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Abstract: The alteration of land use and cover (LULC) and the landscape ecological risk index (LERI)
significantly impact carbon storage. Examining the carbon storage services in ecologically significant
places is crucial for achieving a harmonious relationship between economic development in the
region, conservation of terrestrial ecosystems, and mitigation of carbon sink depletion. This study
aims to provide a complete framework that integrates the PLUS, Fragstats, and InVEST models. This
framework will be utilized to optimize LULC and LERI, specifically maximizing carbon storage. The
analysis will be carried out over an extended duration and from various viewpoints. The results
indicate that the MJRB ecosystem experienced three clearly defined phases: enhancement (1985–1995),
degradation (1995–2010), and subsequent enhancement (2010–2020). The LERI of high-level and
carbon storage patterns showed similar trends. The degradation of local terrestrial ecosystems can
primarily be due to the widespread use of ecological land caused by socio-economic development.
The Ecological Preservation Scenario is projected to increase 41.97 Tg and 115.18 Tg in carbon storage.
In contrast, the urban development scenario showed a substantial decrease in carbon storage rates,
namely 0.89% and 1.34%, primarily evident in the Chengdu urban zone. An analysis of coupling
coordination revealed a negative relationship between carbon storage and high LERI, while a positive
connection was observed with low LERI. This study established a framework for rapidly assessing
and forecasting the trajectory of carbon storage. It aids in optimizing land use patterns, conserving
areas with high carbon sequestration, and ensuring the establishment of high-quality ecosystems.
This study serves as a guide for achieving regional “dual carbon” objectives.

Keywords: LULC; carbon storage; multi-scenario simulation; landscape ecological risk; cellular
automata; coupling coordination degree; InVEST

1. Introduction

Increasing human activities emit substantial amounts of CO2 into the atmosphere,
leading to global warming and triggering climate issues that threaten sustainable develop-
ment [1,2]. Terrestrial ecosystems and atmospheric, marine, and terrestrial biomes form an
integrated system capable of effectively regulating the climate and reducing CO2 levels [3,4].
Ecological spaces within terrestrial ecosystems, such as farmlands, forests, grasslands, and
water, are considered the most crucial carbon sequestration areas [5,6]. Carbon storage (CS)
is a vital metric for evaluating ecosystem services in terrestrial ecosystems. Rapid economic
growth and accelerated urbanization are causing the rapid degradation of these ecological
spaces, altering the spatial and temporal distribution patterns of Land Use and Land Cover
(LULC) and further weakening the carbon sequestration function [7].
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Carbon storage is crucial in mitigating climate change, maintaining ecosystem health,
and supporting biodiversity. Various ecosystems, such as forests, wetlands, agricultural
lands, and urban green spaces, contribute significantly to carbon storage. For example,
forests absorb a large amount of atmospheric carbon dioxide, acting as essential carbon
sinks and helping to mitigate climate change. Chowdhury [8] emphasizes that these
forests absorb a significant portion of global carbon dioxide emissions, underscoring their
importance in the global carbon cycle. Although covering a smaller global area than forests,
wetlands store a substantial amount of carbon per unit area. Stewart [9] highlights that
inland wetlands are vital carbon reservoirs, storing one-third of the world’s soil organic
carbon, contributing significantly to carbon balance. Agriculture also plays a role in carbon
storage. For instance, organic rice farming enhances soil carbon sequestration, which helps
store carbon and improves soil health and fertility. Xia [10] discusses how crop residue
return aids carbon storage and supports sustainable agriculture. Urban green spaces,
including urban forests, also contribute to carbon storage. Ariluoma [11] conducted a study
on the carbon sequestration capacity of urban green spaces, finding that tree planting in
urban areas effectively mitigates climate change while also providing greenery.

LULC changes are a primary reason for the global carbon cycle imbalance and one of
the most unstable factors affecting the terrestrial ecosystem carbon cycle [12–14]. Human
activities contributed to alterations in the LULC and ecosystem function and structure
and significant impacts on the regional carbon cycle and ecosystem [15,16]. Changes in
different LULC types promote changes in the carbon cycle, even transforming carbon sinks
into carbon sources. Quantitatively assessing the impact of regional LULC on ecological
carbon storage is crucial for enhancing regional ecosystem service functions and mitigating
climate change [17,18]. Primary methods for obtaining terrestrial ecosystem carbon storage
include field surveys (high accuracy but high cost), remote sensing inversion (mainly
targeting surface objects with difficulties in securing subsurface and biomass data) [19],
modeling, and IPCC methods [20]. Modeling methods are preferred as they provide
high-accuracy data on aboveground, underground, and biomass carbon storage [21]. In
the past, carbon storage estimation was mainly based on obtaining basic data through
field surveys, interpolating new research data by combining various spatial interpolation
methods such as Kriging and optimizing the data using machine learning techniques. In
contrast, geostatistical analysis was commonly used in result data analysis, and the LULC
data were used more frequently in large-scale carbon storage estimation [22,23]. Combining
the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) version 3.13.0 with
LULC yields accurate results and can reveal carbon storage changes across different times
and spaces [24–27]. System dynamics models and cellular automata are used to predict
the probability of LULC type changes and the future spatial–temporal distribution of
land types, exploring the impact of future LULC changes on regional ecosystem carbon
storage [5,28,29]. However, few studies have investigated the response mechanisms of
LULC changes in large-scale important ecological function areas to carbon storage using the
InVEST model, and studies anticipating land use change and their influence on ecosystem
carbon sequestration under diverse development situations are especially unusual.

The spatial distribution of LULC is manifested in landscape patterns, the impacts
of human activities on the regional ecosystem, and a combination of various natural
environmental changes. These patterns are composed of patches whose shapes, types,
numbers, and sizes are influenced by external forces. Simultaneously, patches within
landscape patterns affect ecological processes and edge effects [30–32]. Changes in LULC
alter landscape patterns, subsequently impacting the carbon cycle. Studying the impacts
of landscape patterns on the carbon cycle is essential for analyzing carbon storage from
a regional perspective and even more critical for achieving the “double carbon” goals.
Changes in LULC types affect patch fragmentation, connectivity, number, and shape,
directly impacting carbon sequestration capacity. Shu [33] found that optimizing industrial
land structures and reducing industrial land patches can decrease carbon emissions. Shi [34]
studied the relationship between carbon emissions and urban spatial morphology in
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264 Chinese cities, finding that irregular and complex urban structures increase carbon
emissions. In contrast, well-connected urban areas help reduce carbon emissions. The
landscape ecological risk index (LERI) assesses external damage to ecosystem value and
function, quantitatively evaluating regional spatial–temporal risk levels and revealing the
factors that influence the ecosystems. Therefore, LERI is often used to assess ecological
development. Cui [35] constructed an environmental risk assessment model to study the
landscape ecological risk levels of the Qinling Mountains and revealed the distribution
patterns of different risk levels. Humans more clearly influence changes in LULC, and
alterations in LULC structure change landscape ecological patterns, affecting regional
carbon sequestration capacity. Qu [36] found that changes in green space areas positively
correlate with increased carbon storage and reduced LERI risks, indicating that protecting
green and black land aids carbon sequestration and lowers landscape ecological risks. The
interaction between ecosystem services and LERI directly influences ecological carbon
sequestration functions. Therefore, environmental carbon sequestration and LERI were
combined to assess regional ecological conditions, providing better references for regional
LULC planning and management.

The Minjiang River Basin (MJRB) is the most crucial ecological function area in the
upper reaches of the Yangtze River, serving as a vital shield for maintaining the environ-
mental security of the Yangtze River and key to achieving China’s carbon peak and carbon
neutrality (“dual carbon”) goals [37,38]. Additionally, the MJRB significantly differs from
most regions in China in terms of land area, economic development, urbanization, and
ecological structure, making it one of the core regions with the most prominent environ-
mental environments. Since the implementation of China’s Western Development Strategy,
significant changes have occurred in the LULC patterns of this region, with substantial
increases in artificial surface areas, reductions in ecological land areas, increased carbon
emissions, and significant impacts on the regional ecological environment and risks, leading
to a series of environmental issues. Accurately and efficiently assessing regional terrestrial
ecosystem carbon sequestration and investigating the link between environmental hazards
and carbon sequestration is crucial. However, current research on ecological risks and
carbon storage primarily focuses on vulnerable areas such as wetlands and coasts, with
relatively few studies on important environmental function areas.

