The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
3. Materials and Methods
3.1. Data Source
3.2. Variable Selection
3.3. Econometric Model
4. Estimation Results and Analysis
4.1. The Baseline Estimation Results
4.2. Main Results Based on IV Regression
4.3. Robustness Check
4.4. Main Results Based on Mediating Effect Regression
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Liu, F.; Ma, X.; Guo, G.; Liu, B.; Cheng, T.; Liang, T.; Tao, W.; Chen, X.; Wang, X. Greenhouse gas emissions from vegetables production in China. J. Clean. Prod. 2021, 317, 128449. [Google Scholar] [CrossRef]
- Leong, W.; Teh, S.; Hossain, M.M.; Nadarajaw, T.; Zabidi-Hussin, Z.; Chin, S.; Lai, K.; Lim, S.E. Application, monitoring and adverse effects in pesticide use: The importance of reinforcement of Good Agricultural Practices (GAPs). J. Environ. Manag. 2020, 260, 109987. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Lu, J.; Wu, L.; Yin, S. Adoption behavior of green control techniques by family farms in China: Evidence from 676 family farms in Huang-huai-hai Plain. Crop Prot. 2017, 99, 76–84. [Google Scholar] [CrossRef]
- Zeng, J.; Li, D.; Ma, C.; Wang, B.; Gao, L. The Impact of Different Uses of the Internet on Farmers’ Adoption of Soil Testing and Formulated Fertilization Technology in Rural China. Int. J. Environ. Res. Public Health 2023, 20, 562. [Google Scholar] [CrossRef] [PubMed]
- Yusheng, K.; Ntarmah, A.H. Developing a rural ecological assessment index for Jiangsu Province, China. J. Nat. Conserv. 2021, 64, 126093. [Google Scholar] [CrossRef]
- Gokool, S.; Mahomed, M.; Kunz, R.; Clulow, A.; Sibanda, M.; Naiken, V.; Chetty, K.; Mabhaudhi, T. Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis. Sustainability 2023, 15, 3557. [Google Scholar] [CrossRef]
- Gorai, T.; Ahmed, N.; Patra, A.K.; Sahoo, R.N.; Sarangi, A.; Meena, M.C.; Sharma, R.K. Site Specific Nutrient Management of an Intensively Cultivated Farm Using Geostatistical Approach. Proc. Natl. Acad. Sci. India Sect. B Biol. 2017, 87, 477–488. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Hussain, S.; Zhang, S.; Khayyam, M.; Ihtisham, M.; Asongu, S.A. Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review. Agriculture 2021, 11, 984. [Google Scholar] [CrossRef]
- Knierim, A.; Kernecker, M.; Erdle, K.; Kraus, T.; Borges, F.; Wurbs, A. Smart farming technology innovations—Insights and reflections from the German Smart-AKIS hub. NJAS Wagening. J. Life Sci. 2019, 90–91, 100314. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Balyan, S.; Jangir, H.; Tripathi, S.N.; Tripathi, A.; Jhang, T.; Pandey, P.; Wang, G. Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture. Sustainability 2024, 16, 475. [Google Scholar] [CrossRef]
- CNNIC. The 51st China Statistical Report on Internet Development. Available online: https://www.cnnic.net.cn/n4/2023/0302/c199-10755.html (accessed on 4 July 2024).
- Yang, C.; Ji, X.; Cheng, C.; Liao, S.; Bright, O.; Zhang, Y. Digital economy empowers sustainable agriculture: Implications for farmers’ adoption of ecological agricultural technologies. Ecol. Indic. 2024, 159, 111723. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y. The Influence of Digital Literacy on the Phenomenon of Deviation between Farmers’ E-Commerce Sales Willingness and Behavior: Evidence from Rural China. Sustainability 2024, 16, 3000. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Prot. 2015, 67, 184–190. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Wu, R.; Chen, Y.; Jiang, M.; Zhang, J.; Emilio, J.M.; Jiménez Macías, E. Research on Government Green Subsidy Strategy of Heterogeneous Agricultural Product Supply Chain. Discret. Dyn. Nat. Soc. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Guo, L.; Li, H.; Cao, X.; Cao, A.; Huang, M. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Zhao, P.; Chen, K.; Wu, L. Factors affecting the willingness of agricultural green production from the perspective of farmers’ perceptions. Sci. Total Environ. 2020, 738, 140289. [Google Scholar] [CrossRef]
- Gong, Y.; Baylis, K.; Kozak, R.; Bull, G. Farmers’ risk preferences and pesticide use decisions: Evidence from field experiments in China. Agric. Econ. Blackwell 2016, 47, 411–421. [Google Scholar] [CrossRef]
- Shen, Y.; Kong, W.; Shi, R.; Du, R.; Zhao, M. Farmers’ adoption behavior of conservation tillage technology: A multidimensional heterogeneity perspective. Environ. Sci. Pollut. Res. 2023, 30, 37744–37761. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Q.; Yang, C.; Grant, M.K. Cooperative membership, service provision, and the adoption of green control techniques: Evidence from China. J. Clean. Prod. 2023, 384, 135462. [Google Scholar] [CrossRef]
