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Abstract: The efficient operation of multi-reservoirs is highly beneficial for securing supply for pre-
vailing demand and ecological flow. This study proposes a monthly hedging rule-based aggregation–
decomposition model for optimizing a parallel reservoir system. The proposed model, which is an
aggregated hedging rule for ecological flow (AHRE), uses external optimization to determine the total
release of the reservoir system based on improved hedging rules—the optimization model aims to
minimize water demand and ecological flow deficits. Additionally, inner optimization distributes the
release to individual reservoirs to maintain equal reservoir storage rates. To verify the effectiveness of
the AHRE, a standard operation policy and transformed hedging rules were selected for comparison.
Three parallel reservoirs in the Naesung Stream Basin in South Korea were selected as a study area.
The results of this study demonstrate that the AHRE is better than the other two methods in terms of
supplying water in line with demand and ecological flow. In addition, the AHRE showed relatively
stable operation results with small water-level fluctuations, owing to the application of improved
hedging rules and a decomposition method. The results indicate that the AHRE has the capacity to
improve downstream river ecosystems while maintaining human water use and provide a superior
response to uncertain droughts.

Keywords: water shortage; ecological flow; parallel reservoir operation; hedging rule;
aggregation–decomposition

1. Introduction

Increasing drought exerts a severely detrimental impact on both socioeconomic and
ecological fronts. Therefore, the importance of securing ecological flow to sustain ecosys-
tems is being recognized [1–3]. Drought has resulted in a decrease in the usable water
volume, with increased water demand owing to escalated anthropogenic activities. In-
creasing demand compared to supply has recently promoted conflicts among water users,
making it difficult to secure additional water resources for ecological flow [4]. Over the
past several decades, rainfall patterns and extreme rainfall events have undergone signif-
icant changes owing to climate change [5]. Therefore, efficiently utilizing existing water
resources and finding ways to supply water appropriately to different users are pertinent.
One representative solution to this issue is the optimization of reservoir operations [6].

The optimization of reservoir operations can be broadly classified into two main
methods. The first method involves the optimization of the reservoir state. In this method,
the optimal sequence of the reservoir state (e.g., release, storage, or water level) that
maximizes or minimizes the objective function is obtained under a given input, such as
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a time series of inflow and demand [7,8]. Yang et al. [9] optimized the water level of
three cascade reservoirs of the middle Yangtze River in China to maximize hydropower
generation and ecological flow. Li et al. [10] employed the release sequence of reservoirs
as an optimization variable with objective functions to maximize hydropower generation.
Sedighkia and Abdoli [11] and Al-Aqeeli and Mahmood Agha [12] optimized two cascade
reservoirs in Iraq using their release sequence. However, the performance of the first
method varied depending on the prediction accuracy of the forcing inputs. Therefore, it is
applicable only under the assumption that the input is perfectly known throughout the
operational period. For this reason, as the operational period lengthens or the number of
reservoirs increases, optimizing the reservoir state in practice becomes inefficient as the
number of variables increases.

The second method, reservoir optimization based on the operation rule, was employed
to mitigate the challenge caused by an excessive number of variables. The operating rule
for a reservoir determines the release or storage of the reservoir through a function with
the current state of the reservoir as a variable [13]. In contrast to the first method, the
reservoir state may not be optimal [14]. However, it is highly applicable because it uses
fewer variables, enabling long-term optimization. Moreover, the determined operating
rules can be used continuously in the future. The representative reservoir operation rules
include the New York City rule [15,16], space rule [17], linear decision rule [18], standard
operation rule [19,20], and hedging rule [21–24]. Among these rules, the hedging rule is
notable for its ability to provide stable responses to drought conditions [25]. The hedging
rule saves water even when sufficient water is available for full target deliveries during
the current period to conserve water for future use. The primary objective of hedging is to
mitigate the risks and expenses associated with significant water shortages, even if they
are smaller and more frequent. The hedging rule is particularly useful in situations where
reservoirs have a low potential for refilling or unpredictable inflows [23].

The implementation of reservoir-optimization techniques should be extended to the
entire multi-reservoir system to maximize the application effect of the operation rule under
practical and ecological considerations [4]. The simplest way to optimize multiple reservoirs
of various types, such as parallel and series reservoirs, is to implement individual operating
rules for each reservoir. The hedging rule is frequently applied to minimize water supply
deficits [26–28]. Huang et al. [29] and Xu [30] optimized operations based on the hedging
rule and considered the maximization of water supply and ecological flow. Ahmadianfar
et al. [31,32] employed a multiple linear operating rule, which is a mathematical method
for complex reservoir optimization. Dariane and Momtahen [33] applied a piecewise
linear function akin to the linear operation rule to maximize water supply, hydropower
generation, and flood-preventing capacity. Ahmadi et al. [34] optimized the rule curve to
optimize three complex reservoirs in Southwest Iran. Rashid et al. [35] and Wang et al. [36]
optimized a rule curve for each of their studied reservoirs to maximize the demand–supply
rate. In addition, alternative approaches, such as utilizing fuzzy methods [37] or artificial
neural networks to optimize the operational rules [38,39], have been explored.