This study conducts a comprehensive analysis of a typical critical ecological function
area using multi-factors (LULC driving factors), long time-series (65 years, ten points),
and multi-perspectives (LULC, carbon storage, landscape patterns, LERI, spatial autocor-
relation, and spatial differentiation). A framework for rapid carbon storage calculation
and trend prediction was constructed, overcoming the limitations of previous studies
and addressing the gaps in carbon storage research. The specific contributions include
(1) analyzing LULC changes and influencing factors from 1985 to 2020, (2) analyzing
changes in 12 landscape pattern indices from 1985 to 2020 and exploring the spatial–
temporal changes and autocorrelation of LERI, (3) predicting LULC changes for 2030 and
2050, (4) calculating and analyzing carbon storage from 1985 to 2050 and its response rela-
tionship with LULC changes, (5) using an improved coupling harmonious degree model to
analyze the relationship between carbon storage and LERI, and (6) proposing a land-use
model focusing on ecological and farmland protection for the critical ecological function
area of MJRB.

2. Materials and Methods
2.1. Study Area

MJRB is situated in the junction of the Sichuan Basin and the Qinghai-Tibet Plateau,
namely at coordinates 100◦32′–105◦21′ E and 27◦51′–34◦19′ N. This region consists of
71 districts and counties from 7 cities and prefectures located within the drainage basins
of the Minjiang, Dadu, and Qingyi Rivers (Figure 1). The eastern and western portions’
natural sceneries and geological features are differentiated. The northwestern region
exhibits elevated terrain characterized by mountains and gorges, notable variations in
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altitude, an arid and chilly temperature, and a heightened ecological vulnerability. On
the other hand, the middle and lower sections of the area have lower altitudes and are
defined by hills and plains. These regions have a warm and humid environment, which
has historically facilitated the growth of agriculture. The region has an average forest
coverage of approximately 42%, highlighting its significance as a crucial place for ecological
cultivation [39]. The main channel of the Minjiang River spans 711 km and has an annual
flow of 90 billion cubic meters, making it the most water-rich tributary of the Yangtze River.
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Figure 1. The location (a) and DEM map (b) of the Minjiang River Basin in the study area.

2.2. Data Sources and Preprocessing

The data utilized in this study encompass land classification, carbon density, socio-
economic, climate, and environmental, as well as essential geographic datasets. The LULC
for the analyzed region was derived using the 30 m resolution CLCD dataset provided by
Professor Huang Xin’s team [40]. These CLCD data were reclassified to focus on six land
categories: farmland, forest, grassland, water, artificial surfaces, and unused land. Fourteen
types of data were selected as driving factors: soil type, slope, elevation, precipitation,
temperature, population, Gross Domestic Product (GDP), distance to roads, distance to
railways, distance to highways, and distance to rivers. Digital Elevation Model (DEM)
data were sourced from NASA’s SRTM1 V3.0, river data from the Global Surface Water
Explorer, and road, railway, and highway data from OpenStreetMap. GDP, population,
soil type, precipitation, and temperature data were also acquired from the Resource and
Environment Science and Data Center of the Chinese Academy of Sciences.

2.3. Methods

Cellular automata and Markov chains were initially introduced to analyze the LULC
data. LULC state in the MJRB was subsequently simulated under various scenarios for the
years 2030 and 2050 using the Patch-generating Land-Use Simulation Model (PLUS) version
1.4. Subsequently, we analyzed land utilization intensity and the spatial and temporal
distribution of LERI over the period 1985–2020. The InVEST model was employed to
quantitatively assess the changes in carbon storage under different scenarios from 1985 to
2050. Finally, we used the modified coupling method to analyze the impact relationship
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between carbon storage changes and ecological risks. Figure 2 displays the core research of
this study.
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2.3.1. LULC Analysis and Prediction Methods

This study analyzed and prognosed LULC using PLUS. This model integrates the
LEAS and CARS, identifying driving factors for land expansion and predicting patch-
level land use landscape evolution [16]. The PLUS module can effectively capture the
spatial and temporal dynamics of LULC, and the embedded Markov chain can simulate
the nonlinear relationship behind LULC at the patch level to accurately predict the impacts
of LULC on potential ecosystem service functions under different policy scenarios in the
future. The model includes modules for Kappa and Figure of Merit (FoM) coefficients. The
Kappa coefficient, used to measure classification accuracy, indicates the modeling process’s
precision [41–43], while the FoM coefficient assesses various performance aspects. In LULC
simulation, the FoM indicator indicates the percentage of the junction to the union of real
and anticipated modifications [44,45].

The PLUS model was employed to forecast the spatial and temporal distribution of
future LULC. Initially, the LEAS module extracted land expansion data for the MJRB study
area from 2005 to 2015. These data and 14 selected driving factors were processed using
the Random Forest algorithm to determine the land development probabilities for six land
use types in the MJRB region from 2005 to 2015. Subsequently, based on the 2015 LULC
data and these development probabilities, the CARS module predicted the LULC data
for 2010 and 2020 within the study area. The predicted data were compared with actual
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data to validate accuracy, optimize the model, and adjust the driving factors, ensuring
the predictions met accuracy requirements. Finally, the CA-Markov model projected land
use demand for future years. Using 2020 as the baseline and considering four future
sustainable development scenarios, the LULC of the MJRB was projected for both 2030 and
2050, focusing on spatial and temporal patterns.

2.3.2. LULC Dynamic Degree

Land use dynamics accurately reflect the extent of changes in land use types and
provide a quantitative evaluation of LULC changes. These dynamics encompass single
land use dynamics and comprehensive land use dynamics. The solely dynamic degree rate
can represent alterations in a particular land use type over a defined period in a specific
area; the integrated dynamic degree rate can reflect the annual variation of all land use
types within the entire district. The calculation formulas for these two types of land use
dynamics are as follows:

S = [(Ab − Aa)/Aa]× 1/T × 100% (1)

C =
(
∑n

i=1 ∆LAi−j/2∑n
i=1 LAi

)
× 1

T
× 100% (2)

where S and C represent the LULC solely dynamic degree and integrated dynamic degree,
Aa and Ab are the areas of LULC types at the beginning and the end of the research period,
respectively, T represents the duration of the study, i and j denote the LULC types, LAi is
the initial area of land type i, and △LAi-j indicates the land area of type i converted to type
j during the research period.

2.3.3. LandScape Pattern Index

The landscape pattern index provides a method for evaluating and analyzing regional
landscapes’ spatial arrangement, function, and ecological service capacity, describing the
characteristics of the LULC landscape structure and spatial configuration [46]. The Fragstats
version 4.2.1 software, which is more frequently used in landscape pattern analysis, is
based on geospatial data and evaluates landscape structure and spatial configuration
characteristics by calculating various landscape indices. Considering the landscape features
of the research area, 11 indicators were chosen to aid in the evaluation (Table S1 online).

Landscape ecological risk (LER) is a crucial component of landscape patterns, reflect-
ing the stability and vulnerability of landscape ecosystems. LER comprehensively considers
various environmental and risk factors to assess landscape ecosystems’ health and sustain-
able development capacity. LER indicates the ability of the study area to withstand external
disturbances. A lower LER value signifies a more robust landscape recovery capability,
while a higher LER value denotes a weaker resistance to external disturbances [47]. The
landscape ecological risk index (LERI) for MJRB was constructed using the landscape dis-
turbance index and vulnerability index to evaluate MJRB’s ecological disturbance degree.
The formulas for the calculations are as follows:

LERIk =
N

∑
i=1

Aki
Ak

× Di × Vi (3)

where k is the grid, Aki is the landscape area of type i in the k-th grid, Ak is the k-th grid
area, Di is the landscape disturbance index of type i, and Vi is the landscape fragility index.