- Jin, S.; Bluemling, B.; Mol, A.P.J. Information, trust and pesticide overuse: Interactions between retailers and cotton farmers in China. NJAS Wagening. J. Life Sci. 2015, 72–73, 23–32. [Google Scholar] [CrossRef]
- Cafer, A.M.; Rikoon, J.S. Adoption of new technologies by smallholder farmers: The contributions of extension, research institutes, cooperatives, and access to cash for improving tef production in Ethiopia. Agric. Hum. Values 2018, 35, 685–699. [Google Scholar] [CrossRef]
- Grönroos, C. Value-driven relational marketing: From products to resources and competencies. J. Mark. Manag. 1997, 13, 407–419. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, R.; Yao, L.; Zhao, M. Perceived Value, Government Regulations, and Farmers’ Agricultural Green Production Technology Adoption: Evidence from China’s Yellow River Basin. Environ. Manag. 2024, 73, 509–531. [Google Scholar] [CrossRef]
- Paresys, L.; Malezieux, E.; Huat, J.; Kropff, M.J.; Rossing, W.A.H. Between all-for-one and each-for-himself: On-farm competition for labour as determinant of wetland cropping in two Beninese villages. Agric. Syst. 2018, 159, 126–138. [Google Scholar] [CrossRef]
- Yin, Z.; Li, B.; Gu, D.; Huang, J.; Zhang, L. Modeling of Farmers’ Vegetable Safety Production Based on Identification of Key Risk Factors From Beijing, China. Risk Anal. 2022, 42, 2089–2106. [Google Scholar] [CrossRef]
- Andert, S.; Buerger, J.; Gerowitt, B. On-farm pesticide use in four Northern German regions as influenced by farm and production conditions. Crop Prot. 2015, 75, 1–10. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Chen, H.P.; Nguyen, T.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too much to handle? Pesticide dependence of smallholder vegetable farmers in Southeast Asia. Sci. Total Environ. 2017, 593, 470–477. [Google Scholar] [CrossRef]
- Savari, M.; Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Gupta, G.K.; Sharma, S.K. Influence, optimization, energy budgeting and monetary considerations of different time intervals between fungicidal seed treatment and sowing on Sclerotium blight of soybean. Crop Prot. 2009, 28, 854–858. [Google Scholar] [CrossRef]
- Wang, J.; Tao, J.; Yang, C.; Chu, M.; Lam, H. A general framework incorporating knowledge, risk perception and practices to eliminate pesticide residues in food: A Structural Equation Modelling analysis based on survey data of 986 Chinese farmers. Food Control 2017, 80, 143–150. [Google Scholar] [CrossRef]
- Mangwende, E.; Chirwa, P.W.; Aveling, T.A.S. Evaluation of seed treatments against Colletotrichum kahawae subsp. cigarro on Eucalyptus spp. Crop Prot. 2020, 132, 105113. [Google Scholar] [CrossRef]
- Hou, B.; Wang, Z.; Ying, R. Pesticide Residues and Wheat Farmer’s Cognition: A China Scenario. Agric. Res. 2016, 5, 51–63. [Google Scholar] [CrossRef]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. In Proceedings of the International Conference on Environmental Science and Development (ICESD 2012), Hong Kong, China, 5–7 January 2012; Volume 1, pp. 287–297. [Google Scholar] [CrossRef]
- Garcia, M.G.; Fernandez-Lopez, C.; Polesel, F.; Trapp, S. Predicting the uptake of emerging organic contaminants in vegetables irrigated with treated wastewater—Implications for food safety assessment. Environ. Res. 2019, 172, 175–181. [Google Scholar] [CrossRef]
- Ullah, A.; Arshad, M.; Kaechele, H.; Khan, A.; Mahmood, N.; Mueller, K. Information asymmetry, input markets, adoption of innovations and agricultural land use in Khyber Pakhtunkhwa, Pakistan. Land Use Policy 2020, 90, 104261. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature. Agric. Econ. Blackwell 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Harper, J.K.; Roth, G.W.; Garalejic, B.; Skrbic, N. Programs to promote adoption of conservation tillage: A Serbian case study. Land Use Policy 2018, 78, 295–302. [Google Scholar] [CrossRef]
- Moskell, C.; Turner, R.W. Can a YouTube video lead to changes in environmental beliefs, attitudes, norms, and intended behavior? J. Environ. Stud. Sci. 2022, 12, 10–17. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W. Smartphone-based information acquisition and wheat farm performance: Insights from a doubly robust IPWRA estimator. Electron. Commer. Res. 2023, 23, 633–658. [Google Scholar] [CrossRef]