However, simultaneously optimizing the individual operating rules for each reservoir
presents a highly intricate challenge, entailing a substantially greater number of variables
and computational time than a single reservoir operation. To mitigate the issues caused by
excessive numbers of decision variables, the aggregation–decomposition (AGDP) model
was used to optimize multi-reservoir systems. The AGDP model combines individual
reservoirs into a virtual reservoir, applies a single operating rule to determine the total
output of the reservoir group, and distributes the output to each reservoir [16,40]. Thus, the
implementation of AGDP necessitates incorporating an additional process for allocating the
overall output of a multi-reservoir system among individual reservoirs into the operation
rules that determine total system production. Li et al. [41] and Zhang et al. [42] applied
the AGDP model with a distribution according to the proportions of reservoir inflow to
address droughts and floods. Xu and Chen [43] implemented the AGDP method in six
cascaded reservoirs to optimize the benefits of inter-basin water diversions, allocating the
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total reservoir volume among the aggregated reservoirs according to the effective capacity
of each reservoir. Utilizing fixed proportions, such as percentages based on the reservoir
capacity, current storage, or inflow, offers simplicity and ease of application because it
reflects only a single characteristic of the reservoirs and does not consider changes in
characteristics over time. However, this approach may not fully optimize water resource
utilization. Various distribution methods are applied for a more sophisticated and efficient
distribution than simple ratios. Guo et al. [44] developed advanced operational rules for
multi-reservoir operations, incorporating an aggregation stage utilizing hedging rules and
a decomposition stage employing modified parameter methods to avoid catastrophic water
shortages. Shen et al. [45] established linear operating rules based on the AGDP model to
maximize hydropower generation using the cooperative Game Theory as a decomposition
scheme. Tan et al. [46] applied optimization to distribution models to enable a more efficient
allocation to maximize hydropower generation. Detailed information on each reference is
shown in Table 1.

Table 1. Multi-reservoir optimization studies.

Multi-Reservoir
Optimization Operation Rules for Individual Reservoirs AGDP Method

Rule-based

Hedging
rules (HRs)

Three complex reservoirs in the
southwest of Iran/Minimizing the

water supply shortage
[28]

Six complex reservoirs in the
southwest of China/Minimizing

water pumping and water
diversion and maximizing

water supply

[43]

A total of 115 complex reservoirs in
the southeast of China/Maximizing
guarantee rate for water supply and

ecological flow

[30]
Five parallel reservoirs in southeast

China/Maximizing water
supply reliability

[41]

Two parallel reservoirs in the west
of Iran/Minimizing drinking and

agricultural water deficit
[27]

Three complex reservoirs in
Northern China/Minimizing

water shortage
[44]

Three parallel reservoirs located in
the Jialing River,

China/Minimizing the water
supply deficits

[26]
Six parallel reservoirs in the

northeast of China/Maximizing
water supply reliability

[46]

Three parallel reservoirs in eastern
China/Minimizing the economic
and environmental water deficit

[29]

Mathematical
equations

three- and four-complex reservoirs
in Iran/Maximizing hydropower

generation
[31,32]

Five complex reservoirs of the
Yangtze River in

China/Maximizing hydropower
generation and water

supply reliability

[45]

Seven complex reservoirs in
Southeast Iran/Maximizing water
supply, hydropower generation,
and flood-preventing capacity

[33]
Ten complex reservoirs in

China/Minimizing the flood loss at
flood control sections

[42]

Two cascade reservoirs in
China/Maximizing

hydropower generation
[47]



Sustainability 2024, 16, 7475 4 of 22

Table 1. Cont.

Multi-Reservoir
Optimization Operation Rules for Individual Reservoirs AGDP Method

Rule curves

Three complex reservoirs in the
southwest of Iran/Maximizing the
hydropower generation and water

supply

[34]

Two cascade reservoirs in
Pakistan/Minimizing irrigation

shortages
[35]

Two parallel reservoirs in northern
China/Maximizing water supply
reliabilities (domestic, ecological,

and agricultural uses)

[36]

Fuzzy-based

Five complex reservoirs in
Maharashtra State,

India/Maximizing irrigation
releases and hydropower

generation

[37]

Artificial
neural

networks

Three cascade reservoirs in China/
Maximizing water supply for

municipal, industrial, irrigation,
hydropower generation, and

ecological purposes.

[38]

Four complex reservoirs in
India/Minimizing deficit of water
supply for irrigation, municipal,

and industrial use

[39]

Reservoir
state

sequence

Water
level/storage

Three cascade reservoirs of the
middle Yangtze River in

China/Maximizing hydropower
generation, ecological flow

[9] Thirty complex reservoirs of the
Yangtze River in

China/Maximizing impoundment
efficiency and hydropower

generation

[48]
Two cascade reservoirs in

China/Maximizing hydropower
generation

[7]

Release

Two cascade reservoirs in
Iran/Minimizing water demand

and
environmental flow deficit

[11]

Nine complex reservoirs of the
Yangtze River in

China/Maximizing environmental
flow satisfaction

[49]

Two parallel reservoirs in
India/Minimizing water demand

and maximizing hydropower
generation

[8]

Two cascade reservoirs in
Iraq/Maximizing hydropower

generation
[12]

Two cascade reservoirs in
China/Maximizing hydropower

generation
[10]

This study proposes a hedging rule-based AGDP model for multi-reservoir systems
considering ecological flow. In the aggregation model, a novel hedging parameter, middle
water availability (MWA), was utilized with the basic parameters starting and ending water
availability (SWA and EWA) to manage the reservoir system while ensuring ecological flow.
The first optimization in the aggregation model seeks monthly hedging rules that minimize
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the shortage of water demand and ecological flow. The second optimization was applied
within the first optimization to distribute the total release volumes among the individual
reservoirs, thus minimizing the deviation in the storage rates between each reservoir. The
main objectives of this study are summarized as follows: (1) to improve the hedging rule
to secure ecological flow and (2) to employ a novel decomposition method to mitigate the
uncertainty of drought by minimizing the deviation in storage rates between each reservoir.

