de Castilla—La Mancha; Regional Government of Castilla La Mancha: Toledo, Spain, 2020. [Google Scholar]
- Peng, Z.; Jimenez, J.L. Exhaled CO2 as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environ. Sci. Technol. Lett. 2021, 8, 392–397. [Google Scholar] [CrossRef]
- Stocker, R.; Tschudin-Sutter, S.; Neher, R.; Baltensperger, U. On the Use of CO2 Sensors in Schools and other Indoor Environments. Policy Brief. 2021. Available online: https://sciencetaskforce.ch/en/policy-brief/on-the-use-of-co2-sensors-in-schools-and-other-indoor-environments/ (accessed on 21 June 2022).
- Eykelbosh, E. Indoor CO2 Sensors for COVID-19 Risk Mitigation: Current Guidance and Limitations; National Collaborating Centre for Environmental Health, NCCEH—CCSNE: Vancouver, BC, Canada, 2021. [Google Scholar]
- Di Gilio, A.; Palmisani, J.; Pulimeno, M.; Cerino, F.; Cacace, M.; Miani, A.; de Gennaro, G. CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of SARS-CoV-2 airborne transmission. Environ. Res. 2021, 202, 111560. [Google Scholar] [CrossRef]
- Allen, J.; Spengler, J.; Jones, E.; Cedeno-Laurent, J. 5 Step Guide to Checking Ventilation Rates in Classrooms—Schools for Health. Harvard T.H Chan. School of Public Health. 2020. Available online: https://schools.forhealth.org/ventilation-guide/ (accessed on 9 May 2023).
- Alonso, A.; Llanos, J.; Escandón, R.; Sendra, J.J. Effects of the COVID-19 Pandemic on Indoor Air Quality and Thermal Comfort of Primary Schools in Winter in a Mediterranean Climate. Sustainability 2021, 13, 2699. [Google Scholar] [CrossRef]
- Ratajczak, K. Ventilation Strategy for Proper IAQ in Existing Nurseries Buildings—Lesson Learned from the Research during COVID-19 Pandemic. Aerosol Air Qual. Res. 2022, 22, 210337. [Google Scholar] [CrossRef]
- Monge-Barrio, A.; Bes-Rastrollo, M.; Dorregaray-Oyaregui, S.; González-Martínez, P.; Martin-Calvo, N.; López-Hernández, D.; Arriazu-Ramos, A.; Sánchez-Ostiz, A. Encouraging natural ventilation to improve indoor environmental conditions at schools. Case studies in the north of Spain before and during COVID. Energy Build. 2022, 254, 111567. [Google Scholar] [CrossRef]
- Rodríguez, D.; Urbieta, I.R.; Velasco, A.; Campano-Laborda, M.A.; Jiménez, E. Assessment of indoor air quality and risk of COVID-19 infection in Spanish secondary school and university classrooms. Build. Environ. 2022, 226, 109717. [Google Scholar] [CrossRef]
- Panovska-Griffiths, J.; Kerr, C.C.; Stuart, R.M.; Mistry, D.; Klein, D.J.; Viner, R.M.; Bonell, C. Determining the optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave in the UK: A modelling study. Lancet Child Adolesc. Health 2020, 4, 817–827. [Google Scholar] [CrossRef]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Yonker, L.M.; Neilan, A.M.; Bartsch, Y.; Patel, A.B.; Regan, J.; Arya, P.; Gootkind, E.; Park, G.; Hardcastle, M.; John, A.S.; et al. Pediatric Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Clinical Presentation, Infectivity, and Immune Responses. J. Pediatr. 2020, 227, 45–52.e5. [Google Scholar] [CrossRef]
- Silverberg, S.L.; Zhang, B.Y.; Li, S.N.J.; Burgert, C.; Shulha, H.P.; Kitchin, V.; Sauvé, L.; Sadarangani, M. Child transmission of SARS-CoV-2: A systematic review and meta-analysis. BMC Pediatr. 2022, 22, 172. [Google Scholar] [CrossRef]
- Villanueva, F.; Notario, A.; Cabañas, B.; Martín, P.; Salgado, S.; Gabriel, M.F. Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain. Environ. Res. 2021, 197, 111092. [Google Scholar] [CrossRef]