- Hong, X.; Chen, Y.J.; Gong, Y.; Wang, H. Farmers’ green technology adoption: Implications from government subsidies and information sharing. Nav. Res. Logist. 2024, 71, 286–317. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, T.; Jia, W. Does Internet use promote the adoption of agricultural technology? Evidence from 1 449 farm households in 14 Chinese provinces. J. Integr. Agric. 2022, 21, 282–292. [Google Scholar] [CrossRef]
- Pan, Y.; Ban, L. A Major Leap from Information Literacy to Digital Literacy for All. Libr. J. 2022, 41, 4–9. [Google Scholar] [CrossRef]
- Gao, Y.; Zang, L.; Sun, J. Does Computer Penetration Increase Farmers’ Income? An Empirical Study from China. Telecommun. Policy 2018, 42, 345–360. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Y.; Chen, J.; Zhao, M. How far are green products from the Chinese dinner table? Chinese farmers’ acceptance of green planting technology. J. Clean. Prod. 2023, 410, 137141. [Google Scholar] [CrossRef]
- Mendes, J.A.J.; Carvalho, N.G.P.; Mourarias, M.N.; Careta, C.B.; Zuin, V.G.; Gerolamo, M.C. Dimensions of digital transformation in the context of modern agriculture. Sustain. Prod. Consum. 2022, 34, 613–637. [Google Scholar] [CrossRef]
- Nisula, A.; Heinänen, S.; Kiantoa, A.; Toth, I.; Blomqvist, K. A psychological perspective on the sociotechnical enablers of knowledge worker digital creativity. Digit. Creat. 2022, 33, 314–328. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Xu, Z. Tencent and Facebook data validate Metcalfe’s Law. J. Comput. Sci. Technol. 2015, 30, 246–251. [Google Scholar] [CrossRef]
- Wang, C.; Tong, Q.; Xia, C.; Shi, M.; Cai, Y. Does participation in e-commerce affect fruit farmers’ awareness of green production: Evidence from China. J. Environ. Plan. Manag. 2022, 67, 809–829. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Taheri, F.; D’Haese, M.; Fiems, D.; Hosseininia, G.H.; Azadi, H. Wireless sensor network for small-scale farming systems in southwest Iran: Application of Q-methodology to investigate farmers’ perceptions. Comput. Electron. Agric. 2020, 177, 105682. [Google Scholar] [CrossRef]
- Hackfort, S. Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- John, D.; Hussin, N.; Shahibi, M.S.; Ahmad, M.; Hashim, H.; Ametefe, D.S. A systematic review on the factors governing precision agriculture adoption among small-scale farmers. Outlook Agric. 2023, 52, 469–485. [Google Scholar] [CrossRef]
- Ncube, D. The Importance of Contract Farming to Small-scale Farmers in Africa and the Implications for Policy: A Review Scenario. Open Agric. J. 2020, 14, 59–86. [Google Scholar] [CrossRef]
- van der Burg, S.; Wiseman, L.; Krkeljas, J. Trust in farm data sharing: Reflections on the EU code of conduct for agricultural data sharing. Ethics Inf. Technol. 2021, 23, 185–198. [Google Scholar] [CrossRef]
- Maredia, M.K.; Reyes, B.; Ba, M.N.; Dabire, C.L.; Pittendrigh, B.; Bello-Bravo, J. Can mobile phone-based animated videos induce learning and technology adoption among low-literate farmers? A field experiment in Burkina Faso. Inf. Technol. Dev. 2018, 24, 429–460. [Google Scholar] [CrossRef]
- Chataut, G.; Bhatta, B.; Joshi, D.; Subedi, K.; Kafle, K. Greenhouse gases emission from agricultural soil: A review. J. Agric. Food Res. 2023, 11, 100533. [Google Scholar] [CrossRef]
- Nain, M.S.; Singh, R.; Mishra, J.R. Social networking of innovative farmers through WhatsApp messenger for learning exchange: A study of content sharing. Indian J. Agric. Sci. 2019, 89, 556–558. [Google Scholar] [CrossRef]
- Thakur, D.; Chander, M.; Katoch, V. WhatsApp model for farmer led extension: Linking actors and generating localized Information for farmers. Asian J. Agric. Ext. Econ. Sociol. 2018, 26, 1–8. [Google Scholar] [CrossRef]
- Naruka, P.S.; Verma, S.; Sarangdevot, S.S.; Pachauri, C.P.; Kerketta, S.; Singh, J.P. A Study on Role of WhatsApp in Agriculture Value Chains. Asian J. Agric. Ext. Econ. Sociol. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Spielman, D.; Lecoutere, E.; Makhija, S.; Van Campenhout, B.; Rausser, G.C.; Zilberman, D. Information and Communications Technology (ICT) and Agricultural Extension in Developing Countries. Annu. Rev. Resour. Econ. 2021, 13, 177–201. [Google Scholar] [CrossRef]
- Chan, R.C.H.; Chu, S.K.W.; Lee, C.W.Y.; Chan, B.K.T.; Leung, C.K. Knowledge Management using Social Media: A Comparative Study between Blogs and Facebook. Proc. Am. Soc. Inf. Sci. Technol. 2013, 50, 1–9. [Google Scholar] [CrossRef]