2. Methods
2.1. Study Area

The Nakdong River Basin (Figure 1) is in the southeastern region of South Korea,
with a channel length of 510.36 km. The watershed area of 23,384.21 km2 is the second
largest watershed in South Korea. The Naesung Stream watershed, which is the study
area, is located upstream of the Nakdong River. The watershed has a mainstream length
of 110.69 km and an area of 1815.28 km2. The study area is characterized by a substantial
proportion of rice fields within its total area and experiences a peak irrigation season in
May and June. Therefore, the demand in the basin shown in Figure 2 was concentrated in
May and June, owing to agricultural water usage. The Youngju (YJ) reservoir, the largest
reservoir in the Naesung Stream watershed, was built in 2016. It contains 1.8 × 108 m3 of
storage capacity and was designed for water supply and flood control. There are 12 small-
scale reservoirs in the Naesung Stream Basin, excluding the YJ reservoir. This study used
only the Gumgye (GG) and Dansan (DS) reservoirs, which have a storage capacity of more
than 5 million m3. The specifications of the GG, DS, and YJ reservoirs are listed in Table 2.
The active storage capacity of the YJ reservoir is approximately 30 times larger than that of
the other two reservoirs and maintains an average storage rate of 41.8%. As shown in the
schematic of the reservoir system in Figure 3, the three reservoirs are connected parallelly.
The released flow of each reservoir was combined with the inflow to the Gopyung station,
which was the selected point to compare the ecological flows. The water-level storage
curves of the three reservoirs shown in Figure 4 were used to convert the reservoir storage
volume to the water level. Thus, the operation of a reservoir can be expressed as a change
in water level.
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Table 2. Characteristics of reservoirs in the study area.

Reservoir Gumgae Dansan Youngju

Basin area (km2) 24.25 53.00 500.00
Dead water level (m) 279.0 278.0 135.0

Normal water level (m) 306.7 310.0 161.0
Active storage (106m3) 5.271 6.169 172.6
Mean storage rate (%) 82.07 88.57 41.8
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2.2. Inflow Generation Using the SWAT Model

Accurate knowledge of reservoir inflow is important for optimizing reservoir opera-
tions. However, the observed inflows into small-scale reservoirs are limited. Therefore, it is
necessary to predict the inflow to the reservoir. This study employed the Soil and Water
Assessment Tool (SWAT) model to predict four inflows, including three inflows into each
of the selected reservoirs and the inflow to the Gopyung station from the downstream
watershed of the three reservoirs. In addition, the predicted downstream flow was used as
input data to calculate the ecological flow.
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The SWAT serves as a physical-based, semi-distributed, and continuous-time model [50].
Topographical, meteorological, and streamflow data were used to construct a SWAT model
for the Naesung Stream watershed. The land surface elevation, soil type, and land use
within the watershed were incorporated into the topography and soil information of the
model. The meteorological data that served as the foundation for the SWAT model included
daily rainfall, maximum and minimum temperatures, wind speed, and relative humidity
from 2007 to 2014. The observed daily streamflow at Gopyung station from 2007 to 2014,
before the construction of the YJ reservoir, was used to calibrate the SWAT model. The
additional data sources used to build the model are listed in Table 3. The Nash–Sutcliffe
efficiency (NSE), root mean standard deviation ratio (RSR), and coefficient of determination
(R2) were employed to evaluate the performance of the SWAT model. The equations for
each factor are given by Equations (1)–(3). The estimated daily flow at the Gopyung station
was converted to monthly flow and used as input data to calculate the ecological flow.

NSE = 1 −
∑n

i=1

(
Yobs

i − Ysim
i

)2

∑n
i=1

(
Yobs

i − Yobs,mean
)2 (1)

RSR =
RMSE

STDEVobs
=

√
∑n

i=1
(
Yobs

i − Ysim
i

)2√
∑n

i=1
(
Yobs

i − Yobs,mean
)2

(2)

R2 =

 ∑n
i=1

(
Yobs

i − Yobs,mean
)(

Ysim
i − Ysim,mean)√

∑n
i=1

(
Yobs

i − Yobs,mean
)2

∑n
i=1

(
Ysim

i − Ysim,mean
)2

2

(3)

where Yobs
i is the ith observed data point; Ysim

i is the ith simulated data point; Yobs,mean is
the mean of the observed data; Ysim,mean is the mean of the simulated data point; and n is
the total number of observed data points.

Table 3. Input data sources in the SWAT model.

Data Type Source

Topography WAMIS (Water Resources Management Information System)
(http://www.wamis.go.kr, accessed on 28 August 2024.)

Land use WAMIS

Soil type Rural Development Administration, Republic of Korea
(http://www.rda.go.kr, accessed on 28 August 2024.)

Meteorological
data

Korea Meteorological Administration
(http://www.kma.go.kr, accessed on 28 August 2024.)

Streamflow data WAMIS

Point source data National Institute of Environmental Research
(http://www.nier.go.kr, accessed on 28 August 2024.)

Reservoir data My Water (Korea Water Resources Corporation)
(http://www.water.or.kr, accessed on 28 August 2024.)

