Assessment of Common Reed (Phragmites australis (Cav.) Trin. ex Steud.) Biomass Suitability for Solid Biofuels Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Material and Preparation of Analytical Sample
2.2. Determination of the Principal Fuel Parameters—Proximate Analysis and Calorimetry
2.3. Ultimate Analysis and Determination of Major Elements in Ash
2.4. Determination of Minor Elements in Ash
2.5. Ash Melting Behaviour Analysis
- Shrinkage starting temperature (the area of the test piece falls below 95% of the original test piece area at 550 °C due to the shrinking of the pellet);
- Deformation temperature (the first signs of melting occur);
- Hemisphere temperature (the test pellet forms approximately a hemisphere, i.e., when the height is half of the base diameter);
- Fluid temperature (the ash is spread out over the supporting tile in a layer, the height of which is half the height of the test piece at the hemisphere temperature).
3. Results and Discussion
3.1. Analysis of Principal Fuel Characteristics and Ultimate Analysis
3.2. Assessment of Ash Melting Behaviour and Major Elements
3.3. Evaluating Common Reed Biomass in Compliance with Standard Limit Values
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Borin, M.; Milani, M.; Toscano, A.; Molari, G.; Politeo, M.; Molari, G. Production and energy value of phragmites australis obtained from two constructed wetlands. In Proceedings of the 19th European Biomass Conference and Exhibition, Berlin Germany, 6–10 June 2011; Available online: https://www.researchgate.net/publication/235742039 (accessed on 12 February 2024).
- Haldan, K.; Kuprina, K.; Haase, M.I.; Kieckhäfer, F.; Schade, L.; Schmoldt, J.; Schock, L.S.; Stein, M.; Wille, A.; Schnittler, M.; et al. Choose Wisely: Great Variation among Genotypes of Promising Paludiculture Crop Phragmites australis. Plants 2023, 12, 1045. [Google Scholar] [CrossRef] [PubMed]
- Važić, T.; Svirčev, Z.; Dulić, T.; Krstić, K.; Obreht, I. Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renew. Sustain. Energy Rev. 2015, 48, 670–680. [Google Scholar] [CrossRef]
- Vespere, A.; Popluga, D. Assessment of reed potential for thermal energy production in Latvia. In Proceedings of the 8th International Scientific Conference, Kaunas, Lithuania, 23–24 November 2017. [Google Scholar] [CrossRef]
- Burry, W.; Doelle, K.; Liu, S.; Appleby, R. Common Reed (Phragmites australis), Eradicate or Utilize? Part II: Potential Use as an Industrial Fiber Source after Hot Water Extraction. BioResources 2017, 12, 5697–5714. [Google Scholar] [CrossRef]
- Wichmann, S. Commercial viability of paludiculture: A comparison of harvesting reeds for biogas production, direct combustion, and thatching. Ecol. Eng. 2017, 103, 497–505. [Google Scholar] [CrossRef]
- Rodríguez, M.; Brisson, J. Pollutant removal efficiency of native versus exotic common reed (Phragmites australis) in North American treatment wetlands. Ecol. Eng. 2015, 74, 364–370. [Google Scholar] [CrossRef]
- Fogli, S.; Brancaleoni, L.; Lambertini, C.; Gerdol, R. Mowing regime has different effects on reed stands in relation to habitat. J. Environ. Manag. 2014, 134, 56–62. [Google Scholar] [CrossRef]
- Meyer, S.W.; Badzinski, S.S.; Petrie, S.A.; Ankney, C.D. Seasonal Abundance and Species Richness of Birds in Common Reed Habitats in Lake Erie. J. Wildl. Manag. 2010, 74, 1559–1566. [Google Scholar]
- Čížková, H.; Kučera, T.; Poulin, B.; Květ, J. Ecological Basis of Ecosystem Services and Management of Wetlands Dominated by Common Reed (Phragmites australis): European Perspective. Diversity 2023, 15, 629. [Google Scholar] [CrossRef]
- Kuhlman, T.; Diogo, V.; Koomen, E. Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass Bioenergy 2013, 55, 41–52. [Google Scholar] [CrossRef]
- Wichtmann, W.; Couwenberg, J. Reed as a Renewable Resource and Other Aspects of Paludiculture. In Proceedings of the International Conference on the Utilization of Emergent Wetland Plants, Greifswald, Saksamaa, 14–16 February 2013; Volume 13. [Google Scholar]
- Demko, J.; Machava, J.; Saniga, M. Energy production analysis of Common Reed—Phragmites australis (Cav.) Trin. Folia Oecologica 2017, 44, 107–113. [Google Scholar] [CrossRef]
