
Citation: Tatar, A.; Shokrollahi, A.;

Zeinijahromi, A.; Haghighi, M. Deep

Learning for Predicting Hydrogen

Solubility in n-Alkanes: Enhancing

Sustainable Energy Systems.

Sustainability 2024, 16, 7512.

https://doi.org/10.3390/su16177512

Academic Editors: Weihua Cai,

Chao Xu, Zhonghao Rao,

Fuqiang Wang and Ming Gao

Received: 1 August 2024

Revised: 16 August 2024

Accepted: 26 August 2024

Published: 30 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Deep Learning for Predicting Hydrogen Solubility in n-Alkanes:
Enhancing Sustainable Energy Systems
Afshin Tatar , Amin Shokrollahi * , Abbas Zeinijahromi and Manouchehr Haghighi

School of Chemical Engineering, Discipline of Mining and Petroleum Engineering, The University of Adelaide,
Adelaide, SA 5005, Australia; afshin.tatar@adelaide.edu.au (A.T.); abbas.zeinijahromi@adelaide.edu.au (A.Z.);
manouchehr.haghighi@adelaide.edu.au (M.H.)
* Correspondence: amin.shokrollahi@adelaide.edu.au or shokrollahi.amin@gmail.com

Abstract: As global population growth and urbanisation intensify energy demands, the quest for
sustainable energy sources gains paramount importance. Hydrogen (H2) emerges as a versatile
energy carrier, contributing to diverse processes in energy systems, industrial applications, and
scientific research. To harness the H2 potential effectively, a profound grasp of its thermodynamic
properties across varied conditions is essential. While field and laboratory measurements offer
accuracy, they are resource-intensive. Experimentation involving high-pressure and high-temperature
conditions poses risks, rendering precise H2 solubility determination crucial. This study evaluates the
application of Deep Neural Networks (DNNs) for predicting H2 solubility in n-alkanes. Three DNNs
are developed, focusing on model structure and overfitting mitigation. The investigation utilises a
comprehensive dataset, employing distinct model structures. Our study successfully demonstrates
that the incorporation of dropout layers and batch normalisation within DNNs significantly mitigates
overfitting, resulting in robust and accurate predictions of H2 solubility in n-alkanes. The DNN
models developed not only perform comparably to traditional ensemble methods but also offer greater
stability across varying training conditions. These advancements are crucial for the safe and efficient
design of H2-based systems, contributing directly to cleaner energy technologies. Understanding H2

solubility in hydrocarbons can enhance the efficiency of H2 storage and transportation, facilitating its
integration into existing energy systems. This advancement supports the development of cleaner
fuels and improves the overall sustainability of energy production, ultimately contributing to a
reduction in reliance on fossil fuels and minimising the environmental impact of energy generation.

Keywords: hydrogen solubility; deep learning; machine learning; predictive modelling;
sustainable energy

1. Introduction

The rapid growth of the global population alongside the ongoing trend in urbanisa-
tion has resulted in a significant surge in energy requirements. This escalating demand
for energy necessitates the exploration of innovative, dependable, and environmentally
friendly energy sources. One such solution is the utilisation of hydrogen (H2) gas as a
versatile and sustainable energy carrier [1]. Therefore, it is crucial to possess a compre-
hensive understanding of the thermodynamic properties of H2 under various conditions.
This knowledge is indispensable for effectively navigating the behaviour of H2 across
diverse pressure (P), temperature (T), and environmental contexts. By delving into the
intricate interplay of H2’s thermodynamic characteristics, researchers and engineers can
make informed decisions, optimise processes, and ensure the safe and efficient utilisation
of H2 in a wide range of applications. Whether in energy systems, industrial processes,
or scientific investigations, a profound grasp of H2’s thermodynamics empowers us to
harness its potential with precision and confidence.

H2 holds substantial significance within the realms of both the petroleum and chemical
industries, exemplifying its multifaceted utility. In the pursuit of enhancing the quality of
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heavy petroleum fractions, a pivotal strategy involves elevating the H2-to-carbon ratio. This
objective is achieved by incorporating H2 into hydrocarbons through the hydrocracking
process [2]. Consequently, H2 solubility in hydrocarbon systems emerges as a pivotal
thermodynamic parameter, exerting considerable influence over the design, optimisation,
and efficiency of diverse chemical and petroleum industrial processes, as well as the
associated equipment.