2.3. Calculation of Ecological Flow

This study used the flow duration curve (FDC)-shifting approach to estimate the eco-
logical flow in an Environmental Management Class (EMC). The EMC was hierarchically
arranged with six progressive levels from A to F. As the EMC advanced from F to A, a
more stringent ecological flow was required to maintain this class. Detailed descriptions of
each level are presented by the Department of Water Affairs and Forestry [51], Acreman
and Dunbar [52], and Smakhtin and Eriyagama [53]. The FDC-shifting approach comprises
three steps for estimating the ecological flow. The first step was to calculate the represen-
tative FDC using the streamflow. Subsequently, the FDCs of each EMC were shifted by
one-step smaller percentiles than the representative percentile by 17 fixed percentiles of

http://www.wamis.go.kr
http://www.rda.go.kr
http://www.kma.go.kr
http://www.nier.go.kr
http://www.water.or.kr
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0.01, 0.1, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, and 99.99%. For example, a stream-
flow with a 99.9% probability of exceedance in the representative curve corresponds to a
probability of exceedance of 99% in class A, shifted by one step. The ecological flow of each
component was determined after establishing an FDC for each EMC. This study utilizes
the Global Environmental Flow Calculator (GEFC 2.0) to facilitate a more streamlined and
simplified execution of this series of processes [54]. The stream flow at the Gopyung station,
simulated by the SWAT model, was used as the input in the GEFC.

2.4. The Operation Model for Parallel Reservoirs

This study optimized the hedging rule for the joint operation of parallel reservoirs
based on the AGDP method, as shown in the flowchart in Figure 5. The aggregation model
determined the total release of the integrated individual reservoirs using hedging-rule
curves. The decomposition model distributes the total release to individual reservoirs. In
this study, the aggregation model optimized the monthly operating rules to maximize the
efficiency of securing both the combined water demand and ecological flow. The second
optimization in the decomposition model was used to select the proper distribution rate of
the total release.
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rule parameters, SWA and EWA, were modified by incorporating MWA to allow separate
control of the release of the combined water demand and ecological flow. This study com-
pared the AHRE with the standard operation policy (SOP) and transformed the hedging
rule (THR) to evaluate the effectiveness of the AHRE in parallel reservoir operations.

2.4.1. The Aggregation Model

The aggregation model calculates the total discharge based on the water availability
of the aggregated virtual reservoir, which is defined as

WA∗
t =

N

∑
n=1

Vn,t +
N

∑
n=1

In,t (4)

where WA∗
t is the water availability of the parallel reservoir system in period t, Vn,t is the

storage volume excluding flows below the dead level of the reservoir n in period t, In,t is
the inflow to the reservoir n in period t, and N is the total number of reservoirs.

Standard Operation Policy (SOP)

The SOP is a representative reservoir operation rule designed to minimize the effects
of current droughts. The SOP method is characterized by maximizing the satisfaction of
current water demand without considering the possibility of future shortages. However,
this can lead to widespread shortages in the future [54,55]. The entire release of the reservoir
system is contingent on the total demand, which comprises the combined water demand
and ecological flow. As shown in Figure 6a, if WA∗

t is less than the total demand, all
WA∗

t is released. Otherwise, if the remaining WA∗
t is greater than the active storage of the

aggregated reservoir, even after releasing as much water as the total demand, an overflow
will occur. Except, in this case, the aggregated reservoir releases as much water as possible
of the total demand.
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Transformed Hedging Rule (THR)

Over the past few decades, several studies have been conducted on modified HRs that
incorporate various factors to achieve improved results [29,56–58]. Tan et al. [46] applied
the damage depth index (DDI) to basic hedging rules to mitigate drought damage so that
the release for demand was maximized when the DDI was closer to zero and minimized
when the DDI approached one. This study applied the THR, a modified version of the
method suggested by Tan et al. [46], for comparison. As illustrated in Figure 6b, the THRs
contain two hedging rule cases: Case I occurs when 0 ≤ (1 − DDIt) ∗ DEt ≤ SWAt and
Case II occurs when SWAt ≤ (1 − DDIt) ∗ DEt < Dt:

Case I:

R∗
t =


WA∗

t if WA∗
t < SWAt,

DEt + (SWAt − DEt)· WA∗
t −EWAt

SWAt−EWAt
if SWAt ≤ WA∗

t < EWAt,

DEt if EWAt ≤ WA∗
t < DEt + C∗

WA∗
t − C∗ if WA∗

t ≥ DEt + C∗

(5)
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Case II:

R∗
t =



WA∗
t if WA∗

t < (1 − DDIt)·DEt,
(1 − DDIt)·DEt if (1 − DDIt)·DEt ≤ WA∗

t < EWAt − DDIt· SWAt−EWAt
SWAt−DEt

,

DEt + (SWAt − DEt)· WA∗
t −EWAt

SWAt−EWAt
if EWAt − DDIt· SWAt−EWAt

SWAt−DEt
≤ WA∗

t < EWAt

DEt if EWAt ≤ WA∗
t < DEt + C∗

WA∗
t − C∗ if WA∗

t ≥ DEt + C∗

(6)

where R∗
t is the release of the aggregated reservoir in period t; SWAt and EWAt are the start-

ing and ending water availabilities in period t; DEt is the total demand, which comprises
the combined water demand and ecological flow in period t; DDIt is the damage depth
index in period t; and C∗ is the storage capacity of the aggregated reservoir in period t.

The objective functions of this study were the combined water demand deficit volume
(DDV), ecological flow deficit volume (EDV), and maximum ecological flow deficit (MED).
The DDV was calculated as the ratio of the total deficit volume to the total demand.