Grids were selected as evaluation units to represent the spatiotemporal heterogeneity
of landscape ecological risk visually. Based on comparative experiments and previous
research findings [48], the study area was divided into 1845 landscape ecological risk
evaluation grid units, each measuring 10 km × 10 km (Figure S1 online). Each grid’s LERI
was calculated, and the results were assigned to the grid center.
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2.3.4. Spatial Heterogeneity Analysis

Spatial heterogeneity primarily encompasses stratified heterogeneity (spatial differen-
tiation) and local heterogeneity. Spatial stratified heterogeneity examines spatial differen-
tiation and uncovers its driving forces, typically analyzed using a geographical detector.
Spatial local heterogeneity reveals differences between a specific point and its surrounding
attributes, generally analyzed using spatial autocorrelation methods.

The geographical detector is a model of the causes of statistical spatial variation.
This method includes four main components: risk detection, ecological detection, factor
detection, and interaction detection [49]. In this study, by constructing the links between
natural, social, and economic factors and LULC changes, integrating related factors, and
adopting factor detection and interaction detection methods, we investigated each factor’s
degree of influence and mechanism of action individually and interactively on LULC
changes. Using q-value to measure the contribution of the dependent variable is the main
objective of factor detection, and Equations (4) and (5) are the factor detection formulas.

q = 1 − 1
Nδ2

L

∑
h=1

Nhδ2
h = 1 − SSW

SST
(4)

SSW =
L

∑
h=1

Nhδ2
h, SST = Nδ2 (5)

where h represents the stratification of the influence factor of LULC change; Nh is the
number of cells in layer h; N is the number of cells in the whole zone; δ2

h and δ2 are the
stratified data and the area-wide variance, respectively; SSW and SST are the sum of the
intra-stratum variance and the total variance of the whole area, respectively; q represents
the interpretive capability of the factor, which is taken between the values of (0,1); higher
q-values indicate a greater impact of the detection factor on the LULC.

Interaction detection analyzes the explanatory power of the interactions between
different factors on regional target changes. In this study, ten detection factors from the
LULC driving factors (Table 1) were utilized for single-factor detection and two-factor
interaction detection on the spatiotemporal LULC change data from 1985 to 2020.

Table 1. Drivers for LULC spatial evolution in the MJRB.

Type Impact Factor Code Classification

Topographic and
climatic data

DEM X1 5
Slop X2 5

Precipitation X3 5
Temperature X4 5

Socioeconomic data

Population X5 5
GDP X6 5
River X7 5

Railway X8 5
Highway X9 5

Roads X10 5

Spatial autocorrelation effectively describes the spatial clustering of geographical
phenomena and assesses the dependence between variables within a region. The Local
Moran’s I index can analyze the spatial positive and negative correlation of the data, and
the Getis-Ord Gi* cold hotspot analysis model can statistically count the hotspots and
cold spots with significance, which are introduced in this paper to analyze the correlation
between LERI and carbon storage. Moran’s I index measures the degree of clustering
or dispersion in spatial distribution [50], but it does not identify the specific locations of
clusters. The Getis-Ord Gi* model accurately detects the spatial distribution of clustered
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areas. Combining these two methods provides a comprehensive understanding of the
spatial distribution of elements. Equation (6) expresses in detail the algorithm of Moran’s I.

Moran′s I = n
n

∑
i=1

n

∑
j=1

Wij(xi − x)(xj − x)/
n

∑
i=1

n

∑
j=1

Wij

n

∑
i=1

(xi − x)2 (6)

where n is the total number of elements; xi and xj are the values of location i and j, respec-
tively; x is the target mean value; Wij is the spatial weight matrix established at a fixed
distance range. Moran’s I index takes the data [−1, 1]. Moran’s I is positive to indicate the
existence of spatial positive. Moran’s I indicates the existence of spatial positive correlation,
and the more significant the value, the larger the degree of aggregation of elements in the
region. Negative Moran’s I indicates the existence of spatial negative correlation, and the
smaller the value, the more significant the spatial difference of elements in the region. Zero
Moran’s I indicates the absence of spatial correlation, and the elements are in the state of
random distribution. The Getis-Ord Gi* formula calculation is as follows:

Gi
∗(d) =

n

∑
i=1

Wij(d)Xi/
n

∑
i=1

Xi (7)

where Wij is the spatial weight matrix between i and j; xi is the element value of space i; n is
the total number of elements. A positive number for Gi

*(d) indicates that the element values
of this spatial unit and neighboring units are similar, and the spatial clustering tends to be
tight (cold spots or hot spots); a negative number for Gi

*(d) indicates that the element values
of this spatial unit and neighboring units are similar. On the contrary, spatial clustering
tends to be dispersed; a zero value for Gi

*(d) indicates that the element values of this spatial
unit and neighboring units present random independent distribution characteristics.

2.3.5. Sustainable Development Scenario Setting

To address the sustainable development and ecological protection needs of the MJRB,
four sustainable development scenarios were established to simulate the spatiotemporal
distribution of LULC for 2030 and 2050: (1) Natural Development Scenario (NDS), where
LULC changes follow historical development trends without external policy interven-
tions, allowing various land types to interchange; (2) Ecological Preservation Scenario
(EPS), focused on protecting the environment and excellent socio-economic growth, pro-
moting a transition into a “low-carbon” and “green” economy, with priority given to
ecological land; (3) Farmland Preservation Scenario (FPS), guided by national farmland
protection policies and food security, aimed at minimizing the conversion of farmland
in MJRB to other land types, particularly limiting the conversion of farmland to artificial
surfaces, thereby strengthening farmland protection and ensuring food production security;
(4) Urban Construction Scenario (UCS), recognizing the significant potential for devel-
opment within China’s socio-economic growth, with urbanization as a crucial aspect,
prioritizing land use for economic development and urbanization in terms of quantity
and scale. Based on these sustainable development scenarios, land conversion rules were
established for NDS, EPS, FPS, and UCS (Table S2 online) to simulate future LULC changes
under various scenarios. The development scenario is the same as the development focus;
future development is affected by various factors. As a quantitative study of future changes
in carbon storage due to changes in land types, we set the sustainable development scenario
as a perfect state.

2.3.6. Carbon Storage Estimation Method

The InVEST is used to assess and model ecosystem services and their interrelationships.
It is capable of mapping and valuing ecological services and helping stakeholders balance
development and conservation objectives, thus facilitating informed decision-making. The
module assesses how land use and management options affect ecosystem services such as
carbon storage, water purification, and biodiversity. The InVEST model was employed to
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estimate the total carbon of the MJRB ecosystem from 1985 to 2050. This model categorizes
LULC into four types of carbon pools: aboveground biomass carbon, belowground biomass
carbon, soil organic carbon, and dead organic matter carbon. Due to the difficulty in
accurately obtaining data on dead organic matter within the study area and to ensure the
spatiotemporal changes in total carbon storage remain unaffected, this study considered
only aboveground biomass, belowground biomass, and soil organic carbon pools for
calculations [50,51]. The formula for calculating carbon storage in terrestrial ecosystems is
as follows:

Ck = Ck_above + Ck_below + Ck_soil + Ck_dead (8)

Ctotal =
m

∑
i=1

Sk × Ck, (k = 1, 2, · · · , m) (9)

where Ck is the carbon density (unit: Mg·C·hm−2) of the kth land class, Ck_above is the
surface carbon density of the k-th land class, Ck_below is the subsurface carbon density of the
kth land class, Ck_soil is the soil carbon density of the k-th land class, Ck_dead is the carbon
density of the dead vegetation of the k-th land class, Ctotal is the total CS within the research
region, Sk is the acreage of the study area, The sum of the acreage of the k-th land classes,
m, is the type of land class in the study area.

Due to the absence of comprehensive carbon density values within the study area,
a correction parameter method was utilized for adjustment. This method adjusts carbon
density values on a national scale based on similar climatic conditions [52–54].