The solubility of H2 in hydrocarbon systems is influenced by P, T, and the nature of
the hydrocarbon compound. Taking a thermodynamic perspective, the solubility of H2 in
hydrocarbons increases with the increase in T, P, and the hydrocarbon’s Carbon Number
(CN). This trend has been substantiated by experimental findings documented in the litera-
ture [3–5]. An elevated P and T and a higher CN of hydrocarbons foster greater interaction
between H2 molecules and the hydrocarbon matrix, leading to enhanced solubility.

Although field and laboratory measurements of H2 solubility in hydrocarbons provide
precise results, both methods are demanding in terms of time and resources. However,
engaging in comprehensive experiments involving heavy hydrocarbon systems under
conditions of elevated P and T introduces a considerable level of risk, rendering this option
unappealing within the industry. Consequently, the rapid and accurate determination
of H2 solubility is of utmost importance. In response to these challenges, the industry
seeks an approach that efficiently balances accuracy and speed in determining H2 sol-
ubility. Rapid and precise H2 solubility determination has transformative implications,
fostering safe and efficient decision-making within various sectors, including chemical and
petroleum industries.

Empirical paradigms, the Equation of States (EoS), and intelligent strategies present
promising avenues for predicting H2 solubility in hydrocarbon systems, offering expedited
and cost-effective alternatives to experimental measurements. Nonetheless, the inherent
complexity and non-linear nature of H2 solubility’s dependence on P, T, and the character-
istics of n-alkanes complicate the effectiveness of traditional empirical correlations and EoS
methods. One of the challenges with EoS methods is the time-consuming process of cali-
brating various parameters for each specific system. This involves extensive adjustments
that can be computationally intensive, particularly when striving for high accuracy across
different n-alkanes and operational conditions. Furthermore, near the critical point, where
phase behaviour is particularly sensitive, EoS models often face significant challenges in
maintaining accuracy. The non-linear interactions between H2 and hydrocarbons become
even more pronounced in these regions, further complicating the prediction process [6–8].
Consequently, the development and application of advanced predictive models, poten-
tially incorporating Machine Learning (ML) techniques, emerge as valuable pursuits in
enhancing the accuracy and reliability of H2 solubility predictions. Such models can better
navigate the intricate relationships that underlie H2 solubility behaviour across diverse
hydrocarbon systems and operational conditions. A comprehensive literature review on
the mentioned paradigms is provided in our previous study [9].

Recent advancements in ML and deep learning have seen their application in various
aspects of renewable energy research, such as optimising the operation of electricity–gas–
heat-integrated multi-energy microgrids under uncertainties [10], enhancing security in
real-time vehicle-to-grid dispatch [11], improving power forecasting in renewable power
plants through novel graph structures [12], calculating dew point pressure in gas condensate
reservoirs [13], and the application of Decision Trees (DTs) for the calculation of H2 solubility
in different chemicals [14]. In line with these developments, our study leverages Deep
Neural Networks (DNNs) to accurately predict H2 solubility in n-alkanes, contributing
to the efficient design of H2-based energy systems. This work underscores the growing
importance of advanced modelling techniques in promoting sustainable energy solutions.

The primary objective of this study is to evaluate the feasibility of employing DNNs
for predicting H2 solubility in n-alkanes. The investigation focuses on two pivotal aspects.
First, we analyse the impact of distinct model structures on predictive performance. Second,
we investigate the influence of incorporating dropout layers to mitigate overfitting. To
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achieve these goals, three distinct DNN models are constructed, compiled, and trained.
The development of these models follows robust methodologies, ensuring the reliability
of the results. Extensive assessments are carried out to evaluate the accuracy of each
model, ensuring their effectiveness in delivering reliable predictions. In the final stages of
this study, a comprehensive stability analysis is executed to assess both the accuracy and
precision of the developed model. This analysis is designed to ascertain the generalisability
of the developed models. Through this process, we gain valuable insights into the model’s
performance consistency and its ability to extrapolate knowledge to previously unseen data.

This paper comprises four distinct sections, each serving a specific purpose in address-
ing the research objectives. It begins with a concise introduction that outlines the context
and aims of this study. Following this, Section 2 presents a detailed description of the
modelling approaches and the database utilised, providing insights into their composition
and characteristics. Section 3 presents the results and discussions. It covers diverse aspects,
including the development of predictive models, analysis of errors, evaluation of stability,
and a comparison with existing literature models. This section provides a comprehensive
understanding of the models’ performance and their implications. This paper concludes in
Section 4 with a summary of key insights derived from this study’s findings and outlines
future prospects.