DDV =
∑T

t=1 Dt − R∗
t

∑T
t=1 Dt

× 100(%) i f Dt − R∗
t > 0 (7)

The cumulative discharge of the three reservoirs met the demand, and any surplus
was directed downstream. The surplus is integrated with the inflow to the Gopyung station
simulated by the SWAT model, which is given by Equations (8) and (9). By comparing
the integrated discharge with the ecological flow, the EDV and MED were calculated
as follows:

RE
t =

{
R∗

t − Dt i f R∗
t − Dt > 0

0 else
(8)

Qt = IDown, t + RE
t (9)

EDV =
∑T

t=1 EFt − Qt

∑T
t=1 EFt

× 100(%) (10)

MED =
Max(EF1 − Q1 , EF2 − Q2, . . . , EFT − QT)

Max(EF1, EF2, . . . , EFT)
(11)

where RE
t is the discharge used to secure ecological flow out of the total release of reservoirs

in period t; Dt is the combined water demand in period t; IDown,t is the inflow to the
Gopyung station from the downstream watershed of the reservoirs in period t; Qt is the
streamflow at the Gopyung station in period t; EDV is the ecological flow deficit volume,
which is calculated as the ratio of the total deficit volume to the total ecological flow; EFt is
the ecological flow at the Gopyung station in period t; T is the number of operation periods;
and MED is the maximum ecological flow deficit, which is the largest deficit that occurred
in a month.

F1 = minimize (DDV + EFV) (12)

F2 = minimize (DDV + MED) (13)

The two objective functions are as follows:
A model of parallel reservoir operations must adhere to the following constraints:

1. Water-balance constraints:

Sn,t+1 = Sn,t + In,t − Rn,t (14)

2. Storage constraints:
Smin

n ≤ Sn,t ≤ Smax
n (15)

3. Release constraints:
Rmin

n ≤ Rn,t ≤ Rmax
n (16)
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4. Hedging rule constraints:
0 < SWAt < DEt (17)

DEt < EWAt < DEt + C∗ (18)

where Sn,t is the storage of an individual reservoir n in period t; In,t is the inflow of
an individual reservoir n in period t; Rn,t is the release of an individual reservoir
n in period t, and is the minimum storage of an individual reservoir n; Smax

n is the
maximum storage of individual reservoir n; Rmin

n is the minimum storage and release
of an individual reservoir n; and Rmax

n is the maximum release of an individual
reservoir n.

Aggregated Hedging Rule for Ecological Flow (AHRE)

This study added the MWA factor to the basic hedging rule parameter to directly
consider the ecological flow during reservoir operations. As shown in Figure 6c, when
the WA of the aggregated reservoir is less than that of the MWA, only a portion of the
combined water demand is satisfied. However, when the WA of the aggregated reservoir
increases between the EWA and MWA, the aggregated reservoir is deemed to have the
capacity to satisfy the entire water demand, as well as a portion of the ecological flow. A
more detailed operating rule is defined as follows:

R∗
t =



WA∗
t if WA∗

t < SWAt,
Dt − (MWAt − WA∗

t )·
Dt−SWAt

MWAt−SWAt
if SWAt ≤ WA∗

t < MWAt,

Dt + (WAt − MWAt)· EFt
EWAt−MWAt

if MWAt ≤ WA∗
t < EWAt

Dt + EFt if EWAt ≤ WA∗
t < Dt + EFt + C∗,

WA∗
t − C∗ if WA∗

t ≥ Dt + EFt + C∗.

(19)

where MWAt is the middle water availability in period t.
The objective functions of this method are identical to those of the THRs. The following

equations represent the constraints of this method:

1. Water-balance constraints:

Sn,t+1 = Sn,t + In,t − Rn,t (20)

2. Hedging rule constraints:
0 < SWAt < Dt (21)

SWAt < MWAt < EWAt (22)

MWAt < EWAt < Dt + EFt + C∗ (23)

2.4.1.4. The Decomposition Model

The decomposition model distributes the total release, which is determined using the
aggregation model described in Section 2.4.1. When parallel reservoirs are operated using
the SOP and THR methods, the total release is distributed according to the ratio of the WA
of each reservoir to the aggregated WA as follows:

Rn,t = R∗
t ×

WAn,t

WA∗
t

(24)

where WAn,t is the water availability of reservoir n in period t.
Unlike the two previously described methods, a distribution method based on op-

timization algorithms was applied to the AHRE. The objective function for reservoir
optimization typically comprises the benefits derived from the released volume and the
remaining storage (i.e., carryover storage). A decomposition model was employed to
maximize the carryover storage for each reservoir. This model aimed to maintain storage
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rates across all reservoirs, which were as closely aligned as feasible throughout each period.
Consequently, it is possible to minimize the water shortage and overflow of each reservoir
while maximizing the efficiency of reservoir-system operations. The objective function
minimizes the standard deviation between the storage rates of each reservoir after release
as follows:

SDS =
T

∑
t=1

std
(

S1,t + I1,t − R1,t

C1
,

S2,t + I2,t − R2,t

C2
, . . . ,

SN,t + IN,t − RN,t

CN

)
(25)

F = minimize SDS (26)

where SDS is the standard deviation between the storage rate of each reservoir after release
and Cn is the storage capacity of an individual reservoir n.

The constraints of the decomposition model are represented as follows:

1. Storage constraints:
Smin

n ≤ Sn,t ≤ Smax
n (27)

2. Release constraints:
Rmin

n ≤ Rn,t ≤ Rmax
n (28)

3. Decomposition constraints:

R∗
t =

N

∑
n=1

Rn,t (29)

This study satisfied the constraints of the aggregation model (Equations (20)–(23)) and
the decomposition model (Equations (27)–(29)).

