Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis Methods
3. Results and Discussion
3.1. Hydrochemical Characteristics of Yufu River Basin
3.2. Stable Isotope Characterization
3.3. Hydrochemical Origin and Evolution Process
3.3.1. Hydrogeochemical Type
3.3.2. Water–Rock Interaction
- (1)
- The Gibbs model
- (2)
- The mineral saturation index and ion ratio
3.4. Impact of Human Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Gao, X.; Zhao, C.; Tang, C.; Shen, H.; Wang, Z.; Wang, Y. Review: Characterization, evolution, and environmental issues of karst water systems in Northern China. Hydrogeol. J. 2018, 26, 1371–1385. [Google Scholar] [CrossRef]
- Shang, H.; Qi, X.; Zhang, M.; Li, H.; Li, G.; Yang, L. Characteristics, Distribution, and Source Analysis of the Main Persistent Toxic Substances in Karst Groundwater at Jinan in North China. J. Chem. 2020, 2020, 4217294. [Google Scholar] [CrossRef]
- Zhu, H.H.; Xing, L.T.; Meng, Q.H.; Xing, X.R.; Peng, Y.M.; Li, C.S.; Li, H.; Yang, L.Z. Water Recharge of Jinan Karst Springs, Shandong, China. Water 2020, 12, 694. [Google Scholar] [CrossRef]
- Cao, H.; Dong, W.H.; Chen, H.L.; Wang, R.Q. Groundwater vulnerability assessment of typical covered karst areas in northern China based on an improved COPK method. J. Hydrol. 2023, 624, 129904. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, Y.; Qian, J.; Wang, X.; Chang, X.; Ma, L.; Li, F.; Wu, J. Spring protection and sustainable management of groundwater resources in a spring field. J. Hydrol. 2020, 582, 124498. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K. In Analysis of Spring Flow Change in the Jinan City under Influences of Recent Human Activities. In Proceedings of the 8th International Water Resources Management Conference of ICWRS, Beijing, China, 13–15 June 2018; pp. 263–268. [Google Scholar]
- Zhang, J.; Jin, M.; Cao, M.; Huang, X.; Zhang, Z.; Zhang, L. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model. Appl. Geochem. 2021, 134, 105109. [Google Scholar] [CrossRef]
- Meng, Q.H.; Xing, L.T.; Liu, L.; Xing, X.R.; Zhao, Z.H.; Zhang, F.J.; Li, C.L. Time-lag characteristics of the response of karst springs to precipitation in the northern China. Environ. Earth Sci. 2021, 80, 348. [Google Scholar] [CrossRef]
- Chen, X.; Guan, Q.; Li, F.; Liu, D.; Han, C.; Zhang, W. Study on the ecological control line in the major leakage area of Baotu spring in Shandong province, eastern China. Ecol. Indic. 2021, 133, 108467. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W. Managing aquifer recharge with multi-source water to realize sustainable management of groundwater resources in Jinan, China. Environ. Sci. Pollut. Res. 2021, 28, 10872–10888. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhan, H.; Wu, Y.; Li, F.; Wang, J. Fractured-karst spring-flow protections: A case study in Jinan, China. Hydrogeol. J. 2006, 14, 1192–1205. [Google Scholar] [CrossRef]
- Kang, F.; Jin, M.; Qin, P. Sustainable yield of a karst aquifer system: A case study of Jinan springs in northern China. Hydrogeol. J. 2011, 19, 851–863. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Qu, S.; Huang, Q.; Liu, S.; Xu, Q.; Ni, L. A New Perspective to Explore the Hydraulic Connectivity of Karst Aquifer System in Jinan Spring Catchment, China. Water 2018, 10, 1368. [Google Scholar] [CrossRef]
- Deng, X.; Xing, L.T.; Zhang, F.J.; Xing, X.R.; Zhang, Y.F.; Yu, M.; Liu, S.Z.; Pan, W.Y. Mapping regional and nested flow systems in the karst aquifers of Jinan spring using hydrochemical and isotope data. Water Supply 2023, 23, 3323–3344. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, P.; Wang, G.; Mao, H.; Feng, X.; Huang, H. Groundwater chemistry and isotope for interpreting the hydrogeological conditions and hydrochemical evolution of multilayer aquifer system of Donghai island, China. Appl. Geochem. 2023, 159, 105833. [Google Scholar] [CrossRef]
- Ke, Y.L.; Song, X.F.; Yang, L.H.; Yang, S.T. River-Spring Connectivity and Hydrogeochemical Processes in a Karst Water System of Northern China: A Case Study of Jinan Spring Catchment. Water 2024, 16, 829. [Google Scholar] [CrossRef]