2. Modelling

The initial phase of model development entails data acquisition, a critical foundation
for building a robust ML model. The next step involves dividing the database. In this
study, the dataset is separated into three sets of training, validation, and testing. Although
extensive data cleaning and quality checks were carried out in our previous study [9], here,
the database was reviewed for any dubious sample. During model fitting, it is imperative
to use only the training and validation sets. The developed model was then applied on the
testing sets. The following sections provide detailed discussions on data splitting, model
development, and testing data modelling.

The framework illustrated in Figure 1 serves as a roadmap, outlining the sequence of
steps integral to the development of the model. As is shown, there are three main steps:
data preparation, training (enclosed by blue dashed line), and testing (enclosed by red
dashed line). Data preparation includes database development and splitting. The scaler
and model are developed in the training phase and are then used in the testing step. During
the training phase, it is crucial to utilise only the training and validation subsets. This
deliberate isolation is an approach designed to enhance the model’s ability to generalise
beyond the specific instances on which it has been trained. By restricting the model’s
exposure to the testing sets, the integrity of the evaluation process is maintained, ensuring
that performance assessments remain unaffected by any unintended familiarity with the
testing data. Following the model development, the resulting model is subsequently
applied to the testing sets. This stage serves as a test of the model’s predictive capability
and its ability to generalise to unseen data. A thorough evaluation against the testing
sets validates the model’s real-world applicability and its capacity to provide informed
predictions beyond the training context.

In the following sections, a thorough examination was conducted to clarify the com-
plexities of data partitioning, the methodologies used in model development, and the
rigorous evaluation of the developed model. Through these discussions, a comprehensive
understanding of the challenges and details of the methodology is presented, along with
the valuable insights it has the potential to generate.
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Figure 1. The roadmap for model development used in this study.

2.1. Database Development

A full presentation of the database development is provided in our previous study [9].
All the experimental samples were gathered from the open literature [3,5,15–41]. The
database underwent an additional review to ensure data quality. To avoid sparse data
samples, we focused on a specific range of pressure (0.101–559.5 MPa) and temperature
(92.3–664.05 K). Compared to the previous study [9], the operational variable cut-offs were
adjusted, and no Hat-outliers [42,43] were excluded from the database.

The solubility of H2 in n-alkanes depends on two primary categories of independent
variables: the type of n-alkane and operational factors. While a range of characteristics
can be used to describe n-alkanes, this study focused specifically on the critical features
essential for accurate estimation. The selected critical features for this study include CN,
critical temperature (TC) in Kelvin (K), and critical pressure (PC) in MPa. Operational
factors are represented by P and T, which reflect the conditions under which solubility is
measured. The characteristics of the n-alkanes utilised in this study are detailed in Table 1.

Furthermore, to enhance the analysis, two engineered features—dimensionless tem-
perature (TD) and dimensionless pressure (PD)—are introduced. These features are derived
by dividing the actual values of T and P by their respective critical values. Consequently,
the modelling process encompasses three types of features: three molecular characteristics
(CN, TC, and PC), two operational variables (T and P), and two engineered features (TD and
PD). All of these function as independent variables in the predictive model.
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Table 1. The characteristics of n-alkanes used in this study [44–50].

n-Alkane CN PC (MPa) TC (K)

methane 1 4.60 190.56
ethane 2 4.87 305.32
propane 3 4.25 369.83
n-butane 4 3.79 425.12
n-pentane 5 3.37 469.70
n-hexane 6 3.02 507.49
n-heptane 7 2.73 540.13
n-octane 8 2.49 568.88
n-decane 10 2.10 617.70
n-dodecane 12 1.82 658.10
n-hexadecane 16 1.43 722.10
n-eicosane 20 1.20 771.40
n-octacosane 28 0.95 844.00
n-hexatriacontane 36 0.85 896.00
n-hexatetracontane 46 0.45 1064.86

2.2. Data Split to the Training and Testing

In this study, the database was divided into three distinct sets: training, validation,
and testing. The model fitting process employs the training data, while the validation
dataset was utilised to assess the performance of the trained models during the training
phase. Upon successful completion of both training and validation, the model was
subsequently tested using data that were not seen during the training phase. In the
previous study [9], the performance of these models was evaluated using n-eicosane,
comprising 36 samples. To ensure a fair and equitable comparison, the same methodology
was adopted in this study.

