Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Experimental Phase
2.3. Learning Algorithms
2.3.1. Artificial Neural Network (ANN)
2.3.2. Gated Recurrent Unit (GRU)
2.3.3. Long Short-Term Memory (LSTM)
2.3.4. Random Forest (RF)
2.3.5. Recurrent Neural Network (RNN)
2.3.6. Support Vector Regression (SVR)
2.3.7. Shapley Additive Explanation (SHAP)
2.4. Model Evaluation Metrics
2.5. Features and Testing Scenario
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, K.; Pande, B.P. Air Pollution Prediction with Machine Learning: A case study of Indian cities. Int. J. Environ. Sci. Technol. 2022, 20, 5333–5348. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 6 May 2024).
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of Air Pollution on Human Health and Practical Measures for Prevention in Iran. J. Res. Med. Sci. 2016, 21, 65. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Maimury, Y.; Chen, A.H.-L.; Juarez, J.R.C. Machine Learning-Based Prediction of Air Quality. Appl. Sci. 2020, 10, 9151. [Google Scholar] [CrossRef]
- Cican, G.; Buturache, A.-N.; Mirea, R. Applying Machine Learning Techniques in Air Quality Prediction—A Bucharest City Case Study. Sustainability 2023, 15, 8445. [Google Scholar] [CrossRef]
- Jonson, J.E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe. Environ. Res. Lett. 2017, 12, 094017. [Google Scholar] [CrossRef]
- Lei, T.M.T.; Ng, S.C.W.; Siu, S.W.I. Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau. Sustainability 2023, 15, 5341. [Google Scholar] [CrossRef]
- Lei, T.M.T.; Siu, S.W.I.; Monjardino, J.; Mendes, L.; Ferreira, F. Using Machine Learning Methods to Forecast Air Quality: A Case Study in Macao. Atmosphere 2022, 13, 1412. [Google Scholar] [CrossRef]
- WHO. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals; WHO: Geneva, Switzerland, 2021; Available online: https://iris.who.int/bitstream/handle/10665/342703/9789240027053-eng.pdf?sequence=1 (accessed on 1 May 2024).
- Zaheer, J.; Jeon, J.; Lee, S.-B.; Kim, J.S. Effect of Particulate Matter on Human Health, Prevention, and Imaging Using PET or SPECT. Prog. Med. Phys. 2018, 29, 81. [Google Scholar] [CrossRef]
- Mathew, A.; Gokul, P.R.; Raja Shekar, P.; Arunab, K.S.; Ghassan Abdo, H.; Almohamad, H.; Abdullah Al Dughairi, A. Air Quality Analysis and PM2.5 modelling using machine learning techniques: A study of Hyderabad City in India. Cogent Eng. 2023, 10, 2243743. [Google Scholar] [CrossRef]
- Raju, L.; Gandhimathi, R.; Mathew, A.; Ramesh, S.T. Spatio-temporal modelling of particulate matter concentrations using satellite derived aerosol optical depth over coastal region of Chennai in India. Ecol. Inform. 2022, 69, 101681. [Google Scholar] [CrossRef]
- Ma, X.; Chen, T.; Ge, R.; Cui, C.; Xu, F.; Lv, Q. Time Series-based PM2.5 concentration prediction in Jing-jin-ji Area using machine learning algorithm models. Heliyon 2022, 8, e10691. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Gasana, J.; Al-Dabbous, A.; Alajeel, A.; Al-Shatti, A.; Behbehani, W.; Malak, M. Exposure levels of air pollution (PM2.5) and Associated Health Risk in Kuwait. Environ. Res. 2019, 179, 108730. [Google Scholar] [CrossRef] [PubMed]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 reduces global and regional life expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- Bu, X.; Xie, Z.; Liu, J.; Wei, L.; Wang, X.; Chen, M.; Ren, H. Global PM2.5-attributable health burden from 1990 to 2017: Estimates from the global burden of disease study 2017. Environ. Res. 2021, 197, 111123. [Google Scholar] [CrossRef]
- Burnett, R.T.; Pope, C.A.; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.; Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Diao, B.; Ding, L.; Zhang, Q.; Na, J.; Cheng, J. Impact of Urbanization on PM2.5-Related Health and Economic Loss in China 338 Cities. Int. J. Environ. Res. Public Health 2020, 17, 990. [Google Scholar] [CrossRef]
