Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Setup and Validation
2.3. MODFLOW Setup
2.4. SWAT-MODFLOW Coupling and Validation
2.5. SWAT-MODFLOW-RT3D Setup
2.5.1. Model Modification
2.5.2. Model Set-Up
2.6. Sensitivity Analysis of the Model
3. Results and Discussion
3.1. Distribution of DOC in Groundwater by Leaching
3.2. Distribution of DOC in Groundwater under River Recharge
3.3. Effect of Different Recharge Sources on DOC Concentrations in Groundwater
3.4. Assessment of Nitrate and DIC Concentration Levels in the Study Area
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, D. Water Resources Allocation and Regulation. In Water Resources Management of the People’s Republic of China: Framework, Reform and Implementation; Global Issues in Water Policy; Springer International Publishing: Cham, Switzerland, 2021; pp. 113–127. ISBN 978-3-030-61931-2. [Google Scholar]
- Shumilova, O.; Tockner, K.; Thieme, M.; Koska, A.; Zarfl, C. Global Water Transfer Megaprojects: A Potential Solution for the Water-Food-Energy Nexus? Front. Environ. Sci. 2018, 6, 150. [Google Scholar] [CrossRef]
- Grigg, N.S. Large-Scale Water Development in the United States: TVA and the California State Water Project. Int. J. Water Resour. Dev. 2023, 39, 70–88. [Google Scholar] [CrossRef]
- Wilson, M.C.; Li, X.-Y.; Ma, Y.-J.; Smith, A.T.; Wu, J. A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective. Sustainability 2017, 9, 1489. [Google Scholar] [CrossRef]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of Managed Aquifer Recharge Sites in Europe: Historical Development, Current Situation and Perspectives. Hydrogeol. J. 2017, 25, 1909–1922. [Google Scholar] [CrossRef]
- Demir, C.; Fanta, D.; Akıntuğ, B.; Ünlü, K. Modeling Coastal Güzelyurt (Morphou) Aquifer in Northern Cyprus for Mitigation of Groundwater Depletion through Managed Aquifer Recharge. Sustain. Water Resour. Manag. 2022, 8, 96. [Google Scholar] [CrossRef]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty Years of Global Progress in Managed Aquifer Recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Zhang, Z. A Thesis Submitted to the University of Jinan in Partial Fulfillment of the Requirements for the Degree of Master of Engineering. Master’s Thesis, University of Jinan, Jinan, China, 2019. [Google Scholar]
- Ding, G.; Li, C.; Wei, S.; Wang, S.; Li, Y.; Lu, Q.; Sun, B.; Liu, H. Study on the influence of external recharge of Yufu river on karst groundwater. Carsologica Sin. 2023, 42, 907–916. [Google Scholar] [CrossRef]
- Yanxin, W.; Yao, D.; Yamin, D.; Yiqun, G.; Peifang, W.; Teng, M.; Jianbo, S.; Xianjun, X. Lacustrine Groundwater Discharge and Lake Water Quality Evolution. Bull. Geol. Sci. Technol. 2022, 41, 1–10. [Google Scholar] [CrossRef]
- McDonough, L.K.; Santos, I.R.; Andersen, M.S.; O’Carroll, D.M.; Rutlidge, H.; Meredith, K.; Oudone, P.; Bridgeman, J.; Gooddy, D.C.; Sorensen, J.P.R.; et al. Changes in Global Groundwater Organic Carbon Driven by Climate Change and Urbanization. Nat. Commun. 2020, 11, 1279. [Google Scholar] [CrossRef]
- Brailsford, F.L.; Glanville, H.C.; Golyshin, P.N.; Johnes, P.J.; Yates, C.A.; Jones, D.L. Microbial Uptake Kinetics of Dissolved Organic Carbon (DOC) Compound Groups from River Water and Sediments. Sci. Rep. 2019, 9, 11229. [Google Scholar] [CrossRef]
- Regan, S.; Hynds, P.; Flynn, R. An Overview of Dissolved Organic Carbon in Groundwater and Implications for Drinking Water Safety. Hydrogeol. J. 2017, 25, 959–967. [Google Scholar] [CrossRef]
- Bailey, R.T.; Wible, T.C.; Arabi, M.; Records, R.M.; Ditty, J. Assessing Regional-Scale Spatio-Temporal Patterns of Groundwater–Surface Water Interactions Using a Coupled SWAT-MODFLOW Model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Bao, C.; Li, L.; Shi, Y.; Duffy, C. Understanding Watershed Hydrogeochemistry: 1. Development of RT-Flux-PIHM. Water Resour. Res. 2017, 53, 2328–2345. [Google Scholar] [CrossRef]