- Zhou, W.; Qing, C.; Deng, X.; Song, J.; Xu, D. How does Internet use affect farmers’ low-carbon agricultural technologies in southern China ? Environ. Sci. Pollut. Res. 2023, 30, 16476–16487. [Google Scholar] [CrossRef]
- Nakasone, E.; Torero, M. A text message away: ICTs as a tool to improve food security. Agric. Econ. Blackwell 2016, 47, 49–59. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Chen, T.; Tong, C.; Bai, Y.; Yang, J.; Cong, G.; Cong, T. Analysis of the Public Opinion Evolution on the Normative Policies for the Live Streaming E-Commerce Industry Based on Online Comment Mining under COVID-19 Epidemic in China. Mathematics 2022, 10, 3387. [Google Scholar] [CrossRef]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Wang, B.; Xie, F.; Kandampully, J.; Wang, J. Increase hedonic products purchase intention through livestreaming: The mediating effects of mental imagery quality and customer trust. J. Retail. Consum. Serv. 2022, 69, 103109. [Google Scholar] [CrossRef]
- Huang, T.Y.; Chen, W.K.; Chen, C.W.; Silalahi, A.D.K. Understanding how product reviews on YouTube affect consumers’ purchase behaviors in Indonesia: An exploration using the stimulus-organism-response paradigm. Hum. Behav. Emerg. Technol. 2022, 2022, 4976980. [Google Scholar] [CrossRef]
- Zeng, B.; Liu, X.; Zhang, W.; Wu, L.; Xu, D. Digital Transformation of Agricultural Products Purchasing: From the Perspective of Short Videos Live-Streaming. Sustainability 2023, 15, 14948. [Google Scholar] [CrossRef]
- Wang, L. Research on the Operation and Development Mode of Family Farm in the New Media Era. Educ. Reform Dev. 2020, 2, 98–101. [Google Scholar] [CrossRef]
- Lane, D.; Chatrchyan, A.; Tobin, D.; Thorn, K.; Allred, S.; Radhakrishna, R. Climate change and agriculture in New York and Pennsylvania: Risk perceptions, vulnerability and adaptation among farmers. Renew. Agric. Food Syst. 2018, 33, 197–205. [Google Scholar] [CrossRef]
- Yu, X.; Sheng, G.; Sun, D.; He, R. Effect of digital multimedia on the adoption of agricultural green production technology among farmers in Liaoning Province, China. Sci. Rep. 2024, 14, 13092. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Hasan, A.K.; Li, X.; Xia, X. Evaluation of Farmers’ Ecological Cognition in Responses to Specialty Orchard Fruit Planting Behavior: Evidence in Shaanxi and Ningxia, China. Agriculture 2021, 11, 1056. [Google Scholar] [CrossRef]
- Qiao, D.; Li, N.; Cao, L.; Zhang, D.; Zheng, Y.; Xu, T. How Agricultural Extension Services Improve Farmers’ Organic Fertilizer Use in China? The Perspective of Neighborhood Effect and Ecological Cognition. Sustainability 2022, 14, 7166. [Google Scholar] [CrossRef]
- Ren, J.; Lei, H.; Ren, H. Livelihood Capital, Ecological Cognition, and Farmers’ Green Production Behavior. Sustainability 2022, 14, 16671. [Google Scholar] [CrossRef]
- Su, B.; Li, H.; Zhang, M.; Bilal, M.; Wang, M.; Atique, L.; Zhang, Z.; Zhang, C.; Han, G.; Qiu, Z.; et al. Optical and Physical Characteristics of Aerosol Vertical Layers over Northeastern China. Atmosphere 2020, 11, 501. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Zhang, X.; Ji, M. Pesticide Residues in Greenhouse Leafy Vegetables in Cold Seasons and Dietary Exposure Assessment for Consumers in Liaoning Province, Northeast China. Agronomy 2024, 14, 322. [Google Scholar] [CrossRef]
- Acharya, A.S.; Prakash, A.; Saxena, P.; Nigam, A. Sampling: Why and How of it? Anita S Acharya, Anupam Prakash, Pikee Saxena, Aruna Nigam. Indian J. Med. Spec. 2013, 4, 330–333. [Google Scholar] [CrossRef]
- Gong, S.; Sun, Z.; Wang, B.; Yu, Z. Could Digital Literacy Contribute to the Improvement of Green Production Efficiency in Agriculture? Sage Open 2024, 14, 1–18. [Google Scholar] [CrossRef]
- Xu, X.; Wang, F.; Xu, T.; Khan, S.U. How Does Capital Endowment Impact Farmers’ Green Production Behavior? Perspectives on Ecological Cognition and Environmental Regulation. Land 2023, 12, 1611. [Google Scholar] [CrossRef]
- Gumbi, N.; Gumbi, L.; Twinomurinzi, H. Towards Sustainable Digital Agriculture for Smallholder Farmers: A Systematic Literature Review. Sustainability-Basel 2023, 15, 12530. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, J. Digital Literacy, Farmers’ Income Increase and Rural Internal Income Gap. Sustainability 2023, 15, 11422. [Google Scholar] [CrossRef]