- Geng, G.; Zheng, Y.; Zhang, Q.; Xue, T.; Zhao, H.; Tong, D.; Zheng, B.; Li, M.; Liu, F.; Hong, C.; et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 2021, 14, 645–650. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, Y.; Shi, M.; Lian, Y. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Ouyang, R.; Yang, S.; Xu, L. Analysis and Risk Assessment of PM2.5-Bound PAHs in a Comparison of Indoor and Outdoor Environments in a Middle School: A Case Study in Beijing, China. Atmosphere 2020, 11, 904. [Google Scholar] [CrossRef]
- Yu, W.; Guo, Y.; Shi, L.; Li, S. The association between long-term exposure to low-level PM2.5 and mortality in the State of Queensland, Australia: A modelling study with the difference-in-differences approach. PLoS Med. 2020, 17, e1003141. [Google Scholar] [CrossRef]
- Alyousifi, Y.; Ibrahim, K.; Kang, W.; Zin, W.Z. Markov chain modeling for Air Pollution Index based on maximum a posteriori method. Air Qual. Atmos. Health 2019, 12, 1521–1531. [Google Scholar] [CrossRef]
- Faganeli Pucer, J.; Pirš, G.; Štrumbelj, E. A bayesian approach to forecasting daily air-pollutant levels. Knowl. Inf. Syst. 2018, 57, 635–654. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, H.; Mao, G.; Yang, P. A bayesian hierarchical model for urban air quality prediction under uncertainty. Atmos. Environ. 2008, 42, 8464–8469. [Google Scholar] [CrossRef]
- Polat, E.; Gunay, S. The comparison of partial least squares regression, principal component regression and ridge regression with multiple linear regression for predicting PM10 concentration level based on meteorological parameters. J. Data Sci. 2021, 13, 663–692. [Google Scholar] [CrossRef]
- Riccio, A.; Barone, G.; Chianese, E.; Giunta, G. A hierarchical bayesian approach to the spatio-temporal modeling of air quality data. Atmos. Environ. 2006, 40, 554–566. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, H.; Palazoglu, A.; Singh, A.; Zhang, W.; Liu, S. Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 2013, 443, 93–103. [Google Scholar] [CrossRef]
- Ni, X.Y.; Huang, H.; Du, W.P. Relevance analysis and short-term prediction of PM 2.5 concentrations in Beijing based on multi-source Data. Atmos. Environ. 2017, 150, 146–161. [Google Scholar] [CrossRef]
- Essamlali, I.; Nhaila, H.; El Khaili, M. Supervised Machine Learning Approaches for Predicting Key Pollutants and for the Sustainable Enhancement of Urban Air Quality: A Systematic Review. Sustainability 2024, 16, 976. [Google Scholar] [CrossRef]
- Zareba, M.; Cogiel, S.; Danek, T.; Weglinska, E. Machine Learning Techniques for Spatio-Temporal Air Pollution Prediction to Drive Sustainable Urban Development in the Era of Energy and Data Transformation. Energies 2024, 17, 2738. [Google Scholar] [CrossRef]
- Bellinger, C.; Mohomed Jabbar, M.S.; Zaïane, O.; Osornio-Vargas, A. A systematic review of data mining and machine learning for Air Pollution Epidemiology. BMC Public Health 2017, 17, 907. [Google Scholar] [CrossRef]
- Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.; Nahhal, T. Are formal methods applicable to machine learning and Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022. [Google Scholar] [CrossRef]
- Raman, R.; Gupta, N.; Jeppu, Y. Framework for formal verification of machine learning based complex system-of-Systems. Insight 2023, 26, 91–102. [Google Scholar] [CrossRef]
- Zareba, M.; Weglinska, E.; Danek, T. Air pollution seasons in urban moderate climate areas through Big Data Analytics. Sci. Rep. 2024, 14, 3058. [Google Scholar] [CrossRef]
- Mampitiya, L.; Rathnayake, N.; Hoshino, Y.; Rathnayake, U. Forecasting PM10 levels in Sri Lanka: A comparative analysis of machine learning models PM10. J. Hazard. Mater. Adv. 2024, 13, 100395. [Google Scholar] [CrossRef]
- Elangasinghe, M.A.; Singhal, N.; Dirks, K.N.; Salmond, J.A. Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5, 696–708. [Google Scholar] [CrossRef]
- Méndez, M.; Merayo, M.G.; Núñez, M. Machine learning algorithms to Forecast Air Quality: A survey. Artif. Intell. Rev. 2023, 56, 10031–10066. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 26–28 October 2014; Available online: https://arxiv.org/pdf/1406.1078 (accessed on 1 May 2024).