- Baloch, R.M.; Maesano, C.N.; Christoffersen, J.; Banerjee, S.; Gabriel, M.; Csobod, É.; de Oliveira Fernandes, E.; Annesi-Maesano, I.; Szuppinger, P.; Prokai, R.; et al. Indoor air pollution, physical and comfort parameters related to schoolchildren’s health: Data from the European SINPHONIE study. Sci. Total Environ. 2020, 739, 139870. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Paciência, I.; Felgueiras, F.; Cavaleiro Rufo, J.; Castro Mendes, F.; Farraia, M.; Mourao, Z.; Moreira, A.; de Oliveira Fernandes, E. Environmental quality in primary schools and related health effects in children. An overview of assessments conducted in the Northern Portugal. Energy Build. 2021, 250, 111305. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cortellessa, G.; Canale, C.; Stabile, L.; Grossi, G.; Buonanno, G.; Arpino, F. Effectiveness of a portable personal air cleaner in reducing the airborne transmission of respiratory pathogens. Build. Environ. 2023, 235, 110222. [Google Scholar] [CrossRef]
- Curtius, J.; Granzin, M.; Schrod, J. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. Aerosol Sci. Technol. 2021, 55, 586–599. [Google Scholar] [CrossRef]
- Miller-Leiden, S.; Lohascio, C.; Nazaroff, W.W.; Macher, J.M. Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control. J. Air Waste Manag. Assoc. 1996, 46, 869–882. [Google Scholar] [CrossRef]
- Zhang, Y.; Mo, J.; Li, Y.; Sundell, J.; Wargocki, P.; Zhang, J.; Little, J.C.; Corsi, R.; Deng, Q.; Leung, M.H.; et al. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos. Environ. 2011, 45, 4329–4343. [Google Scholar] [CrossRef] [PubMed]
- WHO. Methods for Sampling and Analysis of Chemical Pollutants in Indoor Air. Supplementary Publication to the Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children; WHO Regional Office for Europe: Copenhagen, Denmark, 2020; ISBN 9789289055239. [Google Scholar]
- Minguillón, M.C.; Querol, X.; Felisi, J. Guía para Ventilación en Aulas; CSIC-IDAEA, Ministerio de Ciencia e Innovación y Mesura: Barcelona, Spain, 2020. [Google Scholar]
- HICIII Health Institute Carlos III, Ministry of Science and Innovation, Spanish Government. Informe COVID-19. Informe no. 54. Situación de COVID-19 en España. Casos Diagnosticados a Partir 10 de Mayo Informe COVID-19. 25 November 2020. Available online: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVID-19/Informe%20COVID-19.%20N%C2%BA%2054_25%20de%20noviembre%20de%202020.pdf (accessed on 5 September 2023).
- Michaelis, S.; Loraine, T.; Howard, C.V. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft. Environ. Health Glob. Access Sci. Source 2021, 20, 89. [Google Scholar] [CrossRef]
- Fernández de Mera, I.G.; Granda, C.; Villanueva, F.; Sánchez-Sánchez, M.; Moraga-Fernández, A.; Gortázar, C.; de la Fuente, J. HEPA filters of portable air cleaners as a tool for the surveillance of SARS-CoV-2. Indoor Air 2022, 32, e13109. [Google Scholar] [CrossRef] [PubMed]
- Junta de Comunidades de Castilla-La Mancha (JCCM). Partes Mensuales del Estado de la Calidad del Aire|Gobierno de Castilla-La Mancha. 2020. Available online: https://www.castillalamancha.es/gobierno/desarrollosostenible/estructura/dgecocir/actuaciones/partes-mensuales-del-estado-de-la-calidad-del-aire (accessed on 15 January 2021).
- Kephalopoulos, S.; Csobod, É.; de Oliveira Fernandes, E. Guidelines for Healthy Environments within European Schools; SINPHONIE Schools Indoor Pollution and Health Observatory Network in Europe; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Junta de Comunidades de Castilla-La Mancha (JCCM). Clima|Gobierno de Castilla-La Mancha. 2021. Available online: https://www.castillalamancha.es/clm/enelcorazondeespanna/clima (accessed on 12 April 2021).