To enhance the robustness of the results, data splitting in this study was conducted
based on n-alkanes rather than individual data samples. Specifically, the division was
performed on the count of n-alkanes, ensuring that all samples associated with a particular
chemical were consistently assigned to the same dataset. This methodology encourages the
model to independently learn the complexities of developing isotherms, rather than simply
focusing on the task of imputing missing data points. Figure 2 provides a clear illustration
of the partitioning of data into training and testing sets for three distinct chemicals within
a fixed P. Figure 2a illustrates the sample-wise data division, while Figure 2b depicts the
group-wise division. It is worth noting that in sample-wise splitting, the testing data
points are combined with the training data, facilitating the potential for predicting testing
data through interpolation. In contrast, group-wise splitting assigns the testing data to a
chemical that is not represented in the training set. Essentially, this method necessitates that
the model understands and predicts underlying trends based on the distinct characteristics
of each chemical.

Table 2 presents the various sets, detailing the names of the n-alkanes alongside
the corresponding sample counts for each set. Of the 15 n-alkanes, 9 are assigned to the
training set, 3 to the validation set, and 3 to the testing set, resulting in a nominal data
split ratio of 60:20:20. However, owing to the differing sample counts for the various
n-alkanes, the actual split ratio based on sample count is approximately 76:13:11. This
discrepancy arises primarily from the relatively high number of methane samples (297)
included in the training set. It is noteworthy that both the validation and testing sets
comprise n-alkanes that were not part of the training phase, thereby ensuring a robust
evaluation of the model.
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Table 2. The data split into the training and testing based on the n-alkane type.

Index n-Alkane CN N

Training (N = 1163)

1 methane 1 297
2 propane 3 102
3 n-butane 4 92
4 n-heptane 7 13
5 n-octane 8 70
6 n-decane 10 247
7 n-hexadecane 16 172
8 n-octacosane 28 108
9 n-hexatetracontane 46 35

Validation (N = 196)

1 ethane 2 61
1 n-pentane 5 105
3 n-dodecane 12 24

Testing (N = 162)

2 n-hexane 6 56
2 n-eicosane 20 36
3 n-hexatriacontane 36 66

2.3. Input Preparation

As previously indicated, the steps of data cleaning and quality assessment, including
the exclusion of duplicates, feature extraction, and extreme P and T values, were executed
in our preceding study [9]. In this study, additional measures were taken: the operational
parameter cut-offs were adjusted to remove sparse samples, outliers identified by the Hat-
method [42,43,51] were included, and the database underwent another thorough review to
exclude any dubious samples.

Constructing ML models using scaled data is regarded as a sound practise. In this
study, standardisation was employed as the selected scaling technique. This process
involves subtracting the mean value of a feature from each individual feature value and
then dividing the resultant value by the standard deviation of that feature. As a result
of this transformation, the feature achieves a mean of 0 and a standard deviation of 1,
facilitating consistent and standardised comparisons between different features.
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While scaling may not be obligatory for non-parametric models like DT-based models
due to their inherent insensitivity to feature scaling, its significance becomes pronounced
for distance-centric models such as the DNN and Support Vector Machine (SVM). These
models significantly depend on the distance metrics between data points, and the presence
of unscaled features may distort these distance computations, adversely affecting the
model’s performance and convergence. Furthermore, employing scaled data generally
results in reduced computational time during the modelling phase. When input features are
normalised to a similar scale, the convergence of algorithms can be expedited, facilitating
quicker optimisation. Additionally, using scaled data often contributes to a more stable
training process, as it mitigates the risk of features with large values to dominate the
learning process.

The characteristics of the training, validation, and testing data are provided in Table 3.
As shown, the skewness and kurtosis of the operational parameters are close to zero.
This indicates that their distribution is close to normality, suggesting a balanced dataset
without significant outliers or extreme values. A near-zero skewness implies a symmetric
distribution of the data around the mean, while a near-zero kurtosis indicates that the
data’s tails are not heavy, thus reducing the likelihood of anomalies. This balance in the
dataset enhances the reliability and accuracy of the model’s predictions. Another important
point is that the CN is not considered a categorical feature. Considering CN as a categorical
variable would limit the model to the n-alkanes encountered during the training phase,
which is not desirable. Our goal is to develop a model applicable to all possible n-alkanes,
including those not used for training, ensuring broader applicability and robustness.

Table 3. The statistical characteristics of the variables used in this study for the training, validation,
and testing sets.