- Gu, D.; Guo, J.; Liang, C.; Lu, W.; Zhao, S.; Liu, B.; Long, T. Social media-based health management systems and sustained health engagement: TPB perspective. Int. J. Environ. Res. Public Health 2019, 16, 1495. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Adom, P.K. Environment and health nexus in Ghana: A study on perceived relationship and willingness-to-participate (WTP) in environmental policy design. Urban Climb 2020, 34, 100689. [Google Scholar] [CrossRef]
- Göbel, C.; Zwick, T. Are personnel measures effective in increasing productivity of old workers? Labour Econ. 2013, 22, 80–93. [Google Scholar] [CrossRef]
- Czyżewski, B.; Sapa, A.; Kułyk, P. Human Capital and Eco-Contractual Governance in Small Farms in Poland: Simultaneous Confirmatory Factor Analysis with Ordinal Variables. Agriculture 2021, 11, 46. [Google Scholar] [CrossRef]
- Guo, A.; Wei, X.; Zhong, F.; Wang, P.; Song, X. Does cognition of resources and the environment affect farmers’ production efficiency? Study of oasis agriculture in China. Agriculture 2022, 12, 592. [Google Scholar] [CrossRef]
- Li, B.; Qiao, Y.; Yao, R. What promote farmers to adopt green agricultural fertilizers? Evidence from 8 provinces in China. J. Clean. Prod. 2023, 426, 139123. [Google Scholar] [CrossRef]
- Helfand, S.M.; Taylor, M.P.H. The inverse relationship between farm size and productivity: Refocusing the debate. Food Policy 2021, 99, 101977. [Google Scholar] [CrossRef]
- Liu, B.Y.; Shi, K.; Liu, Z.; Qiu, L.; Wang, Y.; Liu, H.; Fu, X. The Effect of Technical Training Provided by Agricultural Cooperatives on Farmers’ Adoption of Organic Fertilizers in China: Based on the Mediation Role of Ability and Perception. Int. J. Environ. Res. Public Health 2022, 19, 14277. [Google Scholar] [CrossRef] [PubMed]
- Adnan, N.; Nordin, S.M.; Rasli, A.M. A possible resolution of Malaysian sunset industry by green fertilizer technology: Factors affecting the adoption among paddy farmers. Environ. Sci. Pollut. Res. 2019, 26, 27198–27224. [Google Scholar] [CrossRef]
- Liu, M.; Liu, H. Farmers’ adoption of agriculture green production technologies: Perceived value or policy-driven? Heliyon 2024, 10, e23925. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Sun, Y.; Chen, Y.; Gao, Y. Opportunity exploitation and resource exploitation: An integrative growth model for entrepreneurship. Internet Res. 2016, 26, 498–528. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z. The impact of industrial structure upgrades on the urban—rural income gap: An empirical study based on China’s provincial panel data. Growth Chang. 2021, 52, 1761–1782. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, F.; Zhou, S.; Turvey, C.G. The Peer Effect of Training on Farmers’ Pesticides Application: A Spatial Econometric Approach. China Agric. Econ. Rev. 2020, 12, 481–505. [Google Scholar] [CrossRef]
- Fang, P.; Abler, D.; Lin, G.; Sher, A.; Quan, Q. Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China. Land 2021, 10, 858. [Google Scholar] [CrossRef]
- Kumari, S.; Jeble, S.; Patil, Y.B. Barriers to Technology Adoption in Agriculture-Based Industry and Its Integration into Technology Acceptance Model. Int. J. Agric. Resour. 2019, 14, 338–351. [Google Scholar] [CrossRef]
- Adesina, A.A.; Baidu-Forson, J. Farmers’ Perceptions and Adoption of New Agricultural Technology: Evidence from Analysis in Burkina Faso and Guinea, West Africa. Agric. Econ. Blackwell 1995, 13, 1–9. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.; Zhang, N.; Ying, R. Knowledge Training and the Change of Fertilizer Use Intensity: Evidence from Wheat Farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar] [CrossRef]
- Li, J.; He, R.; DeVoil, P.; Wan, S. Enhancing the application of organic fertilisers by members of agricultural cooperatives. J. Environ. Manag. 2021, 293, 112901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward cleaner production: What drives farmers to adopt eco-friendly agricultural production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Yang, J.Y.; Roh, T. Open for Green Innovation: From the Perspective of Green Process and Green Consumer Innovation. Sustainability 2019, 11, 3234. [Google Scholar] [CrossRef]
- Ji, C.; Jin, S.; Wang, H.; Ye, C. Estimating effects of cooperative membership on farmers’ safe production behaviors: Evidence from pig sector in China. Food Policy 2019, 83, 231–245. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, D.; Xue, Z.; Gao, Y. Research on the use of digital finance and the adoption of green control techniques by family farms in China. Technol. Soc. 2020, 62, 101323. [Google Scholar] [CrossRef]