CSP = 3.3968 × MAP + 3996.1 (R2 = 0.11) (10)

CBP = 6.798 × e0.0054×MAP (R 2 = 0 .70) (11)

CBT = 28 × MAT + 398 (R2 = 0.47, P < 0.01) (12)

where CSP is the soil carbon density value (kg·C·m−2) obtained from mean annual pre-
cipitation, CBP is the biomass carbon density value (kg·C·m−2) obtained from annual
rainfall, CBT is the biomass carbon density value (kg·C·m−2) obtained from mean annual
temperature, MAP is the mean annual precipitation (mm), and MAT is the mean annual air
temperature (◦C).

The carbon density values were optimized using Formulas (10) to (12). By considering
the annual average temperature and precipitation for China (9.9 ◦C/675 mm) and the MJRB
(11.7 ◦C/917.7 mm), the carbon density correction coefficient for the MJRB was calculated.

KB = KBP × KBT = (CM_BP/CC_BP)× (CM_BT/CC_BT) (13)

KS = CM_SP/CC_SP (14)

where KBP is the carbon pool adjustment parameter for rainfall, KBT is the carbon pool
adjustment parameter for temperature, CM is MJRB carbon pool, and CC is the whole
country carbon pool; KB and KS are the correction factors for biomass carbon density and
soil carbon density, respectively. Calculating the carbon density correction factor and
synthesis of the national composite carbon density values obtained from the literature
(Table S3 online) yielded the carbon pool data for the MJRB in the research region (Table 2).

Table 2. Carbon density for six land types in MJRB (Mg·C·hm−2).

LULC Type Cabove Cbelow Csoil

Farmland 19.41 229.33 122.61
Forest 135.71 329.36 73.09

Grassland 100.31 245.81 113.00
Water 8.53 0.00 0.00

Artificial surface 7.10 0.00 0.00
Unused land 3.69 0.00 17.76



Sustainability 2024, 16, 6552 10 of 27

2.3.7. Modified Coupled Coordination Degree Models

The coupling coordination degree model is a commonly used method for examin-
ing the interrelationships between multiple systems. Introducing a modified coupling
degree model [55,56] enhances the accuracy of the results. In this study, the relationship
between landscape ecological risk and carbon storage was evaluated by combining the
coupling degree and coordination degree, resulting in a comprehensive evaluation index
to determine the coupling coordination state of these two factors within the entire system.
Equations (15)–(17) are the formulas for the coupling coordination degree.

C = 2[(W × S)/(W + S)2]
1/2

(15)

T = α × W + β × S (16)

D = (C × T)1/2 (17)

where W represents CS, S is landscape ecological risk, C is the degree of coupling between
CS and LERI, and the variable T serves as the metric for assessing the coupled coordinated
development, with the coefficients α and β both set to 0.5, indicating that the enhancement
of CS is equally essential as landscape ecological risk prevention. D is the degree of coupled
coordination. CS and LERI were normalized to avoid differences in level and magnitude.

3. Results
3.1. Model Accuracy Verification

The LULC simulation is intricate and affected by policy, economic conditions, and
natural factors [57,58]. The accuracy of LULC simulations directly impacts the validity of
the research results. This study incorporated policy and natural economic factors, such as
farmland, ecological protection, and land space planning policies, into the LULC simulation.
To address the limitations of using a single model, the Markov, PLUS, and PLM models
were integrated to simulate LULC across multiple periods. The Kappa and FoM coefficients
were introduced for comprehensive accuracy validation to mitigate uncertainties associated
with single validation models. The two sets of validation data simulated in this study
yielded Kappa coefficients above 88.3%, overall accuracy above 92.3%, and FoM coefficients
above 0.434, demonstrating the reliability of the prediction results [59,60].

3.2. MJRB LULC Changed in 1985–2000
3.2.1. Spatial and Temporal Changes in LULC

Geostatistical analysis data (Table S4 online) and the LULC transition matrix (Figure 3A)
indicate that from 1985 to 2020, farmland in the MJRB continuously decreased. Most farm-
land was converted into artificial surfaces, water, and forest. The farmland area decreased
from 33,288.33 km2 to 29,795.32 km2 (from 20.33% to 18.20%). The rapid socio-economic
development notably resulted in significant farmland occupation by artificial surfaces,
posing a direct threat to food security if this trend continues. Forest gradually increased
during this period, with an overall growth of 6%, primarily because farmland was con-
verted into grassland. The expansion of forests has benefitted from the State’s execution
of ecological protection, the creation of natural conservation forests, and the policy of
converting cropland to forests. Grassland never exceeded 4% of the entire basin and contin-
uously decreased, primarily converting to forest and unused land, aligning with national
protective forest policies. Water saw a significant increase in the mid-1990s, growing by
43% over 35 years, primarily due to the conversion from farmland, grassland, and unused
land (driven by Sichuan Province’s hydropower development strategy). During this pe-
riod, artificial surfaces expanded to 2242.09 km2, mainly at the expense of farmland and
water (due to rapid socio-economic development and urbanization). The area of unused
land increased by 25%, primarily due to the conversion from grassland and water. Over
the 35 years, the total LULC type changes in this region were predominantly (Figure 3B)
forest > farmland > grassland > artificial surface > unused land > water.
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From a spatiotemporal distribution perspective, the area and spatial distribution of
different land types in the MJRB have undergone varying degrees of change, exhibiting
multiple spatial characteristics. Notably, the expansion of artificial surfaces was primar-
ily concentrated in the Chengdu urban circle (Figure 4), driven by the national Western
Development policy and the strategic shift of industrial clusters to the southwest region.
Additionally, the Minjiang and Dadu rivers within the basin provided crucial support for re-
gional commercial and industrial development, increasing the demand for artificial surface
land along the rivers. Urban expansion mainly encroached upon extensive surrounding
farmland, forest, and water. By 2020, the total area of artificial surfaces had tripled com-
pared to 1985, with artificial surfaces beginning to cluster within farmland areas (positions
A, B, and C in Figure 4). Despite this, ecological conditions in some areas have improved.
In Ya’an City, a considerable amount of farmland was converted to forest (pointion C in
Figure 4); in the Dujiangyan area, Ya’an City, and Leshan City, the water area significantly
expanded (Positions A, C, and D in Figure 4). Due to MJRB’s abundant water resources and
significant water level gradient, numerous hydropower stations were constructed during
China’s rapid economic growth, contributing to the increase in water area. Simultaneously,
much of the forest was converted to farmland in Leshan City (position D in Figure 4).
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3.2.2. LULC Types Transfer

The LULC transfer data for MJRB from 1985 to 2020 (Table S5 online) indicate that the
ratios of farmland, forest, and grassland exceeded 20%. In contrast, the proportions of water,
artificial surfaces, and unused land were less than 1.5%. Despite the small proportion of
artificial surfaces, high conversion rates were observed among farmland, forest, grassland,
and artificial surfaces. During the periods 1990–1995, 2010–2015, and 2015–2020, the
most significant area conversion was from farmland to forest, with over 2000 km2 of
farmland converted to forest. From 1995 to 2010, the net increase in farmland converted to
forest was 2517 km2. The conversion volume from farmland to grassland remained stable
with minimal changes across periods. The conversion volume from farmland to artificial
surfaces was closely time-dependent. From 1985 to 1995, the conversion volume was less
than 76 km2, but starting in 1995, the area of artificial surfaces increased significantly, with
the increase from 2010 to 2015 being six times that from 1990 to 1995.

Forest covers the largest portion of the MJRB, showing a general pattern of initial
increase, subsequent decrease, and then growth in area. Between 1990–1995, 2000–2005, and
2015–2020, the forest area increased by 3.75%, −0.75%, and 1.63%, respectively, resulting
in an overall increase of 6.22%. Grassland area decreased by 5.31%, water area increased
by 43.03%, unused land area increased by 24.98%, and artificial surface area increased by
341.90%. The results indicate that the increase in artificial surface area was primarily due to
the conversion from farmland, forest, grassland, and water (Figure S2 online).