3. Results
3.1. Inflow Estimation Using the SWAT Model

The SWAT model was used to estimate the inflow of each reservoir and Gopyung
station. As mentioned in Section 2.2, the simulated streamflow between 2007 and 2014 was
calibrated. The observed and simulated flows for each calibration and validation period
are shown in Figures 7a and 7b, respectively. The NSE, RSR, and R2 values were 0.78, 0.10,
and 0.82 during the calibration period. During the validation period, the NSE, RSR, and R2

values were 0.79, 0.10, and 0.81, respectively, similar to the calibration period results. The
estimated inflow for each reservoir is shown in Figure 7c.
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Figure 7. Results of SWAT model: (a) comparison of observed and simulated flow in the calibration
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3.2. Ecological Flow Estimation

In this study, the monthly ecological flow was calculated using the FDC-shifting
approach for different EMCs. The daily simulated flow from 2007 to 2015 was used instead
of the observed streamflow, owing to numerous instances of missing data. The daily flow
was converted into monthly data and applied to the GEFC software. The calculated FDCs
and monthly averaged ecological flows are shown in Figure 8. This study adopted the
largest ecological flow for EMC Class A to assess the effectiveness of the operation method
in preserving the ecological flow.
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3.3. Results of the Optimized AHRE Model

The estimated inflows and ecological flows were used to optimize the parallel reser-
voirs during 2016–2023. In the AHRE model, the two objective functions mentioned in THR
Section are applied to find the Pareto optimal sets of decision variables: SWA, MWA, and
EWA (three variables per month). The 36 variables of the AHRE model were optimized
using the non-dominated sorting genetic algorithm (NSGA) II with the parameters listed in
Table 4. The final Pareto fronts were distributed within 0.5% of the average of each objective
function. Therefore, the optimal solution converged to a single point, and the average of
each Pareto set was used as the optimal solution. Figure 9 presents the optimal monthly
hedging-rule curves.
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Table 4. Parameters of NSGA II.

Parameters Value

Population size 100
Iteration number 10,000

Crossover probability 0.8
Mutation probability 0.2
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The horizontal axis in Figure 9 represents the WA of the aggregated reservoir, and
the vertical axis denotes the aggregated release of the parallel reservoir system. The
curves were delineated using four key points, excluding the initial and terminal points.
Point A, situated at the coordinates (SWA, SWA), marks the inception of hedging for
the combined water demand. Similarly, Point B, positioned at (MWA, D), denotes the
initiation of the hedging for ecological flow. The x-coordinates of Points C and D are
EWA and C + D + EF, respectively, both of which share the same y-coordinate, D + EF.
When the WA of the aggregated reservoir fell within the range delineated by Points A
and B, a portion of the combined water demand was released. Between Points B and C,
allocations were designated for both the combined water demand and a portion of the
ecological flow. The aggregated release remained constant between points C and D, with
the spillage commencing from Point D onwards. Figure 9 illustrates the various attributes
of the monthly optimized hedging rules. The SWA demonstrated a pattern parallel to
the magnitude of the combined water demand. However, the EWA tended to increase
when the sum of the total demand and environmental flows was greater than that of the
inflow. Notably, as the total water shortage escalated, the MWA approached the EWA more
closely than the SWA. In June, which was marked by the most acute shortage, the disparity
between the MWA and EWA was less than 30 million m3. However, in August, which was
characterized by the highest water availability, the gap widened to over 150 million m3. The
change in the spacing was derived from the distinct characteristics of the AHRE method.
As the MWA approached the SWA, more water was released than when the basic hedging
rules were applied, and as the MWA approached the EWA, less water was discharged.
Figure 9 illustrates the pivotal function of the hedging rule parameters SWA, MWA, and
EWA in optimizing the reservoir operation to ensure ecological flow.
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3.4. Comparison of the Three Operating Models

The operational results of the AHREs, SOPs, and THRs were compared to evaluate
their effectiveness. The water levels of each reservoir during the training period (2016–2019)
and testing period (2020–2023) using the three methods are plotted in Figure 10. Under
the SOPs, most reservoirs maintained low water levels close to dead water levels. The
implementation of THRs resulted in the DS reservoir approaching a normal pool level.
However, the water level of the YJ reservoir was relatively close to the dead water level.
The water levels of reservoirs GG and YJ in the AHREs were relatively higher than those
of the SOPs and THRs. As shown in Figure 10c,d, when the AHREs were applied, the
water-level change patterns of each reservoir were similar. In contrast, the water level of
the DS reservoir using the SOPs and THRs increased and then decreased more rapidly than
that of the other reservoirs. This difference in water-level changes between the reservoirs
was caused by the decomposition method. As shown in Figure 7c, the maximum inflow
volumes of reservoirs GG and DS were 11.1 million m3 and 58.8 million m3, respectively,
and the average inflow volumes were 1.6 million m3 and 9.6 million m3. On the other hand,
the active storages of each reservoir were 5.3 million m3 and 6.2 million m3, which are
small compared to the inflow values. In particular, the storage capacity of the DS reservoir
was approximately 1.2 times greater than that of the GG reservoir. However, the inflow of
the DS reservoir was approximately 4–400 times greater than that of the GG reservoir. The
difference in the inflow and storage ratios between the reservoirs and the small size of the
GG and DS reservoirs relative to the inflow pose difficulties in simply applying the ratios
when constructing the decomposition model. For the SOPs and THRs, the aggregated
release was distributed based on the WA of each reservoir. Therefore, the DS reservoir
released a small portion of the aggregated release compared to its inflow. Consequently,
the DS reservoir was more prone to overflow than the other reservoirs. However, in the
AHREs, an objective function was used to ensure that the storage rates of the reservoirs
were as similar as possible. Thus, the AHREs effectively operated the reservoir system by
saving water without overflow. Furthermore, by maintaining similar water levels in each
reservoir, they can effectively prepare for unexpected drought. Figure 10 demonstrates that
AHREs provide more stable reservoir operations than the SOPs and THRs.
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The monthly combined water demand supplied by each method is compared in Fig-
ure 12. During the training period, when the target demand was relatively high owing to 
low rainfall, only the AHREs showed a high satisfaction rate. In contrast, the other two 
methods had severe shortcomings. Shortages occurred, especially in June, when the de-
mand was the highest. During the testing period, the supply of SOPs and THRs was not 
uniform, with extreme shortages occurring only in 2022, as shown in Figure 12b. 