- Weng, F.; Liu, X.; Huo, X. Impact of Internet Use on Farmers’ Organic Fertilizer Investment: A New Perspective of Access to Credit. Agriculture 2023, 13, 219. [Google Scholar] [CrossRef]
- Li, X.; Wu, L.; Gao, H.; Hu, N. Can digital literacy improve organic fertilizer utilization rates?: Empirical evidence from China. Environ. Dev. Sustain. 2024, 7, 1–26. [Google Scholar] [CrossRef]
- Peng, X.; Yan, X.; Wang, H. Study on the Effect of Digital Technology Adoption and Farmers’ Cognition on Fertilizer Reduction and Efficiency Improvement Behavior. Agriculture 2024, 14, 973. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Yi, X.; Yin, C. The direction of promoting smallholders’ adoption of agricultural green production technologies in China. J. Clean. Prod. 2023, 415, 137734. [Google Scholar] [CrossRef]
- Yu, L.; Nilsson, J.; Li, Y.; Guo, M. Cooperative membership and farmers’ environment-friendly practices: Evidence from Fujian, China. Heliyon 2023, 9, e20819. [Google Scholar] [CrossRef]
Variable | Definition | Value |
---|---|---|
Hazard Cognition | Failure to treat the seed before sowing increases the risk of microbial damage. | Strongly Disagree = 1, Disagree = 2, Fairly = 3, Agree = 4, Strongly Agree = 5 |
Insecticides penetrate the tissue and remain on the vegetables. | ||
Excessive use of chemical fertilizers can lead to higher nitrate content in vegetables. | ||
Non-compliant use of pesticides and fertilizers can leave residues on vegetables that are harmful to human health. | ||
Non-compliant use of pesticides and fertilizers can pollute the ecosystem. | ||
No use of banned pesticides, or fertilizers. | ||
Waste chemicals can pollute the ecosystem if not disposed of properly. | ||
Behavioral Cognition | I am willing to choose a regular farm store to buy insecticides. | |
I am willing to accept the technical specifications of the agricultural technician. | ||
I would choose to regulate the application of pesticides and fertilizers according to the instructions. | ||
I am willing to enforce strict safety intervals for pesticides. | ||
I am willing to aseptically treat the seeds before planting. | ||
I am willing to use water-saving irrigation techniques, and pest and disease biological control techniques. | ||
I am willing to properly dispose of discarded pesticide and fertilizer packaging, etc. | ||
Earnings Cognition | Adoption of green production techniques will reduce ecological pollution. | |
Applying chemicals such as pollution-free pesticides can reduce human health hazards. | ||
Safe use of pesticides and fertilizers is more important than control effectiveness. | ||
Adoption of green production technologies can help promote low-carbon agriculture. | ||
Adoption of green production technologies can contribute to carbon neutrality and peak carbon. | ||
The application of chemicals such as pollution-free pesticides can improve economic incomes. | ||
The adoption of green production techniques produces safer agricultural products. |
Variable | Hazard Cognition | Behavioral Cognition | Earnings Cognition | |
---|---|---|---|---|
Number of variable items | 7 | 7 | 7 | |
Cronbach’s alpha coefficient | 0.8299 | 0.8409 | 0.8829 | |
KMO value | 0.836 | 0.831 | 0.886 | |
Bartlett’s sphericity test | Chi-square | 2225.732 | 2524.742 | 3176.121 |
Degrees of freedom | 21 | 21 | 21 | |
Significance level | 0.000 | 0.000 | 0.000 |
Variable | Definition | Mean | SD |
---|---|---|---|
Green production behavior | Measured based on the cumulative extent of use of green agricultural technologies, aseptic seed treatment, soil-formula fertilization technology, pest and disease biological control technology, water-saving irrigation technology, and waste packaging treatment | 2.67 | 1.08 |
Digital learning literacy | The frequency of using the Internet for learning. Never = 1, rarely = 2, sometimes = 3, often = 4, and very often = 5 | 2.08 | 0.88 |
Digital social literacy | The frequency of using the Internet for socializing. Never = 1, rarely = 2, sometimes = 3, often = 4, and very often = 5 | 1.61 | 0.93 |
Digital transaction literacy | The frequency of using the Internet for selling. Never = 1, rarely = 2, sometimes = 3, often = 4, and very often = 5 | 2.72 | 1.03 |
Age | Year | 55.04 | 11.27 |
Gender | Male = 1, female = 0 | 0.57 | 0.50 |
Health | Poor = 1, fair = 2, good = 3, very good = 4, excellent = 5 | 2.92 | 1.08 |
Education | Illiterate = 1, primary school = 2, junior middle school = 3, high school and above = 4 | 1.95 | 0.78 |