- Garrido, R.A.; Reckamp, J.M.; Satrio, J.A. Effects of pretreatments on yields, selectivity and properties of products from pyrolysis of phragmites Australis (Common reeds). Environments 2017, 4, 96. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Characteristics of conocarpus wastes and common reed biochars as a predictor of potential environmental and agronomic applications. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–18. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, Y.; Ruan, X.; Barzee, T.J.; Zhang, Z.; Kong, H.; Zhang, X. The Potential of Constructed Wetland Plants for Bioethanol Production. Bioenergy Res. 2020, 13, 43–49. [Google Scholar] [CrossRef]
- Shuai, W.; Chen, N.; Li, B.; Zhou, D.; Gao, J. Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy 2016, 92, 40–47. [Google Scholar] [CrossRef]
- Gao, K.; Boiano, S.; Marzocchella, A.; Rehmann, L. Cellulosic butanol production from alkali-pretreated switchgrass (Panicum virgatum) and phragmites (Phragmites australis). Bioresour. Technol. 2014, 174, 176–181. [Google Scholar] [CrossRef]
- Köbbing, J.F.; Patuzzi, F.; Baratieri, M.; Beckmann, V.; Thevs, N.; Zerbe, S. Economic evaluation of common reed potential for energy production: A case study in Wuliangsuhai Lake (Inner Mongolia, China). Biomass Bioenergy 2014, 70, 315–329. [Google Scholar] [CrossRef]
- Barz, M.; Ahlhaus, M.; Timmermann, T.; Wichtmann, W. Utilisation of common reed as an energy source. In Proceedings of the 15th European Conference & Exhibition, Berlin, Germany, 7–11 May 2007. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, H.; Zhang, C.; Sun, B.; Zhang, Y.; Dong, S.; Xue, Y.; Qin, S. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis. J. Therm. Anal. Calorim. 2012, 110, 611–617. [Google Scholar] [CrossRef]
- Kostin, V.; Kochetkov, V.; Sokolova, N.; Vasenev, I. Common Reed as a Renewable Energy Resource for Pellet Production. E3S Web Conf. 2020, 193, 01037. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, S.; Lin, Z.; Huang, Z.; Wu, Z.; Huang, J.; Zhang, X.; Qin, X.; Tan, M.; Li, H. Pyrolysis of torrefied Phragmites australis from atmospheric and gas-pressurised torrefaction: Pyrolysis kinetic and product analysis. J. Anal. Appl. Pyrolysis 2022, 167, 105670. [Google Scholar] [CrossRef]
- Kulikova, Y.; Gorbunova, J.; Aleksandrov, S.; Krasnovskih, M.; Gurchenko, V.; Babich, O. Analysis of Resource Potential of Emergent Aquatic Vegetation in the Curonian Lagoon of the Baltic Sea. Water 2023, 15, 2136. [Google Scholar] [CrossRef]
- BS EN 14778; Solid Biofuels—Sampling. BSI Standards Publication: Bonn, Germany, 2011; pp. 1–63ISBN 978 0 580 69715 9.
- BS EN 14780:2011; Solid Biofuels—Sample Preparation. BSI Standards Publication: Bonn, Germany, 2011; p. 24.
- ISO 18134-3:2022; Solid Biofuels—Determination of Moisture Content—Oven Dry Method Part 3: Moisture in General Analysis Sample. International Organization for Standardization: Geneva, Switzerland, 2022; p. 5.
- ISO 18122:2022; Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2022; p. 7.
- ISO 18123:2023; Solid Biofuels—Determination of Volatile Matter. International Organization for Standardization: Geneva, Switzerland, 2023; p. 9.
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. International Organization for Standardization: Geneva, Switzerland, 2017; p. 56.
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Geneva, Switzerland, 2015; p. 9.
- ISO 16994:2015; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. International Organization for Standardization: Geneva, Switzerland, 2015; p. 11.
- ISO 16967:2015; Solid Biofuels—Determination of Major Elements. Al, Ca, Fe, Mg, P, K, Si, Na and Ti. International Organization for Standardization: Geneva, Switzerland, 2015; p. 13.
- ISO 16968:2015; Solid Biofuels—Determination of Total Content of Minor Elements. International Organization for Standardization: Geneva, Switzerland, 2015; p. 11.
- ISO 21404:2020; Solid Biofuels—Determination of Ash Melting Behaviour. International Organization for Standardization: Geneva, Switzerland, 2020; p. 13.