- Arora, B.; Spycher, N.F.; Steefel, C.I.; Molins, S.; Bill, M.; Conrad, M.E.; Dong, W.; Faybishenko, B.; Tokunaga, T.K.; Wan, J.; et al. Influence of Hydrological, Biogeochemical and Temperature Transients on Subsurface Carbon Fluxes in a Flood Plain Environment. Biogeochemistry 2016, 127, 367–396. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, K.; Yi, S.; Zheng, C. Response of Groundwater Quality to River-Aquifer Interactions during Managed Aquifer Recharge: A Reactive Transport Modeling Analysis. J. Hydrol. 2023, 616, 128847. [Google Scholar] [CrossRef]
- Park, S.; Nielsen, A.; Bailey, R.T.; Trolle, D.; Bieger, K. A QGIS-Based Graphical User Interface for Application and Evaluation of SWAT-MODFLOW Models. Environ. Model. Softw. 2019, 111, 493–497. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T.; Records, R.M.; Wible, T.C.; Arabi, M. Comprehensive Simulation of Nitrate Transport in Coupled Surface-Subsurface Hydrologic Systems Using the Linked SWAT-MODFLOW-RT3D Model. Environ. Model. Softw. 2019, 122, 104242. [Google Scholar] [CrossRef]
- Jafari, T.; Kiem, A.S.; Javadi, S.; Nakamura, T.; Nishida, K. Fully Integrated Numerical Simulation of Surface Water-Groundwater Interactions Using SWAT-MODFLOW with an Improved Calibration Tool. J. Hydrol. Reg. Stud. 2021, 35, 100822. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T. Evaluating Nitrate and Phosphorus Remediation in Intensively Irrigated Stream-Aquifer Systems Using a Coupled Flow and Reactive Transport Model. J. Hydrol. 2021, 598, 126304. [Google Scholar] [CrossRef]
- Fu, D.; Jin, X.; Jin, Y.X.; Mao, X.F.; Zhai, J.Y. Modelling of the Surface-Ground Water Exchange Yield in Zelinggou Basin, Middle Reaches of the Bayin River Based on SWAT-MODFLOW Coupled Model. Sci. Geogr. Sin. 2022, 42, 1124. [Google Scholar] [CrossRef]
- Chen, X.; Guan, Q.; Li, F.; Liu, D.; Han, C.; Zhang, W. Study on the Ecological Control Line in the Major Leakage Area of Baotu Spring in Shandong Province, Eastern China. Ecol. Indic. 2021, 133, 108467. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Study on Model of Managed Aquifer Recharge through Yufu Channel Infiltration Experiment in Jinan. Master’s Thesis, University of Jinan, Jinan, China, 2017. [Google Scholar]
- Zheng, Q. Study on Migration and Transformation of Atrazine Inporous Media during the Groundwater Recharge by theYellow River Water in the Yufuhe River. Master’s Thesis, University of Jinan, Jinan, China, 2020. [Google Scholar]
- Zhao, J.; Zhang, N.; Liu, Z.; Zhang, Q.; Shang, C. SWAT Model Applications: From Hydrological Processes to Ecosystem Services. Sci. Total Environ. 2024, 931, 172605. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Bailey, R.T.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Park, S.; Jensen, J.S.; Jensen, J.B.; Trolle, D. Comparison of Abstraction Scenarios Simulated by SWAT and SWAT-MODFLOW. Hydrol. Sci. J. 2019, 64, 434–454. [Google Scholar] [CrossRef]
- Melaku, N.D.; Wang, J. A Modified SWAT Module for Estimating Groundwater Table at Lethbridge and Barons, Alberta, Canada. J. Hydrol. 2019, 575, 420–431. [Google Scholar] [CrossRef]
- Choi, Y.; Jung, Y.; Kim, J.; Kim, K.-T. Soil Related Parameters Assessment Comparing Runoff Analysis Using Harmonized World Soil Database (HWSD) and Detailed Soil Map. J. Korean Soc. Agric. Eng. 2016, 58, 57–66. [Google Scholar] [CrossRef]
- USDA. National Engineering Handbook Hydrology Chapters. 1997. Available online: https://hydrocad.net/neh/630contents.htm (accessed on 31 July 2024).