Accessibility of villages | Yes = 1, no = 0 | 0.83 | 0.37 |
Political profile | Party members = 1, non-members = 0 | 0.10 | 0.30 |
Number of laborers | Count | 4.11 | 1.76 |
Village economy | Well below average = 1, below average = 2, average = 3, above average = 4, well above average = 5 | 2.80 | 0.99 |
Use of agricultural machinery | yes = 1, no = 0 | 0.52 | 0.50 |
Perceived risk | Health risk, environmental risk, disaster risk, cultivation risk, and lending risk. Of these risks, how many can be perceived, and what values are assigned | 2.65 | 1.01 |
Land size | Below 0.33(ha) = 1, 0.33–0.67(ha) = 2, 0.67–1(ha) = 3, 1–1.33(ha) = 4, above 1.33(ha) = 5 | 2.69 | 1.31 |
Membership in cooperatives | Knowledge, normative techniques, social relations, subsidies, and regulation. How many can be acquired, and what values are assigned | 3.00 | 1.18 |
Ecological cognition | Measured by validated factor analysis | 0.00 | 0.76 |
Region | Shenyang, yes = 1, no = 0; Liaoyang, yes = 1, no = 0; Panjin, yes = 1, no = 0; Dandong, yes = 1, no = 0 |
Variable | OLS (1) | OLS (2) | OLS (3) | Ordered Logit (4) | Ordered Logit (5) | Ordered Logit (6) |
---|---|---|---|---|---|---|
Digital learning literacy | 0.1987 *** (0.0379) | 0.4032 *** (0.0923) | ||||
Digital social literacy | 0.1592 *** (0.0314) | 0.3621 *** (0.0715) | ||||
Digital transaction literacy | 0.2416 *** (0.0485) | 0.6262 *** (0.1404) | ||||
Education | 0.0608 ** (0.0277) | 0.0700 ** (0.0281) | 0.0732 *** (0.0279) | 0.1183 * (0.0631) | 0.1240 * (0.0635) | 0.1294 ** (0.0632) |
Membership in cooperatives | 0.1034 *** (0.0376) | 0.0846 ** (0.0378) | 0.0755 ** (0.0372) | 0.2693 *** (0.0872) | 0.2390 *** (0.0869) | 0.2143 ** (0.0862) |
Perceived risk | 0.4590 *** (0.0327) | 0.4401 *** (0.0332) | 0.3682 *** (0.0423) | 1.0539 *** (0.0888) | 1.0222 *** (0.0874) | 0.8103 *** (0.1145) |
Village economy | 0.1333 *** (0.0277) | 0.1389 (0.0280) | 0.1238 *** (0.0286) | 0.2224 ** (0.1075) | 0.2006 * (0.1068) | 0.1681 (0.1076) |
Age | −0.0024 (0.0029) | −0.0031 (0.0029) | −0.0026 (0.0029) | −0.0065 (0.0065) | −0.0076 (0.0066) | −0.0056 (0.0064) |
Gender | −0.0499 (0.0574) | −0.0538 (0.0574) | −0.0661 (0.0567) | −0.1094 (0.1306) | −0.1228 (0.1296) | −0.1521 (0.1285) |
Health | 0.0269 (0.0324) | 0.0277 (0.0323) | −0.0063 (0.0315) | 0.0181 (0.0765) | 0.0222 (0.0751) | −0.0657 (0.0742) |
Political profile | 0.0400 (0.0806) | 0.0647 (0.0807) | 0.0659 (0.0805) | 0.0551 (0.1870) | 0.1015 (0.1833) | 0.1198 (0.1829) |
Number of laborers | −0.0208 (0.0167) | −0.0310 * (0.0167) | −0.0253 (0.0166) | −0.0506 (0.0381) | −0.0622 * (0.0374) | −0.0452 (0.0378) |
Use of agricultural machinery | 0.0619 (0.0574) | 0.0596 (0.0577) | 0.0783 (0.0572) | 0.1897 (0.1311) | 0.1873 (0.1303) | 0.2289 * (0.1296) |
Accessibility of villages | 0.0264 (0.0880) | 0.0345 (0.0910) | 0.0291 (0.0858) | −0.0419 (0.2031) | −0.0582 (0.2046) | −0.0342 (0.1991) |
Land size | −0.0115 (0.0421) | −0.0228 (0.0430) | −0.0083 (0.0414) | −0.0441 (0.0986) | −0.0606 (0.1005) | −0.0254 (0.0952) |
Constant | 0.3368 (0.2695) | 0.6219 ** (0.2603) | 0.5170 ** (0.2620) | - | - | - |
Observations | 884 | 884 | 884 | 884 | 884 | 884 |
R2/pseudo R2 | 0.39 | 0.39 | 0.40 | 0.16 | 0.16 | 0.17 |
Variable | Model (1) First Stage | Model (1) Second Stage | Model (2) First Stage | Model (2) Second Stage | Model (3) First Stage | Model (3) Second Stage |
---|---|---|---|---|---|---|
Digital learning literacy | 0.9678 *** (0.2702) | |||||
Digital social literacy | 1.0368 *** (0.2397) | |||||
Digital transaction literacy | 0.7835 *** (0.1688) | |||||
Digital learning literacy-IV | 0.2114 *** (0.0418) | |||||
Digital social literacy-IV | 0.0968 *** (0.0169) | |||||
Digital transaction literacy-IV | 0.3391 *** (0.0393) | |||||
Control | YES | YES | YES | YES | YES | YES |
Constant | 1.8999 *** (0.2491) | −1.0483 * (0.5658) | 0.5007 ** (0.2559) | 0.3985 (0.3404) | 1.1178 *** (0.2369) | 0.1107 (0.2953) |
F-Statistics | 23.0400 | 43.3641 | 26.1300 | 30.9648 | 54.4185 | 32.1259 |
p-Value | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Observations | 884 | 884 | 884 | 884 | 884 | 884 |
Variable | Match Stats | Treatment Group | Control Group | Bias (%) | Reducing Bias (%) | T-Value | p-Value |
---|---|---|---|---|---|---|---|
Age | pre-match | 54.883 | 55.125 | −2.2 | −209.6 | −0.31 | 0.758 |
post-match | 54.883 | 54.133 | 6.7 | 0.88 | 0.378 | ||
Gender | pre-match | 0.562 | 0.570 | −1.6 | −251.0 | −0.23 | 0.819 |
post-match | 0.562 | 0.590 | −5.6 | −0.71 | 0.475 | ||