- Abdallah, M.S.; Samaan, G.H.; Wadie, A.R.; Makhmudov, F.; Cho, Y.-I. Light-Weight Deep Learning Techniques with Advanced Processing for Real-Time Hand Gesture Recognition. Sensors 2023, 23, 2. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, W.; Feng, J.; Zhang, J. Research on Satellite Network Traffic Prediction Based on Improved GRU Neural Network. Sensors 2022, 22, 8678. [Google Scholar] [CrossRef]
- Thanthawy Sukanda, A.J.; Adytia, D. Wave forecast using bidirectional GRU and GRU method case study in Pangandaran, Indonesia. In Proceedings of the 2022 International Conference on Data Science and Its Applications (ICoDSA), Bandung, Indonesia, 6–7 July 2022. [Google Scholar] [CrossRef]
- Moharm, K.; Eltahan, M.; Elsaadany, E. Wind speed forecast using LSTM and Bi-LSTM algorithms over Gabal El-Zayt Wind Farm. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020. [Google Scholar] [CrossRef]
- Mampitiya, L.; Rathnayake, N.; Leon, L.P.; Mandala, V.; Azamathulla, H.M.; Shelton, S.; Hoshino, Y.; Rathnayake, U. Machine Learning Techniques to Predict the Air Quality Using Meteorological Data in Two Urban Areas in Sri Lanka. Environments 2023, 10, 141. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, L.; Noels, L. Recurrent neural networks (RNNs) with dimensionality reduction and break down in computational mechanics; application to multi-scale localization step. Comput. Methods Appl. Mech. Eng. 2022, 390, 114476. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Yang, H.; Zhang, L.; Yao, Y. Machine learning for pore-water pressure time-series prediction: Application of recurrent neural networks. Geosci. Front. 2021, 12, 453–467. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Li, J.; Sun, Q.; Wang, H. NGCU: A new RNN model for time-series data prediction. Big Data Res. 2022, 27, 100296. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R. Machine learning approaches for outdoor air quality modelling: A systematic review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Zhang, W.; Sun, D. Short-term effects of air pollution on lower respiratory diseases and forecasting by the group method of data handling. Atmos. Environ. 2012, 51, 29–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Prediction of hourly PM2.5 and PM10 concentrations in Chongqing City in China based on Artificial Neural Network. Aerosol Air Qual. Res. 2023, 23, 220448. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Haider, A.; Khan, S.; Mohyuddin, A.; Lei, T.; Goh, H.H.; Othman, M.H.D.; Anouzia, A.; Aziz, F.; Mahmoud, M. Technological Solutions for air pollution to mitigate climate change: A strategy to facilitate glbal transition towards blue sky and net-zero emissions. Chem. Pap. 2024. [Google Scholar] [CrossRef]
- Mamić, L.; Gašparović, M.; Kaplan, G. Developing PM2.5 and PM10 prediction models on a national and regional scale using open-source remote sensing data. Environ. Monit. Assess. 2023, 195, 644. [Google Scholar] [CrossRef]