Figure 13 illustrates a comparison between the ecological and downstream flows, 
which encompass the remaining discharge after supplying the demand and inflow into 
the Gopyung station. The AHREs yielded better results in terms of ecological flow satis-
faction than the other two methods during both the training and testing periods. Accord-
ing to Figure 13a, the downstream flow using the SOPs and THRs experienced a major 
shortage in May and June, when the water demand increased. The downstream flows of 
the SOPs and THRs almost meet the ecological flow during the testing period, except in 
May, June, and July 2022. The AHREs experienced small additional deficits in March, 
April, and May 2020. The water storage volume secured by the small deficit prevented a 
major drought from June to July 2022, with a sufficient water supply. 

Figure 10. Monthly water levels of reservoirs: (a) GG reservoir in the training period (2016–2019);
(b) GG reservoir in the testing period (2020–2023); (c) DS reservoir in the training period; (d) DS reser-
voir in the testing period; (e) YJ reservoir in the training period; (f) YJ reservoir in the testing period.

Figure 11 shows a box plot of the water level of the SOPs. However, despite the
relatively low average water level in the YJ reservoir compared to that of the AHREs,
overflow occurred more frequently in the GG and DS reservoirs than in the AHREs. Espe-
cially, the DS reservoir maintained its normal pool level and overflowed for most of the
period, resulting in the water-level distribution shown in Figure 11b being concentrated at
100%. Most research on water supply through reservoir operations primarily assesses the
operational performance by relying solely on the demand deficit. However, to minimize
the damage caused by the uncertainty of reservoir operation elements (e.g., unpredictably
low inflow or high demand), the ability to store sufficient water to respond effectively
to droughts is important, as stated by Draper and Lund (2004) [23]. According to their
argument, the water-level distributions of each reservoir during the operation periods in
Figure 11 indicate the adaptability of the AHREs to uncertainties.
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The monthly combined water demand supplied by each method is compared in
Figure 12. During the training period, when the target demand was relatively high owing
to low rainfall, only the AHREs showed a high satisfaction rate. In contrast, the other
two methods had severe shortcomings. Shortages occurred, especially in June, when the
demand was the highest. During the testing period, the supply of SOPs and THRs was not
uniform, with extreme shortages occurring only in 2022, as shown in Figure 12b.

Figure 13 illustrates a comparison between the ecological and downstream flows,
which encompass the remaining discharge after supplying the demand and inflow into the
Gopyung station. The AHREs yielded better results in terms of ecological flow satisfaction
than the other two methods during both the training and testing periods. According to
Figure 13a, the downstream flow using the SOPs and THRs experienced a major shortage
in May and June, when the water demand increased. The downstream flows of the SOPs
and THRs almost meet the ecological flow during the testing period, except in May, June,
and July 2022. The AHREs experienced small additional deficits in March, April, and May
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2020. The water storage volume secured by the small deficit prevented a major drought
from June to July 2022, with a sufficient water supply.
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Figures 12 and 13 confirm that the AHRE method was superior in terms of both water
demand and ecological flow supply. By adding the MWA factor, the AHREs met the existing
demand. Applying the optimization model to distribute the discharge maintained high
water storage in each reservoir by minimizing the waste of available water due to overflow.