- Spena, A.; Palombi, L.; Corcione, M.; Carestia, M.; Spena, V.A. On the optimal indoor air conditions for sars-cov-2 inactivation. An enthalpy-based approach. Int. J. Environ. Res. Public Health 2020, 17, 6083. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.H.L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 2021, 19, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.H.; Yinda, K.C.; Gamble, A.; Rossine, F.W.; Huang, Q.; Bushmaker, T.; Fischer, R.J.; Matson, M.J.; Van Doremalen, N.; Vikesland, P.J.; et al. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. eLife 2021, 10, e65902. [Google Scholar] [CrossRef] [PubMed]
- Lowther, S.D.; Dimitroulopoulou, S.; Foxall, K.; Shrubsole, C.; Cheek, E.; Gadeberg, B.; Sepai, O. Low Level Carbon Dioxide Indoors—A Pollution Indicator or a Pollutant? A Health-Based Perspective. Environments 2021, 8, 125. [Google Scholar] [CrossRef]
- Marr, L.; Miller, S.; Prather, K.; Haas, C.; Bahnfleth, W.; Corsi, R.; Tang, J.; Herrmann, H.; Pollitt, K.; Ballester, J.; et al. FAQs on Protecting Yourself from Aerosol Transmission; Version: 1.87; ARANET: Riga, Latvia, 2021; Available online: http://tinyurl.com/faqs-aerosol (accessed on 12 January 2021).
- Fisk, W.J. The ventilation problem in schools: Literature review. Indoor Air 2017, 27, 1039–1051. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S.; Bahnfleth, W. The relationships between classroom air quality and children’s performance in school. Build. Environ. 2020, 173, 106749. [Google Scholar] [CrossRef]
- Deng, S.; Zou, B.; Lau, J. The adverse associations of classrooms’ indoor air quality and thermal comfort conditions on students’ illness related absenteeism between heating and non-heating seasons—A pilot study. Int. J. Environ. Res. Public Health 2021, 18, 1500. [Google Scholar] [CrossRef]
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.F.; Felgueiras, F.; Batista, R.; Ribeiro, C.; Ramos, E.; Mourão, Z.; de Oliveira Fernandes, E. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. Environ. Res. 2021, 198, 110477. [Google Scholar] [CrossRef] [PubMed]
- Pacitto, A.; Amato, F.; Moreno, T.; Pandolfi, M.; Fonseca, A.; Mazaheri, M.; Stabile, L.; Buonanno, G.; Querol, X. Effect of ventilation strategies and air purifiers on the children’s exposure to airborne particles and gaseous pollutants in school gyms. Sci. Total Environ. 2020, 712, 135673. [Google Scholar] [CrossRef]
- Cheek, E.; Guercio, V.; Shrubsole, C.; Dimitroulopoulou, S. Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 2021, 766, 142585. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yook, S.J.; Koo, H.B. Natural Ventilation and Air Purification for Effective Removal of Airborne Virus in Classrooms with Heater Operation. Toxics 2022, 10, 573. [Google Scholar] [CrossRef]
School | Classroom | Number of Students | Use of Mask | Floor Number | Age of Building (Years) | Area (m2) | Central Heating System | Portable Air Cleaner/Sampling Campaigns | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | Number of Radiators | Time on a | 1st | 2nd | 3rd | |||||||