3.2.3. Land Use Dynamic Degree

An analysis of the LULC dynamics in the MJRB from 1985 to 2020 revealed signif-
icant changes in water, unused land, and artificial surfaces among the single land use
dynamics. The dynamic change rate of artificial surfaces reached 9.3% between 1995 and
2020, primarily due to the small total area of artificial surfaces before 1995. Major housing
reforms implemented in China from 1993 to 1998 emphasized housing commercializa-
tion and spurred the extensive construction of artificial surfaces. The water exhibited
a substantial positive dynamic change rate between 1995 and 2010, driven by Sichuan
Province’s Hydropower development policy. Grassland and forest showed relatively minor
changes, with rates below 0.8%. Despite significant transfer areas, their large share of about
77% of the total area resulted in lower dynamic change rates. Farmland experienced a
significant negative dynamic change rate throughout the study period, mainly due to rapid
economic development and manufacturing and real estate development encroachment on
large farmland areas in the Chengdu Plain, particularly evident between 2010 and 2020.
Though modestly, the overall land use dynamic rate exhibited an increasing trend, with a
maximum value of 0.32% between 1990 and 1995. The comprehensive land use dynamic
rate in MJRB remained relatively stable (Figure 5).
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3.2.4. LULC Type Spatiotemporal Divergence Drivers

The geographical detector detected single-factor and two-factor interactions in data
from 1985 to 2020. The results of the single-factor detection (Table 3) indicate that the
selected ten factors significantly drive the spatiotemporal changes of LULC in the MJRB
(p < 0.001). While the explanatory power of each factor for LULC spatiotemporal changes
varies across different periods, the overall differences are not substantial. Generally, the
influence of these factors increases over various stages, although some driving factors
weaken in later stages. Precipitation and DEM exhibit the highest explanatory power for
LULC spatiotemporal changes, highlighting their significant impact on LULC changes.
Railways, highways, and roads show moderate explanatory power, suggesting that LULC
changes are influenced by transportation infrastructure to some extent but are not the most
significant factors. The weakest explanatory factors are slope, population, GDP, and river,
indicating that these factors do not significantly impact land use changes.

Table 3. Single factor detection results and LULC changes from 1985 to 2020.

Factors
T1 T2 T3 T4 T5 T6 T7 T1–T3 T3–T5 T5–T7

q Statistic Difference Variation

X1 0.014 0.202 0.24 0.232 0.252 0.274 0.284 0.226 ↑ 0.012 ↑ 0.032 ↑
X2 0.038 0.016 0.016 0.019 0.02 0.024 0.028 −0.022 ↓ 0.004 ↑ 0.008 ↑
X3 0.036 0.225 0.228 0.202 0.232 0.255 0.255 0.192 ↑ 0.004 ↑ 0.023 ↑
X4 0.014 0.199 0.247 0.238 0.248 0.273 0.289 0.233 ↑ 0.001 ↑ 0.041 ↑
X5 0.019 0.062 0.085 0.091 0.106 0.122 0.12 0.066 ↑ 0.021 ↑ 0.014 ↑
X6 0.028 0.049 0.065 0.07 0.086 0.112 0.088 0.037 ↑ 0.021 ↑ 0.002 ↑
X7 0.014 0.024 0.031 0.024 0.038 0.046 0.026 0.017 ↑ 0.007 ↑ −0.012 ↓
X8 0.042 0.156 0.168 0.157 0.196 0.209 0.191 0.126 ↑ 0.028 ↑ −0.005 ↓
X9 0.03 0.13 0.146 0.127 0.164 0.181 0.163 0.116 ↑ 0.018 ↑ −0.001 ↓

X10 0.036 0.137 0.161 0.138 0.18 0.196 0.177 0.125 ↑ 0.019 ↑ −0.003 ↓
Note: T1: 1985–1990; T2: 1990–1995; T3: 1995–2000; T4: 2000–2005; T5: 2005–2010; T6: 2010–2015; T7: 2015–2020;
↑ means increase, ↓ means decrease.

The results (Figure 6) of two-factor probing with geodetector show that the combined
effects of multiple factors influence the spatiotemporal LULC changes in the MJRB. The
interaction between two factors across different periods shows nonlinear or two-factor
enhancement, with no independent relationships or weakened interactions observed. It
means that the joint effect of any two drivers is more potent than that of a single driver,
indicating that the LULC in the research region results from the joint effect of multiple
drivers. The highest explanatory power for LULC spatiotemporal changes from 1985 to
2020 occurred between 2015 and 2020, resulting from the interaction between slope and
temperature. The interaction between slope and temperature also performed well in other
years, demonstrating that their combined effect on LULC changes is greater than the effect
of either slope or temperature alone.

The interactions of DEM, slope, and temperature with GDP, population, and roads
strongly influence the spatial and temporal changes of the MJRB LULC. In contrast, the
interactions of the other factors are relatively weak, which reflects the characteristics of
alpine basins.
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3.3. MJRB Multi-Scenario LULC Simulation from 2020 to 2050

This research utilizes PLUS version 1.4 software to model future land use. Initially,
data from 2005 and 2015 were examined to identify expansion in the study area. The
Random Forest algorithm was used to sample both expansion and driving factors. The
LEAS identified the driving forces behind LULC changes and the development potential
of various land categories. Subsequently, CARS was utilized. This model incorporated
land category development potential, future land use demand, constraints, land conversion
matrices, and neighborhood weights. The actual LULC data from 2005 were used to predict
the spatiotemporal distribution of LULC for 2010 and 2020. The model’s reliability was
assessed by comparing the predicted data with the exact values. The results indicated
that the Kappa coefficients for the two validation datasets were above 88.3%, and the
FoM coefficients exceeded 0.434, confirming the reliability of the model’s predictions.
Finally, based on the four scenarios’ transition matrices and neighborhood weights, the
LULC values for 2030 and 2050 were predicted and tested to meet the required standards.
Adjustments to the parameters yielded four scenario-specific LULC datasets that met the
criteria. The results are consistent with the predefined transfer matrix and the development
scenarios. The multi-scenario LULC simulation process is illustrated in Figure 7b.

The land expansion simulation employed the Random Forest algorithm to process
LULC classification data, thoroughly exploring the expansion and driving factors for
each LULC category. This method accurately captured the development probabilities
of various land categories and the contributions of driving factors to the expansion of
each land category during the specified period (Figure 7a). In the expansion algorithm,
the land use of T1 and T2 was randomly combined. Preliminary experiments indicated
differences in land use combinations across different periods, but these differences did not
significantly impact the overall results. The selection of driving factors aimed to include
various elements such as topography, climate, economy, and society. Increasing the number
of relevant factors was found to help improve the accuracy of the results.

Figure S3 (online) shows several significant features in the LULC scenarios from 2020
to 2030 and 2050. Forestland, grassland, and farmland remain the predominant land use
types in the MJRB. With the advancement of urbanization, the area of artificial surfaces
increases most rapidly under the UCS model (regions B and D of the UCS column in
Figure 8), rising from 1.369% in 2020 to 1.747% in 2030 and reaching 2.407% by 2050.
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Farmland is better protected under the FPS model (region A of the FPS column in Figure 8),
increasing from 18.196% in 2020 to 19.430% in 2030 and projected to reach 19.738% by 2050.
During the study period, ecological land declines, particularly grassland, align with the
overall trend. As economic development and urbanization accelerate, the expansion of
artificial surfaces and farmland encroaches on large forest and grassland areas, leading to
declining proportions. Forest increases only under the NDS and EPS models (regions C
of the EPS column in Figure 8), reaching 46.251% by 2050, with the increased area mainly
originating from farmland and grassland (Figure 8). The increase in forests under the NDS
and EPS scenarios suggests a natural trend (region C of the NDS column in Figure 8). The
change in forest area is positively correlated with external disturbances, consistent with
natural development patterns. Water shows a growth trend under all scenarios, reaching a
maximum of 0.917% under the NDS model by 2050. The increase in water area is a positive
signal of ecological improvement and is directly related to the MJRB’s water management
policies. Unused land shows a declining trend and is projected to reach its lowest value
of 1.235% under the FPS model by 2050, down from 1.435% in 2020. Much unused land
has been developed into farmland and grassland, consistent with China’s ecological and
farmland protection policies.
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3.4. Characteristics of Ecological Landscape Pattern Changes
3.4.1. Characterization of Spatial and Temporal Variations in LERI