- Wang, H.; Stephenson, S.R.; Qu, S. Modeling Spatially Non-Stationary Land Use/Cover Change in the Lower Connecticut River Basin by Combining Geographically Weighted Logistic Regression and the CA-Markov Model. Int. J. Geogr. Inf. Sci. 2019, 33, 1313–1334. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Feng, B.; Liang, X.; Zeng, Z. Optimizing Land Usage in Southern Mountain Areas of Jinan Based on the SWAT Model. J. Irrig. Drain. 2018, 37, 121–128. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, W.; Huang, B. Seasonal Variation of Evapotranspiration, Priestley-Taylor Coefficient and Crop Coefficient in Diverse Landscapes. Geogr. Sustain. 2021, 2, 224–233. [Google Scholar] [CrossRef]
- Samadi, S.Z. Assessing the Sensitivity of SWAT Physical Parameters to Potential Evapotranspiration Estimation Methods over a Coastal Plain Watershed in the Southeastern United States. Hydrol. Res. 2016, 48, 395–415. [Google Scholar] [CrossRef]
- Fioreze, M.; Mancuso, M.A. MODFLOW and MODPATH for Hydrodynamic Simulation of Porous Media in Horizontal Subsurface Flow Constructed Wetlands: A Tool for Design Criteria. Ecol. Eng. 2019, 130, 45–52. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of Freshwater Availability in the West African Sub-Continent Using the SWAT Hydrologic Model. J. Hydrol. 2008, 352, 30–49. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Panday, S.; Ibaraki, M. MODFLOW-NWT, a Newton Formulation for MODFLOW-2005; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Sathe, S.S.; Mahanta, C. Groundwater Flow and Arsenic Contamination Transport Modeling for a Multi Aquifer Terrain: Assessment and Mitigation Strategies. J. Environ. Manag. 2019, 231, 166–181. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A Review of Soil and Water Assessment Tool (SWAT) Studies of Mediterranean Catchments: Applications, Feasibility, and Future Directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Gao, F.; Feng, G.; Han, M.; Dash, P.; Jenkins, J.; Liu, C. Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water 2019, 11, 528. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T. Assessment of System Responses in Intensively Irrigated Stream–Aquifer Systems Using SWAT-MODFLOW. Water 2019, 11, 1576. [Google Scholar] [CrossRef]
- Liu, W.; Park, S.; Bailey, R.T.; Molina-Navarro, E.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Jeppesen, E.; Jensen, J.S.; Jensen, J.B.; et al. Quantifying the Streamflow Response to Groundwater Abstractions for Irrigation or Drinking Water at Catchment Scale Using SWAT and SWAT–MODFLOW. Environ. Sci. Eur. 2020, 32, 113. [Google Scholar] [CrossRef]
- Clement, T.P.; Sun, Y.; Hooker, B.S.; Petersen, J.N. Modeling Multispecies Reactive Transport in Ground Water. Groundw. Monit. Remediat. 1998, 18, 79–92. [Google Scholar] [CrossRef]
- Wang, Z. Simulation Study on the Influence of Multiple Waterresources Regulation on Organic Carbon in Groundwater of YufuRiver Basin. Master’s Thesis, Jilin University, Jilin, China, 2023. [Google Scholar]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Bokil, V.A.; González-Pinzón, R. Coupled Transport and Reaction Kinetics Control the Nitrate Source-Sink Function of Hyporheic Zones. Water Resour. Res. 2012, 48, W11508. [Google Scholar] [CrossRef]