Set Parameter CN TC (K) PC (MPa) T (K) P (MPa) TD PD x

Training

Min 1 190.56 0.45 92.30 0.65 0.27 0.14 0.0021
Q1 1 190.56 1.43 173.15 4.04 0.52 1.50 0.0398
Median 8 568.88 2.49 344.30 6.74 0.63 2.94 0.0762
Q3 16 722.10 4.60 423.20 10.60 0.81 4.71 0.1233
Max 46 1064.86 4.60 583.45 28.96 0.98 35.18 0.5013
Mean 10.14 515.80 2.85 320.95 8.19 0.66 3.72 0.0951
SD 10.27 242.87 1.42 136.85 5.84 0.17 3.66 0.0794
IQR 15 531.54 3.17 250.05 6.56 0.29 3.21 0.0835
skewness 1.62 0.05 0.03 −0.16 1.29 0.11 3.54 1.8771
kurtosis 2.69 −0.93 −1.57 −1.13 1.43 −1.08 19.27 4.5143

Validation

Min 2 305.32 1.82 92.50 0.69 0.30 0.21 0.0044
Q1 2 305.32 3.37 228.15 4.80 0.58 1.35 0.0259
Median 5 469.70 3.37 338.15 7.24 0.71 2.05 0.0531
Q3 5 469.70 4.87 383.15 11.24 0.82 3.29 0.0960
Max 12 658.10 4.87 463.15 29.57 0.99 8.20 0.2917
Mean 4.89 439.93 3.66 310.40 9.00 0.70 2.54 0.0663
SD 2.98 110.21 0.97 102.61 6.32 0.17 1.68 0.0473
IQR 3 164.38 1.51 155.00 6.44 0.23 1.94 0.0700
skewness 1.38 0.38 −0.23 −0.57 1.41 −0.46 1.14 1.3991
kurtosis 1.31 −0.38 −0.57 −0.73 1.66 −0.15 1.07 3.3077

Testing

Min 6 507.49 0.85 298.15 0.99 0.40 0.41 0.0105
Q1 6 507.49 0.85 372.52 3.01 0.45 1.83 0.0355
Median 20 771.40 1.20 377.60 5.07 0.53 3.37 0.0676
Q3 36 896.00 3.02 423.20 8.24 0.68 6.00 0.1114
Max 36 896.00 3.02 573.25 16.75 0.81 19.82 0.2271
Mean 21.79 730.84 1.69 395.06 5.76 0.57 4.68 0.0795
SD 13.16 171.40 0.99 62.98 3.56 0.13 4.01 0.0524
IQR 30 388.51 2.17 50.68 5.23 0.22 4.17 0.0760
skewness −0.08 −0.40 0.57 1.16 0.73 0.46 1.45 0.9179
kurtosis −1.72 −1.64 −1.62 1.74 −0.18 −1.16 1.70 0.2960
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2.4. Model Development

The primary objective of this study is to evaluate the effectiveness of DNNs in predict-
ing H2 solubility across a range of n-alkanes. To achieve this aim, three distinct DNNs were
developed. The varied architectural compositions of these models offer a comprehensive
framework for examining the effects of incorporating batch normalisation [52] and dropout
layers [53], as well as variations in layer arrangement. Batch normalisation enhances the
training speed and stability of DNNs, while dropout mitigates overfitting by randomly
omitting units and their connections during the training process. It is important to highlight
that this study utilised Python, along with Keras running on the TensorFlow backend, for
the modelling process. A list of all the packages employed, along with their respective
versions and the specifications of the computer system used for modelling, can be found in
Appendix A.

2.4.1. Model Construction

Keras was utilised to construct the models. Considering the necessity of evaluating
layer concatenation, the functional Application Programming Interface (API) was selected
over the simpler sequential API. Three models, designated as DNN 1, DNN 2, and DNN 3,
were examined, with the details of these models outlined in the subsequent section.

DNN 1 represents the most straightforward model under consideration. As depicted
in Figure 3a, this model consists of three hidden layers, each containing 30 neurons.

DNN 2 represents an enhanced version of DNN 1, achieved by integrating batch
normalisation and dropout into every hidden layer, as illustrated in Figure 3b. There are
discrepancies among researchers regarding the nomenclature of these layers; some classify
DNN 2 as a 10-layer network, comprising nine hidden layers and one output layer. In this
study, as shown in Figure 3, we adopted the term “block” to refer to a unit that encompasses
the primary layer (Dense) along with its associated components (batch normalisation and
dropout). To aid clarity, distinct colours were assigned to each type of layer.