The overall LERI of the MJRB is low (region A in Figure 9), with medium and high-
risk areas primarily distributed in the basin. Significant LERI changes are observed in
the Chengdu urban region (region B in Figure 9), but the LERI values in this area have
decreased. The decline in LERI in the metro area is attributed to accelerated urbanization,
where other land types are converted into stable artificial surfaces, resulting in zones of
minimal risk. In the northern sector of the MJRB, a zone with a low LERI is progressively
emerging, particularly in the region marked as D in Figure 9. A comparison of imagery
and policy documents reveals that in Aba Autonomous Prefecture, located in region D
of Figure 9, natural forest cutting has decreased since the 1990s, with a complete ban on
natural forest logging starting in September 1998. As shown in Figure 9, since 2000, the LERI
in region D has gradually shifted to lower values. Region A of Figure 9 is located between
Lixian and Xiaojin counties, where high altitude, harsh natural ecological conditions, and
slow vegetation growth result in persistently high LERI. Region C of Figure 9 is situated in
the Gongga Mountain Nature Reserve, where most areas are snow-covered year-round,
and the surface vegetation primarily consists of alpine meadow (Figure 9i), with some
areas exposed to gravel and naturally damaged vegetation, thereby exhibiting high risk.
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B is the local of the Chengdu metropolitan area; C is the local of Longquan mountain range; D is the
local of Meishan and Leshan urban agglomerations. Regions A, B, C, and D will change significantly
in the four future development scenarios.
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mapping of unmanned aerial vehicle imagery in high-altitude areas (taken by the team in July 2022).
A, B, C, and D represent 4 different positions on the figure.

3.4.2. LERI Spatial Autocorrelation Analysis

The spatial autocorrelation of LERI in the study area was analyzed using Local Moran’s
I and Getis-Ord Gi* analyses (Figure 10). The findings show that during the entire study
duration, MJRB’s LERI index maintained a significant positive correlation with Local
Moran’s I, consistently above 0.51, indicating a spatial positive correlation. The Z-scores
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ranged between 30 and 32, well above the threshold value 2.58, indicating a highly clustered
pattern. Notably, the p-values were all 0, below the minimum significance level of 0.01,
suggesting that the observed spatial distribution pattern is highly unlikely to be a random
event. Collectively, these indicators confirm that the clustering of LERI within the 99%
confidence interval is reliable.
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Cold spots in the MJRB are primarily located at the peripheries of the study area. In
contrast, hot spots are concentrated in the plains and low hilly basins, with confidence
levels decreasing outward. The spatial distribution of clusters and hot/cold spots is
generally consistent. Local Moran’s I scatter plots and global spatial autocorrelation
methods were used further to verify the spatial correlation of landscape ecological risk.
The results (Figure 10A) show that from 1985 to 2020, LERI in MJRB exhibited a significant
positive correlation, indicating spatial interdependence. Local Moran’s I showed a trend of
increasing and then decreasing from 1985 to 2020, suggesting that with changes in LULC,
the spatial heterogeneity and clustering of LERI decreased over time.

3.5. CS Change from 1985 to 2050
3.5.1. CS Change in MJRB from 1985 to 2020

The InVEST model was used to calculate the carbon storage in the MJRB from 1985
to 2020 (Figure 11A). The spatial distribution pattern of carbon storage in the MJRB did
not change significantly over this period. Overall, carbon storage was highest in the
central region, followed by the north and south, and lowest in the basin, presenting a
spatial distribution pattern characterized by high levels in the west and central areas,
lower levels in the east, and moderate levels in the north and south. High carbon storage
values were mainly concentrated in the mountainous forest areas at the basin edges. In
contrast, low carbon storage values were focused on the basin and surrounding water,
areas predominantly consisting of farmland and artificial surfaces.

From 1985 to 2020, the total carbon storage in the MJRB decreased by 0.675%, with a
cumulative loss of 51.36 Tg (Table S6 online). Carbon storage losses from farmland and
grassland were 127.71 Tg and 147.54 Tg, respectively; the increase in forest area contributed
to a gain of 223.35 Tg in carbon storage. Initially, the total carbon storage increased, peaking
in 1995, then continuously declined, with a slight upward trend observed in 2020.



Sustainability 2024, 16, 6552 18 of 27

Sustainability 2024, 16, 6530 18 of 29 
 

Cold spots in the MJRB are primarily located at the peripheries of the study area. In 
contrast, hot spots are concentrated in the plains and low hilly basins, with confidence 
levels decreasing outward. The spatial distribution of clusters and hot/cold spots is gen-
erally consistent. Local Moran’s I scatter plots and global spatial autocorrelation methods 
were used further to verify the spatial correlation of landscape ecological risk. The results 
(Figure 10A) show that from 1985 to 2020, LERI in MJRB exhibited a significant positive 
correlation, indicating spatial interdependence. Local Moran’s I showed a trend of increas-
ing and then decreasing from 1985 to 2020, suggesting that with changes in LULC, the 
spatial heterogeneity and clustering of LERI decreased over time. 

3.5. CS Change from 1985 to 2050 
3.5.1. CS Change in MJRB from 1985 to 2020 

The InVEST model was used to calculate the carbon storage in the MJRB from 1985 
to 2020 (Figure 11A). The spatial distribution pattern of carbon storage in the MJRB did 
not change significantly over this period. Overall, carbon storage was highest in the cen-
tral region, followed by the north and south, and lowest in the basin, presenting a spatial 
distribution pattern characterized by high levels in the west and central areas, lower levels 
in the east, and moderate levels in the north and south. High carbon storage values were 
mainly concentrated in the mountainous forest areas at the basin edges. In contrast, low 
carbon storage values were focused on the basin and surrounding water, areas predomi-
nantly consisting of farmland and artificial surfaces. 

 
Figure 11. Spatial distribution of carbon storage in MJRB from 1985 to 2020. Note: (A) illustrates the 
spatial distribution of carbon storage; (B) depicts the spatial changes in carbon storage; (a–h) repre-
sent carbon data graphs at different times. 

From 1985 to 2020, the total carbon storage in the MJRB decreased by 0.675%, with a 
cumulative loss of 51.36 Tg (Table S6 online). Carbon storage losses from farmland and 
grassland were 127.71 Tg and 147.54 Tg, respectively; the increase in forest area contrib-
uted to a gain of 223.35 Tg in carbon storage. Initially, the total carbon storage increased, 
peaking in 1995, then continuously declined, with a slight upward trend observed in 2020. 

The study found that from 1985 to 2020, carbon storage in the MJRB responded sig-
nificantly to LULC changes (Figure 11A). Carbon storage in farmland exhibited a volatile 
downward trend, reaching its lowest value in 2020 due to the continuous encroachment 
on farmland. Forest carbon storage generally increased but experienced a slight decline 
between 1995 and 2010, consistent with local farmland reclamation policies in Sichuan, 
which aligned with the concurrent increase in farmland carbon storage. Grassland carbon 

Figure 11. Spatial distribution of carbon storage in MJRB from 1985 to 2020. Note: (A) illus-
trates the spatial distribution of carbon storage; (B) depicts the spatial changes in carbon storage;
(a–h) represent carbon data graphs at different times.

The study found that from 1985 to 2020, carbon storage in the MJRB responded
significantly to LULC changes (Figure 11A). Carbon storage in farmland exhibited a volatile
downward trend, reaching its lowest value in 2020 due to the continuous encroachment
on farmland. Forest carbon storage generally increased but experienced a slight decline
between 1995 and 2010, consistent with local farmland reclamation policies in Sichuan,
which aligned with the concurrent increase in farmland carbon storage. Grassland carbon
storage continuously declined due to extensive grassland destruction and a sharp decrease
in area. With rapid socio-economic development and accelerated urbanization, the area
of artificial surfaces increased rapidly, resulting in a stable rise in carbon storage, nearly
tripling from the initial to the final period. Unused land carbon storage showed a volatile
upward trend due to the conversion from other land types, leading to an increase in unused
land area. Waterbody carbon storage initially rose but then declined, reaching its lowest
point in 2020 due to Sichuan’s comprehensive management of small hydropower stations,
which gradually reduced reservoir areas (Figure 11B).