4. Discussion

The assessment of reservoir operations requires a multifaceted approach. Previous
research on reservoir operations for water supply has mainly focused on satisfying supply
goals. However, in addition to simply maximizing satisfaction with the water demand
and ecological flow, it is essential to evaluate the stability and sustainability of operations.
Figure 14 presents an analysis of the efficiency of reservoir system operations from various
perspectives. Figure 14a,b show the number of times each reservoir reached dead and
normal pool levels, respectively. These two graphs depict the stability, sustainability, and
resilience of the reservoir operation to uncertainty. Figure 14c–e illustrate the total water
demand, total ecological flow, and MED, respectively. These three graphs illustrate the
capacity of reservoir operations to meet supply and demand and respond to droughts.
As shown in Figure 14a, under the SOPs, the three reservoirs reached dead levels 69
and 45 times during the training and testing periods, respectively. However, the three
reservoirs reached normal pool levels only a few times. This result reflects the characteristics
of the SOP method, which releases all available water to satisfy demand as much as
possible. When using the AHRE method, the GG and YJ reservoirs were out of reach of
the dead level, and the total number of reaches was very low. In the practical application
of reservoir operations, the term ‘dead level’ extends beyond the conventional definition
of the minimum reservoir level to the final line of defense, which must be essentially
avoided. As mentioned in Section 3.4, utilizing the MWA factor enables a more conservative
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reservoir operation than the basic hedging rule. In Figure 8, the July–September hedging
curves are similar to the basic hedging rule, with points A, B, and C located relatively
linearly. Conversely, during the water-shortage period from November to March, the MWA
approached the EWA, resulting in a significant curvature in the hedging curve. Minimizing
dead and normal pool levels while meeting demand was possible because of the flexibility
of the operating rules. However, AHREs showed low efficiency when relatively high
rainfall occurred because its aim is drought adaptation. For this reason, the increased rate
of the number of times the normal pool level is reached in the testing period, which has a
relatively higher rainfall compared to the training period, was larger than that of the other
two methods, as illustrated in Figure 14b. Figure 14c shows the DDV, representing the
actual supply volume of the total combined water demand during the operational period.
The SOPs were 37.8%, and the THRs were 19.1%, displaying significant values compared
with 3.6% in AHREs during the training period. Similarly, the AHREs rarely experienced
deficits during the testing period, whereas the SOP and THRs exhibited relatively high
deficit ratios of 12% and 4.75%, respectively. As shown in Figure 14d, the AHRE method
exhibited the smallest ecological flow deficit during both the training and testing periods.
The AHREs also presented a smaller maximum ecological deficit than the SOPs and THRs.
The characteristics of the AHRE method, which operates separately from demand and
ecological flow, lead to direct control of the section that supplies only water demand and
the section that releases water demand and ecological flow. However, in the case of the
THRs, the release of ecological flow increased with the same slope as the release of water
demand. Figure 14 demonstrates that AHREs outperform SOPs and THRs in terms of
overall supply stability, with a deficit that is uniformly distributed throughout the year
rather than concentrated in a specific month. The effectiveness of AHREs is evident from
the number of times each reservoir reached dead and normal pool levels, as well as their
ability to satisfy both demand and ecological flow.
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Figure 14. Comparison of operation performances among operation methods and observed flow
during the training period (2016–2019) and testing period (2020–2023): (a) number of times each
reservoir reached its dead level; (b) number of times each reservoir reached its normal pool level;
(c) demand deficit volume; (d) ecological flow deficit volume; (e) maximum ecological flow deficit.
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The optimal release strategy for reservoir operation presupposes maximizing water
discharge and judicious operational management in line with ecological flow requirements.
Figure 14d,e offer insights into the comparative reservoir performance but fall short of
furnishing a comprehensive operational efficiency assessment across methodologies. There-
fore, the Taylor diagram in Figure 15 was used to compare the ecological and downstream
flows for each method. In Figure 15, the black-filled target circle denotes the ecological
flow, and the colored circles represent the downstream flows obtained using the three meth-
ods. Three statistical metrics, namely standard deviation, correlation coefficients, and root
mean square distance (RMSD), were elucidated within the Taylor diagram through spatial
representations. The standard deviation was defined as the radial distance originating
from the center of the diagram. The azimuthal angle within the quadrant conveys the
correlation coefficient between the ecological and downstream flows for each of the three
methods. The spatial distance between the target circle and the colored circles visually
represents the RMSD. A closer proximity of the colored circles to the target point signifies a
diminished RMSD, indicative of heightened concordance between downstream flow and
ecological flow. In Figure 15a,b, the circle of the AHREs is the closest to the target circle.
The correlation coefficient of the AHREs was the highest, and the RMSD of the AHREs was
the lowest. This result shows that when the AHRE method was applied, the downstream
flow was most similar to the ecological flow of the three methods. Consequently, Figure 15
unequivocally underscores the AHRE methodology as a furnishing judicious reservoir
operation conducive to securing ecological flow and transcending the mere maximization
of discharge.
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5. Conclusions

This study proposes an AGDP method to optimize the hedging rules for three parallel
reservoirs while considering ecological flow. By incorporating the MWA into the basic
hedging rule parameters, the modified hedging rules can be applied to reservoir operations,
enabling flexible reservoir operations. Two objective functions addressing the total water
demand deficit, total ecological flow deficit, and MED were employed to meet conventional
demand and ecological needs. The total discharge from the reservoirs was determined
using monthly optimal hedging rules consisting of the SWA, MWA, and EWA. The de-
composition model consisted of an optimization model that distributed the aggregated
release to individual reservoirs to minimize the standard deviation of the post-discharge
reservoir storage rates. A performance evaluation was conducted by comparing the pro-
posed method with conventional operating rules, namely the SOP and THR methods. The
SOPs and THRs allocate the total release to individual reservoirs based on their ratio of
available water to the total aggregated system. The comparison results confirmed that the
AHRE method is superior to the existing methods in terms of securing both water demand
and ecological flow. In particular, its MED was significantly smaller than that of the other
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methods, indicating that a consistent and stable supply was possible. The water level
changed in each reservoir when the AHRE method was applied, and each reservoir was
operated within a small range of variation with a similar trend owing to decomposition
through the optimization function. Thus, the number of times each reservoir reaches the
dead and normal pool levels is minimized, enabling an effective response even in the event
of a sudden drought.

This study evaluated the results of applying the optimal operating rule without
knowing the input during the testing period. Similar to the results for the training period,
the AHRE method showed excellent performance during the testing period, confirming its
ability to respond to drought uncertainty. However, the fundamental problem of applying
optimization to future inflows without considering forecast uncertainty has not yet been
solved. Therefore, future research must add a method to determine the operation rate by
considering the uncertainty of various input data, such as inflow and demand.
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SWAT Soil and Water Assessment Tool
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SOP Standard operation policy
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DDV Combined water demand deficit volume
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MED Maximum ecological flow deficit
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