1 | 1-a Preschool | 22 | No | 0 | 25 | 50 | Gas oil | 2 under the windows | 8.00–13.00 | No | Yes-Winix Zero Pro | Yes-Winix Zero Pro |
1-b Primary | 22 | Yes | 1 | 25 | 45 | Gas oil | 1 under the windows | 8.00–13.00 | No | Yes-Winix Zero Pro | Yes- Winix Zero Pro | |
1-c Primary | 20 | Yes | 0 | 1 | 50 | Gas oil | 1 under the windows | 8.00–13.00 | No | Yes-Winix Zero Pro | Yes- Winix Zero Pro | |
2 | 2-a Preschool | 25 | No | 0 | 40 | 45 | Gas oil | 2 under the windows | 7.00–11.00 | No | No | Yes- Winix Zero |
2-b Primary | 26 | Yes | 1 | 40 | 64 | Gas oil | 1 under the window + 1 near the door | 7.00–11.00 | No | No | Yes-Winix Zero Pro | |
2-c Secondary | 28 | Yes | 2 | 40 | 64 | Gas oil | 1 under the window + 1 near the door | 7.00–11.00 | No | No | Yes- Winix Zero Pro | |
2-d Secondary | 23 | Yes | 2 | 40 | 50 | Gas oil | 3 under the windows | 7.00–11.00 | No | No | Yes- Winix Zero Pro | |
3 | 3-a Preschool | 21 | No | 0 | 32 | 58 | Gas oil | 2 near the doors | 7.00–11.00 | No | No | No |
3-b Primary | 23 | Yes | 2 | 32 | 63 | Gas oil | 2 near the doors | 7.00–11.00 | No | No | No | |
4 | 4-a Preschool | 23 | No | 1 | 45 | 33 | Natural gas | 2 under the windows | 7.30–12.00 | No | No | No |
4-b Primary | 28 | Yes | 2 | 45 | 38 | Natural gas | 2 under the windows | 7.30–12.00 | No | No | No | |
4-c Secondary | 30 | Yes | 1 | 45 | 51 | Natural gas | 2 on opposite walls | 7.30–12.00 | No | No | No | |
4-d Secondary | 25 | Yes | 1 | 45 | 62 | Natural gas | 2 under the windows | 7.30–12.00 | No | No | No | |
5 | 5-a Preschool | 24 | No | 0 | 14 | 55 | Gas oil | 3 small radiators under the windows | 8.00–13.00 | No | No | Yes- Winix Zero Pro |
5-b Primary | 24 | Yes | 1 | 14 | 57 | Gas oil | 2 under the windows | 8.00–13.00 | No | No | Yes- Winix Zero Pro | |
6 | 6-a Preschool | 23 | No | 0 | 25 | 49 | Gas oil | pipes through the ceiling | 7.30–13.00 | No | No | No |
6-b Primary | 22 | Yes | 1 | 25 | 44 | Gas oil | 3 under the windows | 7.30–13.00 | No | No | No | |
7 | 7-a Secondary | 24 | Yes | 0 | 26 | 57 | Gas oil | 4 under the windows | 7.00–12.00 | No | Yes- Winix Zero | Yes- Winix Zero |
7-b Secondary | 12 | Yes | 0 | 26 | 57 | Gas oil | 4 under the windows | 7.00–12.00 | No | Yes- Winix Zero | Yes- Winix Zero |
Preschools (6 Classrooms) | Primary Schools (7 Classrooms) | Secondary Schools (6 Classrooms) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Campaign | Median | Average (SD) | Min–Max | Median | Average (SD) | Min–Max | Median | Average (SD) | Min–Max |
Temperature, °C | 1st | 21.4 | 20.9 (1.9) | 15.1–23.9 | 21.3 | 20.7 (1.3) | 17.4–24.2 | 18.6 | 18.9 (3.5) | 13.5–26.7 |
2nd | 19.5 | 19.3 (1.5) | 11.3–22.9 | 19.9 | 19.8 (1.1) | 15.0–22.9 | 19.5 | 19.2 (1.0) | 11.9–21.7 | |
3rd | 17.2 | 17.2 (0.9) | 12.5–20.6 | 17.5 | 18.0 (2.8) | 12.7–24.0 | 17.7 | 17.8 (1.6) | 14.3–22.6 | |
RH, % | 1st | 43.3 | 45.4 (10.3) | 26.3–66.1 | 46.6 | 50.5 (13.2) | 26.1–78.5 | 45.2 | 42.2 (10.2) | 23.5–63.2 |