- de Carvalho Filho, C.A.; Bomtempo, V.L.; Santos Cota, S.D.; Pelogia Minardi, P.S.; Passos, R.G. Use of major ions to evaluate groundwater chemistry and identify hydrochemical processes in a shallow coastal aquifer in southeast Brazil. Environ. Earth Sci. 2022, 81, 423. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Li, H.; Li, K.; Liu, J.; Liu, G. Detection and attribution of trends in flood frequency under climate change in the Qilian Mountains, Northwest China. J. Hydrol.-Reg. Stud. 2022, 42, 101153. [Google Scholar] [CrossRef]
- Xie, C.; Liu, H.; Li, X.; Zhao, H.; Dong, X.; Ma, K.; Wang, N.; Zhao, L. Spatial characteristics of hydrochemistry and stable isotopes in river and groundwater, and runoff components in the Shule River Basin, Northeastern of Tibet Plateau. J. Environ. Manag. 2024, 349, 119512. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Shi, Z.; Liao, F.; Xue, Y. Spatiotemporal Variation of Groundwater Recharge in the Lower Reaches of the Poyang Lake Basin, China: Insights From Stable Hydrogen and Oxygen Isotopes. J. Geophys. Res.-Atmos. 2021, 126, e2020JD033760. [Google Scholar] [CrossRef]
- Wu, H.; Wu, J.; Li, J.; Fu, C. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs. Catena 2020, 193, 104639. [Google Scholar] [CrossRef]
- Fang, L.; Gao, R.; Wang, X.; Liu, T. Isotopes-based characterization of precipitation compositions and atmospheric water vapor sources over typical Eurasian steppes in south mongolian Plateau. J. Hydrol. 2022, 615, 128724. [Google Scholar] [CrossRef]
- Li, Z.; Gui, J.; Feng, Q.; Zhang, B.; Cui, Q. Contribution of the cryosphere to runoff in “Chinese water tower” based on environmental isotopes. Geosci. Front. 2023, 14, 101613. [Google Scholar] [CrossRef]
- Wang, J.L.; Jin, M.G.; Lu, G.P.; Zhang, D.; Kang, F.X.; Jia, B.J. Investigation of discharge-area groundwaters for recharge source characterization on different scales: The case of Jinan in northern China. Hydrogeol. J. 2016, 24, 1723–1737. [Google Scholar] [CrossRef]
- Wu, X.C.; Li, C.S.; Sun, B.; Geng, F.Q.; Gao, S.; Lv, M.H.; Ma, X.Y.; Li, H.; Xing, L.T. Groundwater hydrogeochemical formation and evolution in a karst aquifer system affected by anthropogenic impacts. Environ. Geochem. Health 2020, 42, 2609–2626. [Google Scholar] [CrossRef]
- Sivelle, V.; Labat, D. Short-term variations in tracer-test responses in a highly karstified watershed. Hydrogeol. J. 2019, 27, 2061–2075. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, M.; Jin, M.; Huang, X.; Zhang, Z.; Kang, F. Identifying the source and transformation of riverine nitrates in a karst watershed, North China: Comprehensive use of major ions, multiple isotopes and a Bayesian model. J. Contam. Hydrol. 2022, 246, 103957. [Google Scholar] [CrossRef]
- Sun, H.L.; Han, C.H.; Liu, Z.H.; Wei, Y.; Ma, S.; Bao, Q.; Zhang, Y.; Yan, H. Nutrient limitations on primary productivity and phosphorus removal by biological carbon pumps in dammed karst rivers: Implications for eutrophication control. J. Hydrol. 2022, 607, 127480. [Google Scholar] [CrossRef]
- Macpherson, G.L. CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle. Chem. Geol. 2009, 264, 328–336. [Google Scholar] [CrossRef]
- Yan, H.; Liu, Z.; Sun, H. Large degrees of carbon isotope disequilibrium during precipitation-associated degassing of CO2 in a mountain stream. Geochim. Cosmochim. Acta 2020, 273, 244–256. [Google Scholar] [CrossRef]
- Jin, B.C.; Lin, Z.H.; Liu, W.Y.; Xiao, Y.; Meng, Y.; Yao, X.L.; Zhang, T.T. Spatiotemporal variations of dissolved organic matter in a typical multi-source watershed in northern China: A fluorescent evidence. Environ. Sci. Pollut. Res. 2022, 29, 20517–20529. [Google Scholar] [CrossRef]
- Liu, S.; He, Z.; Tang, Z.; Liu, L.; Hou, J.; Li, T.; Zhang, Y.; Shi, Q.; Giesy, J.P.; Wu, F. Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR-MS analysis. Sci. Total Environ. 2020, 703, 134764. [Google Scholar] [CrossRef]