- Ayus, I.; Natarajan, N.; Gupta, D. Comparison of machine learning and deep learning techniques for the prediction of Air Pollution: A Case Study from China. Asian J. Atmos. Environ. 2023, 17, 4. [Google Scholar] [CrossRef]
Types of Data | Variables | Description of Variables |
---|---|---|
Air Quality | PM10, PM2.5, NO2, CO | Mean hourly concentration values (micrograms per cubic meter) |
16D1, 23D0, 23D1, 23D2, 23D3 | 16D1: 24 h concentration averaging period between 16:00 of D1 and 15:00 of D0 23D0: 24 h concentration averaging period between 0:00 and 23:59 of D0 23D1: 24 h concentration averaging period between 0:00 and 23:59 of D1 23D2: 24 h concentration averaging period between 0:00 and 23:59 of D2 23D3: 24 h concentration averaging period between 0:00 and 23:59 of D3 | |
D0, D1, D2, D3 | D0: Prediction Day; D1: Prediction Day Minus One; D2: Prediction Day Minus Two; D3: Prediction Day Minus Three | |
Meteorological Variables | H1000, H850, H700, H500 | Geopotential height of one thousand hectopascal, eight hundred and fifty hectopascal, seven hundred hectopascal, and five hundred hectopascal (meters) |
TAR925, TAR850, TAR700 | Air temperature of nine hundred and twenty-five hectopascal, eight hundred and fifty hectopascal, seven hundred hectopascal (degree Celsius) | |
HR925, HR850, HR700 | Relative humidity of nine hundred and twenty-five hectopascal, eight hundred and fifty hectopascal, seven hundred hectopascal (percentage) | |
TD925, TD850, TD700 | Dew point temperature of nine hundred and twenty-five hectopascal, eight hundred and fifty hectopascal, seven hundred hectopascal (degree Celsius) | |
THI850, THI700, THI500 | Thickness of eight hundred and fifty hectopascal, seven hundred hectopascal, and five hundred hectopascal (meters) | |
STB925, STB850, STB700 | Stability of nine hundred and twenty-five hectopascal, eight hundred and fifty hectopascal, seven hundred hectopascal (degree Celsius) | |
T_AIR_MX, T_AIR_MD, T_AIR_MN | Highest, mean, and lowest air temperature (degree Celsius) | |
HRMX, HRMD, HRMN | Highest, mean, and lowest relative humidity (percentage) | |
TD_MD | Mean dew point temperature (degree Celsius) | |
RRTT | Rainfall (millimeters) | |
VMED | Mean wind speed (meters per second) | |
PREV_WDIR | Predominant wind direction (degree) | |
Other Variables | DD | Number of sunshine hours per day (hour) |
FF | Weekday indicator: non-weekend = 0 and weekend = 1 |
Models | Model Parameters and Hyperparameters | |
---|---|---|
ANN | learning rate | 0.0005 |
epochs | 100 | |
batch_size | 32 | |
validation split | 0.3 | |
GRU | optimizer | adam |
layers | 100 | |
epochs | 500 | |
batch size | 32 | |
LSTM | optimizer | adam |
epochs | 20 | |
batch size | 64 | |
RF | n_estimators | 100 |
criterion | squared error | |
min_sample_split | 2 | |
max_depth | none | |
RNN | optimizer | adam |
layers | 100 | |
epochs | 500 | |
batch size | 32 | |
SVR | kernal | linear |
degree | 3 | |
gamma | scaler |
Categories | Model | Pollutant | Model Performance Indicators | |||
---|---|---|---|---|---|---|
RMSE | MAE | PCC | KTC | |||
Deep Learning Model | ANN | PM10 | 16.15 | 12.63 | 0.84 | 0.67 |