3.5.2. MJRB CS Changes from 2020 to 2050

We estimated the carbon storage across various land types for four developmental
scenarios projected for 2030 and 2050 (Table S6 online). The impact of future LULC
changes on carbon storage varies significantly across various scenarios, although the spatial
distribution pattern of carbon storage remains unchanged. Significant changes in carbon
storage are concentrated around the basin (Figure S3 online).

Under the NDS scenario, the reduction in farmland in the MJRB leads to the most
significant carbon storage loss (Figure 12). By 2030 and 2050, carbon storage is projected
to decrease by 7.43% and 18.46% compared to 2020, respectively. In the FPS and UCS
scenarios, farmland carbon storage increases significantly due to effective farmland protec-
tion measures. Forest carbon storage shows substantial growth, rising by 6.81% by 2050,
comparable to the EPS scenario, indicating that forest develops well under both EPS and
NDS scenarios. Grassland and unused land exhibit a continuous downward trend, with
grassland carbon storage decreasing by 1.51% from 2030 to 2050 as grassland areas continue
to be degraded. Conversely, water shows a constant upward trend. From 2030 to 2050,
carbon storage on artificial surfaces will rise by 37.93% due to ongoing economic growth
and urbanization, contributing to an expansion in these areas and significantly enhancing
carbon storage. In the NDS scenario, the overall carbon storage will see a 0.06% reduction
by 2050.
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Under the EPS scenario, ecological land is well protected, leading to steady increases
in carbon storage in forests and water. By 2030 and 2050, carbon storage is projected to
increase by 2.75% and 6.81% compared to 2020, respectively. Significant losses are observed
in farmland and grassland, with carbon storage decreasing by 1.67% and 3.84% over these
periods. The decline in carbon storage on farmlands primarily results from the ecological
strategy that transforms farmlands into forests. Artificial surfaces exhibit negative growth
for the first time, primarily because many abandoned artificial surfaces are redeveloped
into environmental land.

Under the FPS scenario, farmland carbon storage continues to increase, primarily due
to implementing national farmland protection policies, which effectively restore farmland
areas. Among the four scenarios, only FPS and UCS do not show a reduction in farmland
carbon storage. Significant carbon reductions are observed in forest, grassland, and unused
land. The reductions in carbon storage in forest and grassland are the largest among all
land types, accounting for 1.71% and 2.10% of the total carbon storage in the FPS scenario
for 2030 and 2050, respectively.

Under the UCS scenario, carbon storage in artificial surfaces increases further, with a
growth rate reaching 76.10% by 2050. The reduction in carbon storage in forest, grassland,
and unused land continues to grow, with a 2.43% reduction in total carbon storage under
the UCS scenario. Farmland shows the most significant increase in carbon storage in 2030,
with a 10.49% increase, while grassland shows the most significant reduction in 2030, with a
4.22% decrease, which later alleviates. Among the four sustainable development scenarios,
it is observed that carbon storage in forests increases under the NDS and EPS scenarios. In
contrast, the other scenarios exhibit varying degrees of carbon reduction (Figure S4 online).
Carbon storage across the MJRB shows high levels centrally and westward, modest amounts
to the north and south, and lower levels towards the east, with minimum values focused
within the basin (Figure S5 online). The results indicate that implementing ecological
protection measures helps enhance terrestrial carbon sequestration in the MJRB.

3.6. Degree of Harmonization of LERI and Carbon Storage Coupling

The study revealed significant differences in carbon storage and LERI across different
periods in the MJRB. From 1985 to 1995, carbon storage was well distributed, and LERI
levels were low. Between 1995 and 2010, carbon storage significantly decreased while LERI
levels gradually increased. From 2010 to 2020, LERI fluctuated in high-risk areas, and
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implementing ecological protection measures led to increased carbon storage. Overall, the
LERI risk index has remained high since 1995, indicating a need for further prevention
and control measures and planning of the ecological landscape pattern. Carbon storage
and LERI in the MJRB exhibit a high coupling correlation (coupling correlation > 0.9),
indicating a strong relationship with a significant correlation at the ecological function and
feature level. The coordination degree for both exceeds 0.2 across all periods, indicating
that carbon storage and LERI in the MJRB maintain a generally consistent development
trajectory. However, there is considerable room for optimization. Over the entire period,
the coupling coordination degree shows a declining trend, indicating that intensified LULC-
type conversion in the MJRB has reduced the interaction between carbon storage and LERI.
Since 1995, economic development and construction land have extensively encroached on
ecological land, reducing land use intensification and exacerbating ecological landscape
disturbance, resulting in a strong response relationship between carbon storage and LERI.

The analysis covered the spatial and temporal trends of coupling coordination between
carbon storage and LERI in the MJRB from 1985 to 2020 (Figure 13). Over time, areas with
high coupling coordination levels gradually decreased, and the degree of clustering dimin-
ished. The stability of the landscape pattern was disrupted, primarily manifested by the
fragmentation of contiguous land types into various other land types, with ecological land
encroaching upon non-ecological land. This trend was more pronounced in ecologically
fragile areas and the basin region.
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4. Discussion
4.1. Impacts of LULC Changes on CS
4.1.1. Analysis of LULC Changes

The terrain and climate conditions dictate that the development speed of the basin is
far superior to that of mountainous areas, aligning with the land type distribution. The
study area has a significantly higher proportion of forest and grassland than the national
average, and the proportion of unused land is also higher than in most regions. Significant
changes have occurred in certain land types in the MJRB, particularly in artificial surfaces
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and farmland, as supported by the relevant literature [61,62]. These changes are indicative
of rapid economic development and urbanization. Contrasting with the NDS scenario,
the EPS scenario demonstrates significant growth in both farmland and ecological land,
coupled with a decelerated rate of artificial surface expansion. This further indicates that
the expansion of artificial surfaces in the MJRB is at the expense of ecological land and
farmland. Notably, the increase and decrease in environmental lands, such as forest and
grassland, are similar under both EPS and NDS scenarios, proving that ecological land can
develop well without human intervention, consistent with other research findings [63,64].

The study found that from 1985 to 2020, farmland area decreased at an average annual
rate of 0.30%. Rapid economic development and urbanization prompted artificial surfaces
to acquire land resources from ecological land and farmland at an annual rate of 9.77%,
significantly impacting the balance of regional landscape patterns. Based on LULC type
conversion, LULC changes from 1985 to 2020 were divided into three stages: the initial
evolution stage (1985–1995), the development stage (1995–2010), and the mature stage
(2010–2020). In the first stage, the transformed land comprised 6.61% of MJRB’s entire area.
Subsequently, the areas converted in the second and third stages represented 6.75% and
5.58% of the total, respectively.

Future LULC scenario simulations show that due to restrictions on certain human
activities in the EPS and FPS models, the LULC type conversion rate is lowest in 2030, at
4.7% and 5.0%, respectively. Ecological land has significantly expanded, showcasing the
success of environmental protection strategies. In contrast, the conversion rate under the
UCS scenario is 7.5%, considerably higher than the NDS scenario’s 5.9%, mainly because the
UCS model favors economic development and human activities. Further simulations for the
2050 land use scenarios show that the conversion trends are consistent with those in 2030,
validating that the predicted data trends are accurate and conform to development patterns.