- Jasinskas, A.; Streikus, D.; Šarauskis, E.; Palšauskas, M.; Venslauskas, K. Energy evaluation and greenhouse gas emissions of reed plant pelletising and utilisation as solid biofuel. Energies 2020, 13, 1516. [Google Scholar] [CrossRef]
- Reichel, D.; Klinger, M.; Krzack, S.; Meyer, B. Effect of ash components on devolatilisation behavior of coal in comparison with biomass—Product yields, composition, and heating values. Fuel 2013, 114, 64–70. [Google Scholar] [CrossRef]
- Chaloupková, V.; Ivanova, T.; Hutla, P.; Špunarová, M. Ash melting behavior of rice straw and calcium additives. Agriculture 2021, 11, 1282. [Google Scholar] [CrossRef]
- Ivanova, T.; Mendoza Hernández, A.H.; Bradna, J.; Fernández Cusimamani, E.; García Montoya, J.C.; Armas Espinel, D.A. Assessment of guava (Psidium guajava L.) wood biomass for briquettes’ production. Forests 2018, 9, 613. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-Firing, 1st ed.; Earthsacn: London, UK, 2007; 465p, ISBN 978-1-84407-249-1. [Google Scholar]
- Obernberger, I.; Thek, G. Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Fernández, M.J.; Carrasco, J.E. Comparing methods for predicting the sintering of biomass ash in combustion. Fuel 2005, 84, 1893–1900. [Google Scholar] [CrossRef]
- Li, F.; Yang, Z.; Wang, Y.; Liu, G.; Xu, M.; Fan, H.; Zhao, W.; Zhao, C.; Wand, T.; Fang, Y. Understanding Ash Sintering Variation Behaviors of Low-Rank Coals with Municipal Sludge Addition Based on Mineral Interactions. ACS Omega 2022, 7, 10588–10598. [Google Scholar] [CrossRef]
- Ovčačíková, H.; Velička, M.; Vlček, J.; Topinková, M.; Klárová, M.; Burda, J. Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al–Si System. Materials 2022, 15, 5796. [Google Scholar] [CrossRef]
- Wang, N.; Torralbo, F.; Naumann, H.D.; Fritschi, F.B. Tissue composition and higher heating values differ among six bioenergy grasses. Ind. Crop. Prod. 2023, 205, 117437. [Google Scholar] [CrossRef]
- Kask, Ü.; Kask, L.; Link, S. Combustion characteristics of reed and its suitability as a boiler fuel. Mires Peat 2013, 13, 1–10. [Google Scholar]
- Woli, K.P.; David, M.B.; Tsai, J.; Voigt, T.B.; Darmody, R.G.; Mitchell, C.A. Evaluating silicon concentrations in biofuel feedstock crops Miscanthus and switchgrass. Biomass Bioenergy 2011, 35, 2807–2813. [Google Scholar] [CrossRef]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef]
- ISO 17225-6:2021; Solid Biofuels—Fuel Specifications and Classes Part 6: Graded Non-Woody Pellets. International Organization for Standardization: Geneva, Switzerland, 2022; p. 7.
- ISO 17225-7:2021; Solid Biofuels—Fuel Specifications and Classes Part 7: Graded Non-Woody Briquettes. International Organization for Standardization: Geneva, Switzerland, 2021; p. 7.
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Prod. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Szydełko, A.; Ferens, W.; Rybak, W. The effect of mineral additives on the process of chlorine bonding during combustion and co-combustion of Solid Recovered Fuels. Waste Manag. 2020, 102, 624–634. [Google Scholar] [CrossRef]
Material | Shrinkage Temperature (°C) | Deformation Temperature (°C) | Hemisphere Temperature (°C) | Flow Temperature (°C) | Reference |
---|---|---|---|---|---|
P. australis | >1450 | >1450 | >1450 | >1450 | Present study |
P. australis | 1139 | 1349 | 1444 | 1458 | [37] |