PM2.5 | 6.94 | 5.13 | 0.87 | 0.71 | ||
NO2 | 13.34 | 10.16 | 0.82 | 0.64 | ||
CO | 0.58 | 0.51 | 0.37 | 0.25 | ||
Deep Learning Model | GRU | PM10 | 24.26 | 19.19 | 0.74 | 0.55 |
PM2.5 | 12.18 | 9.19 | 0.73 | 0.56 | ||
NO2 | 15.07 | 12.03 | 0.80 | 0.62 | ||
CO | 0.38 | 0.30 | 0.61 | 0.42 | ||
Deep Learning Model | LSTM | PM10 | 16.69 | 14.20 | 0.88 | 0.70 |
PM2.5 | 9.58 | 8.16 | 0.86 | 0.69 | ||
NO2 | 11.64 | 9.32 | 0.86 | 0.71 | ||
CO | 0.29 | 0.24 | 0.69 | 0.49 | ||
Machine Learning Model | RF | PM10 | 6.81 | 4.86 | 0.96 | 0.84 |
PM2.5 | 2.04 | 1.20 | 0.99 | 0.92 | ||
NO2 | 6.93 | 4.84 | 0.94 | 0.81 | ||
CO | 0.12 | 0.09 | 0.82 | 0.58 | ||
Deep Learning Model | RNN | PM10 | 21.16 | 18.06 | 0.78 | 0.58 |
PM2.5 | 12.76 | 10.35 | 0.67 | 0.48 | ||
NO2 | 19.08 | 15.86 | 0.71 | 0.52 | ||
CO | 0.39 | 0.31 | 0.44 | 0.29 | ||
Machine Learning Model | SVR | PM10 | 7.45 | 5.63 | 0.95 | 0.82 |
PM2.5 | 3.52 | 2.46 | 0.96 | 0.84 | ||
NO2 | 12.19 | 10.12 | 0.92 | 0.77 | ||
CO | 0.28 | 0.24 | 0.72 | 0.51 |
Categories | Model | Pollutant | SD of the Five Model Runs | |||
---|---|---|---|---|---|---|
RMSE | MAE | PCC | KTC | |||
Deep Learning Model | ANN | PM10 | 4.06 | 3.78 | 0.06 | 0.06 |
PM2.5 | 1.02 | 0.76 | 0.03 | 0.03 | ||
NO2 | 2.03 | 1.71 | 0.05 | 0.05 | ||
CO | 0.21 | 0.19 | 0.09 | 0.07 | ||
Deep Learning Model | GRU | PM10 | 6.21 | 5.41 | 0.08 | 0.07 |
PM2.5 | 1.28 | 1.03 | 0.03 | 0.02 | ||
NO2 | 2.31 | 2.00 | 0.04 | 0.05 | ||
CO | 0.06 | 0.06 | 0.04 | 0.03 | ||
Deep Learning Model | LSTM | PM10 | 1.68 | 1.47 | 0.02 | 0.02 |
PM2.5 | 2.54 | 2.29 | 0.03 | 0.04 | ||
NO2 | 2.48 | 2.36 | 0.02 | 0.03 | ||
CO | 0.04 | 0.04 | 0.07 | 0.06 | ||
Machine Learning Model | RF | PM10 | 0.04 | 0.05 | 0.00 | 0.00 |
PM2.5 | 0.03 | 0.01 | 0.00 | 0.00 | ||
NO2 | 0.02 | 0.02 | 0.00 | 0.00 | ||
CO | 0.00 | 0.00 | 0.00 | 0.01 | ||
Deep Learning Model | RNN | PM10 | 2.93 | 2.63 | 0.06 | 0.06 |
PM2.5 | 4.35 | 3.62 | 0.09 | 0.09 | ||
NO2 | 2.08 | 1.96 | 0.04 | 0.04 | ||
CO | 0.10 | 0.08 | 0.04 | 0.02 | ||
Machine Learning Model | SVR | PM10 | 0.00 | 0.00 | 0.00 | 0.00 |
PM2.5 | 0.00 | 0.00 | 0.00 | 0.00 | ||
NO2 | 0.00 | 0.00 | 0.00 | 0.00 | ||
CO | 0.00 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, T.M.T.; Cai, J.; Molla, A.H.; Kurniawan, T.A.; Kong, S.S.-K. Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals. Sustainability 2024, 16, 7477. https://doi.org/10.3390/su16177477
Lei TMT, Cai J, Molla AH, Kurniawan TA, Kong SS-K. Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals. Sustainability. 2024; 16(17):7477. https://doi.org/10.3390/su16177477
Chicago/Turabian StyleLei, Thomas M. T., Jianxiu Cai, Altaf Hossain Molla, Tonni Agustiono Kurniawan, and Steven Soon-Kai Kong. 2024. "Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals" Sustainability 16, no. 17: 7477. https://doi.org/10.3390/su16177477
APA StyleLei, T. M. T., Cai, J., Molla, A. H., Kurniawan, T. A., & Kong, S. S. -K. (2024). Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals. Sustainability, 16(17), 7477. https://doi.org/10.3390/su16177477