Education | pre-match | 1.994 | 1.921 | 9.3 | 95.7 | 1.34 | 0.181 |
post-match | 1.994 | 1.997 | −0.4 | −0.05 | 0.959 | ||
Number of laborers | pre-match | 3.741 | 4.318 | −33.6 | 93.0 | −4.76 | 0.000 |
post-match | 3.741 | 3.701 | 2.3 | 0.31 | 0.756 | ||
Use of agricultural machinery | pre-match | 0.565 | 0.495 | 14.1 | 86.8 | 2.01 | 0.044 |
post-match | 0.565 | 0.556 | 1.9 | 0.24 | 0.813 | ||
Accessibility of villages | pre-match | 0.827 | 0.838 | −2.8 | 40.3 | −0.40 | 0.691 |
post-match | 0.827 | 0.821 | 1.7 | 0.21 | 0.837 | ||
Political profile | pre-match | 0.256 | 0.161 | 23.6 | 90.3 | 3.47 | 0.001 |
post-match | 0.256 | 0.247 | 2.3 | 0.27 | 0.786 |
Variable | Match Stats | Treatment Group | Control Group | Bias (%) | Reducing Bias (%) | T-Value | p-Value |
---|---|---|---|---|---|---|---|
Age | pre-match | 54.678 | 55.373 | −6.2 | 17.8 | −0.92 | 0.360 |
post-match | 54.763 | 55.335 | −5.1 | −0.72 | 0.469 | ||
Gender | pre-match | 0.577 | 0.557 | 4.0 | −4.9 | 0.60 | 0.548 |
post-match | 0.578 | 0.557 | 4.2 | 0.62 | 0.535 | ||
Education | pre-match | 1.981 | 1.917 | 8.3 | 89.1 | 1.24 | 0.216 |
post-match | 1.977 | 1.984 | −0.9 | −0.13 | 0.896 | ||
Number of laborers | pre-match | 4.220 | 4.000 | 12.5 | 85.1 | 1.86 | 0.064 |
post-match | 4.213 | 4.180 | 1.9 | 0.27 | 0.785 | ||
Use of agricultural machinery | pre-match | 0.556 | 0.487 | 13.9 | 66.2 | 2.06 | 0.040 |
post-match | 0.555 | 0.532 | 4.7 | 0.69 | 0.493 | ||
Accessibility of villages | pre-match | 0.829 | 0.838 | −2.2 | −98.0 | −0.33 | 0.741 |
post-match | 0.829 | 0.813 | 4.4 | 0.62 | 0.533 | ||
Political profile | pre-match | 0.217 | 0.175 | 10.5 | −0.7 | 1.57 | 0.117 |
post-match | 0.215 | 0.258 | −8.6 | −1.45 | 0.148 |
Variable | Match Stats | Treatment Group | Control Group | Bias (%) | Reducing Bias (%) | T-Value | p-Value |
---|---|---|---|---|---|---|---|
Age | pre-match | 54.873 | 55.288 | −3.7 | 2.1 | −0.53 | 0.593 |
post-match | 54.873 | 54.467 | 3.6 | 0.57 | 0.571 | ||
Gender | pre-match | 0.575 | 0.553 | 4.5 | −17.9 | 0.65 | 0.518 |
post-match | 0.575 | 0.601 | −5.3 | −0.87 | 0.386 | ||
Education | pre-match | 1.972 | 1.911 | 7.9 | 9.0 | 1.15 | 0.251 |
post-match | 1.972 | 2.028 | −7.2 | −1.14 | 0.253 | ||
Number of laborers | pre-match | 4.048 | 4.196 | −8.4 | 95.0 | −1.22 | 0.223 |
post-match | 4.048 | 4.041 | 0.4 | 0.07 | 0.944 | ||
Use of agricultural machinery | pre-match | 0.546 | 0.481 | 12.9 | 79.7 | 1.87 | 0.062 |
post-match | 0.546 | 0.533 | 2.6 | 0.43 | 0.671 | ||
Accessibility of villages | pre-match | 0.838 | 0.827 | 2.9 | −207.5 | 0.42 | 0.691 |
post-match | 0.838 | 0.804 | 9.0 | 1.43 | 0.152 | ||
Political profile | pre-match | 0.209 | 0.176 | 8.3 | 48.9 | 1.20 | 0.231 |
post-match | 0.209 | 0.192 | 4.3 | 0.69 | 0.493 |
Variable | Farmers’ Green Production Behavior | ||
---|---|---|---|
ATT | Standard Errors | t-Value | |
Digital learning literacy | 0.392 *** | 0.108 | 3.615 |
Digital social literacy | 0.375 *** | 0.092 | 4.091 |
Digital transaction literacy | 0.832 *** | 0.090 | 9.240 |
Variable | Digital Learning Literacy | Digital Social Literacy | Digital Transaction Literacy |
---|---|---|---|
Total effect (a1) | 0.1987 *** (0.0340) | 0.1592 *** (0.0334) | 0.2416 *** (0.0350) |
Effect of digital literacy on ecological cognition (b1) | 0.3988 *** (0.0668) | 0.3658 *** (0.0653) | 0.4695 *** (0.0688) |
Effect of ecological cognition on farmers’ green production behavior (c2) | 0.0831 *** (0.0170) | 0.0873 *** (0.0171) | 0.0772 *** (0.0170) |
Direct effect (c1) | 0.1655 *** (0.0343) | 0.1273 *** (0.0335) | 0.2054 *** (0.0355) |
Mediating effect (b1 c2)/bootstrap test value | 0.0331 *** (0.0088) | 0.0319 *** (0.0085) | 0.0362 *** (0.0096) |
Mediating effect share (b1 c2/a1) (%) | 16.6783 | 20.0589 | 14.9977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Z.; Han, X. The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition. Sustainability 2024, 16, 7507. https://doi.org/10.3390/su16177507
Liu X, Wang Z, Han X. The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition. Sustainability. 2024; 16(17):7507. https://doi.org/10.3390/su16177507
Chicago/Turabian StyleLiu, Xiao, Zhenyu Wang, and Xiaoyan Han. 2024. "The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition" Sustainability 16, no. 17: 7507. https://doi.org/10.3390/su16177507
APA StyleLiu, X., Wang, Z., & Han, X. (2024). The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition. Sustainability, 16(17), 7507. https://doi.org/10.3390/su16177507