Poplar wood | >1400 | >1400 | >1400 | >1400 | [44] |
Wheat straw | 850 | 1040 | 1120 | 1320 | [44] |
Rice straw | 750 | 1063 | 1225 | >1341 | [39] |
Parameter | Units | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
Aluminium, Al | % d.b. | 0.17 | Aluminium oxide, Al2O3 | % d.b. | 0.33 |
Barium, Ba | % d.b. | 0.020 | Barium oxide, BaO | % d.b. | 0.022 |
Calcium, Ca | % d.b. | 1.2 | Calcium oxide, CaO | % d.b. | 1.7 |
Iron, Fe | % d.b. | 0.20 | Iron(III) oxide, Fe2O3 | % d.b. | 0.28 |
Potassium, K | % d.b. | 2.6 | Potassium oxide, K2O | % d.b. | 3.1 |
Magnesium, Mg | % d.b. | 0.54 | Magnesium oxide, MgO | % d.b. | 0.90 |
Manganese, Mn | % d.b. | 0.11 | Manganese(III) oxide, Mn2O3 | % d.b. | 0.17 |
Sodium, Na | % d.b. | 1.2 | Sodium oxide, Na2O | % d.b. | 1.6 |
Phosphorus, P | % d.b. | 0.33 | Phosphorus pentoxide, P2O5 | % d.b. | 0.76 |
Silicon, Si | % d.b. | 42 | Silicon dioxide, SiO2 | % d.b. | 89 |
Strontium, Sr | % d.b. | 0.052 | Strontium oxide, SrO | % d.b. | 0.062 |
Titanium, Ti | % d.b. | 0.013 | Titanium dioxide, TiO2 | % d.b. | 0.022 |
Parameter | Unit | Non-Woody Pellets | Non-Woody Briquettes | P. australis | |||
---|---|---|---|---|---|---|---|
A | B | A1 | A2 | B | |||
Moisture, MC | % ar | ≤12 | ≤15 | ≤12 | ≤12 | ≤15 | 6.6 |
Ash, AC | % d.b. | ≤6 | ≤10 | ≤3 | ≤6 | ≤10 | 7.1 |
Net calorific value, NCV | MJ/kg ar | ≥14.5 | ≥14.5 | ≥14.5 | ≥14.5 | ≥14.5 | 15.33 |
Nitrogen, N | % d.b. | ≤1.5 | ≤2 | ≤1.5 | ≤1.5 | ≤2 | 0.38 |
Sulphur, S | % d.b. | ≤0.20 | ≤0.30 | ≤0.20 | ≤0.20 | ≤0.30 | 0.06 |
Chlorine, Cl | % d.b. | ≤0.10 | ≤0.40 | ≤0.10 | ≤0.20 | ≤0.30 | 0.16 |
Arsenic, As | mg/kg d.b. | ≤1 | ≤1.5 | ≤1 | ≤1 | ≤1.5 | <0.50 |
Cadmium, Cd | mg/kg d.b. | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | <0.10 |
Chromium, Cr | mg/kg d.b. | ≤50 | ≤50 | ≤50 | ≤50 | ≤50 | 7.68 |
Copper, Cu | mg/kg d.b. | ≤20 | ≤20 | ≤20 | ≤20 | ≤20 | <2.50 |
Lead, Pb | mg/kg d.b. | ≤10 | ≤10 | ≤10 | ≤10 | ≤10 | <2.50 |
Mercury, Hg | mg/kg d.b. | ≤0.1 | ≤0.1 | ≤0.1 | ≤0.1 | ≤0.1 | <0.009 |
Nickel, Ni | mg/kg d.b. | ≤10 | ≤10 | ≤10 | ≤10 | ≤10 | <2.50 |
Zinc, Zn | mg/kg d.b. | ≤100 | ≤100 | ≤100 | ≤100 | ≤100 | 10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexiou Ivanova, T.; Paramonova, K.; Talipov, O.; Tanyrbergenov, N.; Zhakupov, T.; Akayev, A. Assessment of Common Reed (Phragmites australis (Cav.) Trin. ex Steud.) Biomass Suitability for Solid Biofuels Production. Sustainability 2024, 16, 7378. https://doi.org/10.3390/su16177378
Alexiou Ivanova T, Paramonova K, Talipov O, Tanyrbergenov N, Zhakupov T, Akayev A. Assessment of Common Reed (Phragmites australis (Cav.) Trin. ex Steud.) Biomass Suitability for Solid Biofuels Production. Sustainability. 2024; 16(17):7378. https://doi.org/10.3390/su16177378
Chicago/Turabian StyleAlexiou Ivanova, Tatiana, Kseniia Paramonova, Olzhas Talipov, Nariman Tanyrbergenov, Talgat Zhakupov, and Aibek Akayev. 2024. "Assessment of Common Reed (Phragmites australis (Cav.) Trin. ex Steud.) Biomass Suitability for Solid Biofuels Production" Sustainability 16, no. 17: 7378. https://doi.org/10.3390/su16177378
APA StyleAlexiou Ivanova, T., Paramonova, K., Talipov, O., Tanyrbergenov, N., Zhakupov, T., & Akayev, A. (2024). Assessment of Common Reed (Phragmites australis (Cav.) Trin. ex Steud.) Biomass Suitability for Solid Biofuels Production. Sustainability, 16(17), 7378. https://doi.org/10.3390/su16177378