- Zhou, Y.; Davidson, T.A.; Yao, X.; Zhang, Y.; Jeppesen, E.; de Souza, J.G.; Wu, H.; Shi, K.; Qin, B. How autochthonous dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis and experiments. Earth-Sci. Rev. 2018, 185, 928–937. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Ji, H.B. Isotopic indicators of source and fate of particulate organic carbon in a karstic watershed on the Yunnan-Guizhou Plateau. Appl. Geochem. 2013, 36, 153–167. [Google Scholar] [CrossRef]
- Lv, Y.C.; Ren, Y.X.; Li, X.Y. Influence of reservoir management on the source and transport of particulate organic carbon in surface waters of the lower Yellow River. J. Soils Sediments 2022, 22, 2548–2556. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.X.; Sun, H.Q.; Han, J.T.; Higgitt, D.L. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China. Sci. Total Environ. 2009, 407, 815–825. [Google Scholar] [CrossRef]
- Gao, S.; Li, C.; Jia, C.; Zhang, H.; Lv, M.; Sun, B.; Chen, H.; Gang, S.; Meng, F. Hydrochemical and stable isotope (δ2H and δ18O) characteristics and hydrogeochemical processes in the Baotu Spring Basin, Eastern China. Arab. J. Geosci. 2021, 14, 2084. [Google Scholar] [CrossRef]
- Craig, H. Standard for Reporting Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science 1961, 133, 1833–1834. [Google Scholar] [CrossRef]
- Guo, Y.; Qin, D.J.; Li, L.; Sun, J.; Li, F.L.; Huang, J. A Complicated Karst Spring System: Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China. Water 2019, 11, 947. [Google Scholar] [CrossRef]
- Brooks, J.R.; Gibson, J.J.; Birks, S.J.; Weber, M.H.; Rodecap, K.D.; Stoddard, J.L. Stable isotope estimates of evaporation: Inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol. Oceanogr. 2014, 59, 2150–2165. [Google Scholar] [CrossRef]
- Qu, S.; Liao, F.; Wang, G.C.; Wang, X.B.; Shi, Z.M.; Liang, X.Y.; Duan, L.M.; Liu, T.X. Hydrochemical evolution of groundwater in overburden aquifers under the influence of mining activity: Combining hydrochemistry and groundwater dynamics analysis. Environ. Earth Sci. 2023, 82, 135. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, Q.; Zhang, Y.; Zhu, Y.; Yin, S.; Qin, L.; Li, X. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [Google Scholar] [CrossRef]
- Singh, G.; Rishi, M.S.; Herojeet, R.; Kaur, L.; Sharma, K. Evaluation of groundwater quality and human health risks from fluoride and nitrate in semi-arid region of northern India. Environ. Geochem. Health 2020, 42, 1833–1862. [Google Scholar] [CrossRef]
- Marghade, D.; Malpe, D.B.; Rao, N.S.; Sunitha, B. Geochemical assessment of fluoride enriched groundwater and health implications from a part of Yavtmal District, India. Hum. Ecol. Risk Assess. 2020, 26, 673–694. [Google Scholar] [CrossRef]
- Sun, J.; Yan, B.Z.; Li, Y.; Sun, H.X.; Wang, Y.H.; Chen, J.Q. Characterization and Cause Analysis of Shallow Groundwater Hydrochemistry in the Plains of Henan Province, China. Sustainability 2021, 13, 12586. [Google Scholar] [CrossRef]
- Gao, S.; Li, C.S.; Liu, Y.Y.; Sun, B.; Zhao, Z.Q.; Lv, M.H.; Gang, S.T. Hydrogeochemical Characteristics and Evolution Processes of Karst Groundwater Affected by Multiple Influencing Factors in a Karst Spring Basin, Eastern China. Water 2023, 15, 3899. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Han, C.; Li, S.; Wang, Z.; Liu, D.; Guan, Q.; Zhang, W. Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes. Sustainability 2024, 16, 6580. https://doi.org/10.3390/su16156580
Chen X, Han C, Li S, Wang Z, Liu D, Guan Q, Zhang W. Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes. Sustainability. 2024; 16(15):6580. https://doi.org/10.3390/su16156580
Chicago/Turabian StyleChen, Xuequn, Cuihong Han, Shuxin Li, Zezheng Wang, Dan Liu, Qinghua Guan, and Wenjing Zhang. 2024. "Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes" Sustainability 16, no. 15: 6580. https://doi.org/10.3390/su16156580
APA StyleChen, X., Han, C., Li, S., Wang, Z., Liu, D., Guan, Q., & Zhang, W. (2024). Exploring the Hydrogeochemical Formation and Evolution of the Karst Aquifer System in the Yufu River Based on Hydrochemistry and Isotopes. Sustainability, 16(15), 6580. https://doi.org/10.3390/su16156580