4.1.2. CS Response Changes Caused by LULC Dynamics

Changes in LULC types lead to ecosystem alterations, affecting regional carbon emis-
sions and sequestration [65]. When studying the relationship between ecosystems and
“dual carbon” goals, LULC type conversions must be considered. Ecological land (forest,
grassland, and water) is crucial for carbon sequestration and is a significant carbon sink.
In this study, the conversion of farmland, forest, and grassland in the MJRB accounted for
more than 90% of the total conversion area. During economic development and urbaniza-
tion, extensive farmland, unused land, and water were converted into low-carbon-density
artificial surfaces, reducing overall carbon storage in the study area. This result aligns
with related studies [19,23]. Across the three phases of LULC development (1985–1995,
1995–2010, 2010–2020), the carbon storage within ecological land exhibited a trend of
increase, decrease, and subsequent increase. The cumulative changes in carbon storage
were 125.24 Tg, −152.47 Tg, and 103.34 Tg, respectively. Significant alterations in carbon
storage predominantly occurred within MJRB’s basin regions, where transformations of
land types were extensive. The results indicate that regions with intense land type changes
experience substantial carbon storage losses [65,66]. Given this situation, it is necessary
to plan regional LULC utilization with long-term development in mind, controlling the
intensity of LULC changes under development.

Under the four future scenarios, the influence of LULC on carbon storage aligns with
earlier periods. Areas with intense land use changes exhibit significant carbon storage
changes. In the mid-term (2030) land use scenario, carbon storage under the NDS scenario
shows a change of +0.86 Tg, while the EPS scenario exhibits a positive growth of +41.97 Tg,
mainly due to a significant increase in high-carbon-density land types and a slowed ex-
pansion of low-carbon-density artificial surfaces in the MJRB. Forest and grassland have
significant carbon sequestration potential; thus, policies should be formulated to protect
ecological land to achieve “dual carbon” goals. Environmental protection policies should
guide humans to reduce ecological damage, and an ecological compensation mechanism
is a viable option. Such mechanisms can effectively mitigate human activity impacts on



Sustainability 2024, 16, 6552 22 of 27

ecological land, achieving better carbon sequestration, consistent with the findings of
Koh [67]. The FPS scenario shows a carbon storage change of −54.06 Tg, and the UCS
scenario shows −67.36 Tg. These scenarios prioritize farmland development and urban
construction land under rapid economic growth, neglecting ecological land. Consequently,
extensive tracts of environmental and previously idle territories undergo transformation,
markedly expanding areas characterized by low carbon density. The long-term (2050) land
use scenario further validates future land use trends, confirming the credibility of mid-term
simulations. The carbon storage trends in 2050 under the four scenarios are consistent with
those in 2030, with more significant changes over 30 years. The study finds that under the
NDS scenario, developing six LULC types is unrestricted, leading to continuous carbon
storage decline, detrimental to the “dual carbon” goals. Proper planning and policies must
constrain LULC development. The EPS scenario shows peak carbon storage increments,
further proving that increasing ecological land enhances carbon sequestration [68].

4.2. Impact of LERI on Carbon Storage

Investigating the relationship between landscape ecological risk and carbon storage is
crucial for achieving sustainable development and “dual carbon” goals. Previous studies
have primarily focused on the impact of land use changes on carbon storage, which
presents significant limitations and cannot fully capture overall carbon changes. This
study introduces landscape ecological risk by analyzing the relationship between LULC
and carbon storage, offering a more comprehensive evaluation of carbon storage changes.
Using a modified coupling coordination model, we conducted an in-depth analysis of the
relationship between landscape ecological risk and carbon storage.

The kernel density curve in the study area shows an overall backward shift (Figure 14),
indicating an overall increase in the coupling coordination degree between LERI and carbon
storage in the MJRB. This suggests that the absolute difference in coupling coordination
levels between LERI and carbon storage within the MJRB is expanding. It also reflects that
the initial coupling coordination degree between LERI and carbon storage in the MJRB was
at a high level, with better development of coupling advantages. The results demonstrate
that LERI significantly impacts the coordination of carbon storage, and reducing LERI is
crucial for the overall enhancement of carbon storage.
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Different levels of LERI exhibit varying correlations with carbon storage. Regions
with medium, medium-high, and high LERI are negatively correlated with carbon storage,
indicating that natural or human disturbances significantly impact the ecosystem, thereby
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negatively affecting carbon storage [36]. The natural environment also substantially im-
pacts the ecosystem; for instance, harsh conditions in high-altitude areas cause severe
ecological damage, resulting in high-risk LERI and severely hindering carbon sequestration.
Conversely, more extensive areas with low LERI indicate better ecological conditions con-
ducive to carbon sequestration. In regions with frequent human activities, the ecosystem is
damaged, LERI levels increase, and carbon sequestration is adversely affected. To achieve
“dual carbon” goals, the frequency and intensity of human activities in ecological areas
should be minimized.

4.3. Limitations and Future Work

This study developed a model to analyze LULC changes, landscape patterns, and car-
bon storage variations, assessing the impact of land use and landscape patterns on carbon
storage across different spatial and temporal scales. However, several limitations exist.

Firstly, utilizing CLCD data along with the CA–Markov model for forecasting failed
to consider the impact of policy and socio-economic elements on LULC distribution; Mean-
while, although the predicted LULC considers as many influencing factors as possible, the
predicted results are subject to the impression of the model algorithm and various factors
in the field, and there is a certain degree of randomness in the results, introducing some
uncertainty into the simulation results. Predictive data must integrate the immediate effects
of policy directions and socio-economic influences to yield more precise outcomes. Future
research should integrate various data sources, particularly high-resolution imagery data.

Secondly, the study area’s complex terrain, ranging from alpine regions to subtropical
basins, results in significant differences in carbon density values, necessitating adjustments.
The model primarily focused on land type changes when calculating the region’s overall
carbon storage, neglecting the differences in the carbon sequestration capacities of various
vegetation types. This oversight needs to be revised when calculating carbon storage’s
spatial and temporal distribution. Additionally, when examining the relationship between
landscape patterns and carbon sequestration, the study did not consider the impact of
landscape indices at different risk levels on carbon sequestration, providing only a macro-
level analysis. This could lead to inaccuracies in predicting carbon storage trends. Future
research should explore the interactions between different land types, landscape patterns,
and carbon storage at a micro level.

In addition, we offer several recommendations: first, regional departments should
formulate detailed and feasible ecological land protection policies based on land spatial
planning to ensure the stability of environmental land; second, they should effectively
restore damaged ecological land and other land types; and finally, they should establish a re-
gional environmental network to ensure ecological sustainability and corridor connectivity.

5. Conclusions

This study developed an evaluation framework for carbon storage changes in the
MJRB from 1985 to 2020, integrating LULC, carbon storage, and LERI. This comprehensive
and objective approach provides a robust method for future ecological risk assessments
and carbon sequestration studies. The main conclusions are as follows:

The MJRB experienced significant LULC changes across three stages: initial (1985–1995),
developmental (1995–2010), and maturity (2010–2020). Extensive agricultural land was
converted to artificial surfaces, resulting in a cumulative carbon storage loss of 51.36 Tg,
primarily due to the conversion of farmland and grassland, whereas forests remained the
main carbon sink. Spatially, carbon storage in MJRB exhibited a “high in the west, low
in the east, moderate in the north and south” pattern. High carbon storage areas were
concentrated in the forested edges of the Sichuan Basin, while low values were found
at the basin bottom. The most significant loss of carbon storage occurred in the rapidly
developing Chengdu urban area, where urban expansion significantly encroached upon
surrounding ecological lands.
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Future land use predictions for 2030 and 2050 indicate that under the UCS, the area of
artificial surfaces increased the fastest, from 1.369% in 2020 to 1.747% in 2030 and 2.407%
in 2050. In the FPS, farmland was effectively preserved, ecological land decreased, and
the rate of artificial surface expansion slowed. In the EPS and NDS, ecological land was
improved significantly. Total carbon storage is projected to increase substantially only
under the EPS, while FPS and UCS predict significant decreases, and the NDS moderates
the declining trend.

From 1985 to 2020, the LERI remained low overall, with medium to high-risk areas
mainly distributed around the basin periphery. The Chengdu urban area showed the
most significant reduction in LERI, primarily due to rapid urbanization concentrating
artificial surfaces. Coupling coordination analysis revealed a negative correlation between
carbon storage and medium-high LERI and a positive correlation with low LERI. Main-
taining a low LERI and reducing human disturbance on ecological land benefit ecological
carbon sequestration.
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