- Shuai, P.; Cardenas, M.B.; Knappett, P.S.K.; Bennett, P.C.; Neilson, B.T. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resour. Res. 2017, 53, 7951–7967. [Google Scholar] [CrossRef]
- Gu, C.; Anderson, W.; Maggi, F. Riparian Biogeochemical Hot Moments Induced by Stream Fluctuations. Water Resour. Res. 2012, 48, W09546. [Google Scholar] [CrossRef]
- Li, C.; Jia, T.; Gang, S.; Chen, H.; Liu, C. Research on the division of protection areas of key recharge areas of groundwater source area—Take the Yufu river basin for example. Ground Water 2021, 43, 33–36. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, Y.; Chen, X.; Zeng, G.; Xin, G. Recharge Characteristics and Protection of Karst Groundwater in Major Leakage Area of Yufu River in Jinan. Carsologica Sin. 2023, 42, 233–244. [Google Scholar] [CrossRef]
- Ceriotti, G.; Guadagnini, L.; Porta, G.; Guadagnini, A. Local and Global Sensitivity Analysis of Cr (VI) Geogenic Leakage Under Uncertain Environmental Conditions. Water Resour. Res. 2018, 54, 5785–5802. [Google Scholar] [CrossRef]
- Sethi, R.; Di Molfetta, A. The Groundwater Flow Equation. In Groundwater Engineering: A Technical Approach to Hydrogeology, Contaminant Transport and Groundwater Remediation; Springer Tracts in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2019; pp. 27–32. ISBN 978-3-030-20516-4. [Google Scholar]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Govindaraju, R.S. Role of Slope on Infiltration: A Review. J. Hydrol. 2018, 557, 878–886. [Google Scholar] [CrossRef]
- Delgado, M.I.; Carol, E.; Casco, M.A. Land-Use Changes in the Periurban Interface: Hydrologic Consequences on a Flatland-Watershed Scale. Sci. Total Environ. 2020, 722, 137836. [Google Scholar] [CrossRef]
- Liu, H.-H.; Birkholzer, J. On the Relationship between Water Flux and Hydraulic Gradient for Unsaturated and Saturated Clay. J. Hydrol. 2012, 475, 242–247. [Google Scholar] [CrossRef]
- Welch, C.; Harrington, G.A.; Cook, P.G. Influence of Groundwater Hydraulic Gradient on Bank Storage Metrics. Groundwater 2015, 53, 782–793. [Google Scholar] [CrossRef]
- Li, X.; Ye, X.; Yuan, C.; Xu, C. Can Water Release from Local Reservoirs Cope with the Droughts of Downstream Lake in a Large River-Lake System? J. Hydrol. 2023, 625, 130172. [Google Scholar] [CrossRef]
- Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, C.; Bruand, A. Water Exchange, Mixing and Transient Storage between a Saturated Karstic Conduit and the Surrounding Aquifer: Groundwater Flow Modeling and Inputs from Stable Water Isotopes. J. Hydrol. 2017, 544, 278–289. [Google Scholar] [CrossRef]
- Francis, B.A.; Francis, L.K.; Cardenas, M.B. Water Table Dynamics and Groundwater–Surface Water Interaction during Filling and Draining of a Large Fluvial Island Due to Dam-Induced River Stage Fluctuations. Water Resour. Res. 2010, 46, W07513. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, M.; Zhu, L.; Liu, W.; Han, J.; Yang, Y. Influence of Large Reservoir Operation on Water-Levels and Flows in Reaches below Dam: Case Study of the Three Gorges Reservoir. Sci. Rep. 2017, 7, 15640. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Shi, H.; Chen, C.; Cheng, Y.; Liu, J. The Study on the Time Lag of Water Level in the Three Gorges Reservoir under the Regulation Processes. Hydrol. Res. 2021, 52, 734–748. [Google Scholar] [CrossRef]