2nd | 58.5 | 54.2 (11.7) | 20.0–75.7 | 52.6 | 54.6 (4.4) | 47.4–69.3 | 58.0 | 54.8 (12.6) | 31.3–76.5 | |
3rd | 55.8 | 54.3 (6.6) | 40.6–67.7 | 53.4 | 49.8 (11.3) | 32.2–67.1 | 48.6 | 53.0 (11.5) | 37.4–86.4 | |
CO2, ppm | 1st | 548.0 | 565.3 (57.4) | 391.0–1075.0 | 584.0 | 625.2 (126.0) | 379.0–1341.0 | 678.0 | 698.0 (166.6) | 393.0–2072.0 |
2nd | 661.5 | 661.5 (71.6) | 402.0–1147.0 | 632.0 | 709.6 (223.1) | 396.0–1950.0 | 745.0 | 875.1 (240.9) | 417.0–3405.0 | |
3rd | 614.5 | 661.1 (153.8) | 419.0–1334.0 | 688.5 | 718.3 (123.0) | 423.0–2082.0 | 1041.0 | 1037.4 (315.2) | 426.0–2506.0 | |
PM2.5, µg/m3 | 1st | 44.0 | 51.2 (25.7) | 7.0–364.0 | 28.0 | 26.2 (8.8) | 1.0–105.0 | 22.0 | 27.6 (12.4) | 5.0–279.0 |
2nd | 39.5 | 52.0 (21.2) | 11.0–252.0 | 51.0 | 46.3 (17.9) | 3.0–480.0 | 38.5 | 46.3 (19.6) | 12.0–133.0 | |
3rd | 32.0 | 35.4 (21.1) | 8.0–306.0 | 34.5 | 39.0 (14.6) | 9.0–246.0 | 14.5 | 16.8 (7.7) | 2.0–64.0 | |
PM10, µg/m3 | 1st | 70.0 | 86.4 (54.1) | 10.0–749.0 | 41.0 | 40.4 (12.3) | 2.0–141.0 | 32.5 | 39.6 (17.8) | 6.0–490.0 |
2nd | 62.5 | 76.3 (32.6) | 13.0–385.0 | 70.0 | 68.2 (27.3) | 4.0–975.0 | 46.5 | 59.9 (30.8) | 14.0–176.0 | |
3rd | 44.0 | 51.7 (34.8) | 9.0–497.0 | 46.0 | 53.1 (21.0) | 10.0–411.0 | 21.0 | 22.7 (8.9) | 3.0–103.0 | |
UFP, pt/cm3 | 1st | 7115 | 13,448 (8047) | 1714–104,231 | 6815 | 6675 (3865) | 185–67,053 | 6399 | 7011 (3430) | 997–29,348 |
2nd | 10,393 | 16,103 (9925) | 2302–105,571 | 6393 | 7791 (3409) | 392–37,333 | 5450 | 7289 (2674) | 1332–55,943 | |
3rd | 6178 | 11,785 (7106) | 1582–61,910 | 10,075 | 9928 (5468) | 2210–78,246 | 4252 | 5025 (1668) | 714–39,613 |
1. | 2. | 3. | 4. | 5. | 6. | |
---|---|---|---|---|---|---|
1. Temperature | 1 | |||||
2. RH | −0.277 * | 1 | ||||
3. CO2 | 0.021 | −0.016 | 1 | |||
4. PM2.5 | 0.379 ** | −0.088 | 0.001 | 1 | ||
5. PM10 | 0.449 *** | −0.111 | −0.040 | 0.962 *** | 1 | |
6. UFP | 0.306 * | −0.421 ** | 0.081 | 0.583 *** | 0.547 *** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva, F.; Felgueiras, F.; Notario, A.; Cabañas, B.; Gabriel, M.F. Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic. Sustainability 2024, 16, 6549. https://doi.org/10.3390/su16156549
Villanueva F, Felgueiras F, Notario A, Cabañas B, Gabriel MF. Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic. Sustainability. 2024; 16(15):6549. https://doi.org/10.3390/su16156549
Chicago/Turabian StyleVillanueva, Florentina, Fátima Felgueiras, Alberto Notario, Beatriz Cabañas, and Marta Fonseca Gabriel. 2024. "Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic" Sustainability 16, no. 15: 6549. https://doi.org/10.3390/su16156549
APA StyleVillanueva, F., Felgueiras, F., Notario, A., Cabañas, B., & Gabriel, M. F. (2024). Indoor Environmental Quality and Effectiveness of Portable Air Cleaners in Reducing Levels of Airborne Particles during Schools’ Reopening in the COVID-19 Pandemic. Sustainability, 16(15), 6549. https://doi.org/10.3390/su16156549