- Dudley-Southern, M.; Binley, A. Temporal Responses of Groundwater-Surface Water Exchange to Successive Storm Events. Water Resour. Res. 2015, 51, 1112–1126. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, Y.; Tong, Y.; Guo, K.; Qi, W.; Hinkelmann, R. Experimental Study for Effects of Terrain Features and Rainfall Intensity on Infiltration Rate of Modelled Permeable Pavement. J. Environ. Manag. 2019, 243, 177–186. [Google Scholar] [CrossRef]
- Zheng, Q.; Qu, S.; Li, J.; Wang, W.; Zhang, Z. The Overlying Influence of Underground Structure and Impermeable Surface of the Ground on Groundwater Recharge in Residential Area Construction. In Proceedings of the 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017), Zhuhai, China, 11–12 March 2017; Jiangsu Univ Sci & Technol: Zhenjiang, China; Shanghai Univ Elect Power: Shanghai, China, 2017; Volume 129, pp. 248–252. [Google Scholar]
- Li, W.; Sun, Q.; Wang, W.; Qu, S.; Zhang, Z.; Xu, Q. Effective Water Quantity of Multi-Source Water Recharging Aquifers in Yufuhe River Based on Groundwater and Surface Water Semi-Coupled Modelling. Water Supply 2019, 19, 2280–2287. [Google Scholar] [CrossRef]
- Guo, A.; Duan, G.; Zhao, Z.; Tang, Z.; Wang, Y.; Wang, B. Effects of CaCO3 Application on Soil Microbial Nitrogen Cycle in an Acid Soil. Environ. Sci. 2017, 38, 3483–3488. [Google Scholar] [CrossRef]
- Rumeau, M.; Sgouridis, F.; MacKenzie, R.; Carrillo, Y.; Reay, M.K.; Hartley, I.P.; Ullah, S. The Role of Rhizosphere in Enhancing N Availability in a Mature Temperate Forest under Elevated CO2. Soil Biol. Biochem. 2024, 197, 109537. [Google Scholar] [CrossRef]
- Cooper, K.J.; Whitaker, F.F.; Anesio, A.M.; Naish, M.; Reynolds, D.M.; Evans, E.L. Dissolved Organic Carbon Transformations and Microbial Community Response to Variations in Recharge Waters in a Shallow Carbonate Aquifer. Biogeochemistry 2016, 129, 215–234. [Google Scholar] [CrossRef]
Parameter | Parameter Description | Parameter Values |
---|---|---|
CN2 | SCS Runoff Curve Number | 56.47 |
SOL_AWC | Soil water-holding capacity | 0.48 |
ESCO | Soil evaporation compensation factor | 0.97 |
SPCON | Linear exponent affecting the sediment carrying capacity | 0.03657 |
USLE_P | Support practice factor | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, X.; Chen, X.; Xia, K.; Zhang, W.; Wang, Z.; Liu, D.; Li, S.; Zhang, W. Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module. Sustainability 2024, 16, 6692. https://doi.org/10.3390/su16156692
Hong X, Chen X, Xia K, Zhang W, Wang Z, Liu D, Li S, Zhang W. Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module. Sustainability. 2024; 16(15):6692. https://doi.org/10.3390/su16156692
Chicago/Turabian StyleHong, Xiaotao, Xuequn Chen, Kezheng Xia, Wenqing Zhang, Zezheng Wang, Dan Liu, Shuxin Li, and Wenjing Zhang. 2024. "Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module" Sustainability 16, no. 15: 6692. https://doi.org/10.3390/su16156692
APA StyleHong, X., Chen, X., Xia, K., Zhang, W., Wang, Z., Liu, D., Li, S., & Zhang, W. (2024). Simulation of Groundwater Dissolved Organic Carbon in Yufu River Basin during Artificial Recharge: Improving through the SWAT-MODFLOW-RT3D Reaction Module. Sustainability, 16(15), 6692. https://doi.org/10.3390/su16156692