The configuration of DNN 3 is illustrated in Figure 4. Similar to DNN 2, it comprises
three blocks consisting of dense layers, batch normalisation, and dropout layers. However,
the first block exhibits a notable distinction. As previously mentioned, the target variable
depends on three primary inputs, P and T, which represent the operational parameters,
along with the type of n-alkane. Furthermore, two additional features, PD and TD, were
derived by integrating operational and molecular characteristic attributes.

As illustrated in Figure 4, the network inputs are categorised into three segments:
Input 1, Input 2, and Input 3. These segments represent molecular characteristics (com-
prising three features), engineered features (encompassing two features), and operational
features (incorporating two features), respectively. Each segment is connected to a hidden
layer consisting of ten units. Following the processes of batch normalisation and dropout,
these segments are concatenated to create a layer comprising thirty units. The subsequent
architecture is consistent with that of DNN 2.

To provide a more comprehensive insight into the model’s structure, a dropout ratio
of 0.05 was employed, meaning that approximately 5% of the neurons were temporarily
excluded during training. This approach enhances generalisation and mitigates the risk of
overfitting. The Adam optimiser was selected to compile the models, which is a standard
practise in model optimisation. By iteratively adjusting the model’s parameters, the opti-
miser minimises the influence of the chosen loss function. In this case, the loss function
was defined as the Mean Squared Error (MSE), which is a suitable choice for regression
tasks, quantifying the average squared difference between predicted and actual values.

The parameter count, which includes both trainable and non-trainable parameters,
is thoroughly detailed in Table 4. This count has a direct impact on the complexity of
the model and its potential performance. Notably, the inclusion of batch normalisation
adds both trainable and non-trainable parameters to the model. This technique not only
stabilises and accelerates the training process but also enhances the overall performance of
the model.
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Table 4. Number of parameters in constructed models.

Model Trainable Non-Trainable Total

DNN 1 2131 0 2131
DNN 2 2311 180 2491
DNN 3 2171 180 2351

Notably, DNN 3 stands out by featuring fewer trainable parameters compared to its
counterpart, DNN 2. This reduction results from the lack of interconnections between the
various input types in its input layer. This streamlined architecture not only diminishes the
overall complexity of the model but also aligns effectively with the specific modelling objectives.

2.4.2. Model Training

After constructing and compiling the models, the subsequent phase entails fitting
them to the data. During this stage, the models are trained using the provided dataset, with
the number of “epochs” and the “batch size” playing crucial roles. Specifically, “epochs”
refer to the number of times the entire dataset is iterated over during the training phase,
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while ‘batch size’ determines the number of data points processed before the model’s
parameters are updated. In this study, the models were trained for 1000 epochs with a
batch size of 64.

A critical aspect of this process is monitoring the “validation loss”. This metric
provides valuable insights into the model’s performance on unseen validation data, helping
to ensure that the model does not become excessively tailored to the training data and
retains its ability to generalise to new information. The purpose of tracking the validation
loss is to identify the point at which the model’s performance on the validation dataset is
optimised. Once this optimal performance stage is reached, the model’s configuration is
saved as the best iteration using a callback. This “best model” configuration then serves as
a reference for future applications and comparisons, ensuring that the most effective model
iteration is preserved.

Figure 5 visually illustrates the convergence of the loss function, represented by the
MSE, for both the training and validation datasets. This representation indicates the extent
to which the model’s predictions align with the actual data points, providing insight into
its predictive effectiveness.
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Examining DNN 1 reveals that, although the training error decreases, there is no
corresponding improvement in the testing error. Even after 200 epochs, the validation error
exhibits a slight upward trend. This phenomenon, referred to as overfitting, suggests that
the model has become excessively tailored to the training data, which compromises its
ability to generalise to new, unseen data points.

To address the issue of overfitting, dropout—a technique that temporarily deactivates
a subset of neurons during training—was judiciously employed. The implementation of
dropout helps mitigate overfitting by improving the model’s capacity to generalise beyond
the training data. When comparing training losses, DNN 2 and DNN 3 demonstrate higher
values than DNN 1. However, both DNN 2 and DNN 3 show a significant reduction in
validation loss without raising concerns about overfitting.

A notable distinction emerges when comparing DNN 2 and DNN 3. DNN 3 demon-
strates superior performance with respect to validation data, highlighting its enhanced
capability to capture underlying patterns within the data. This improved performance
contributes to better generalisation on unseen samples.

2.4.3. Predicting the Testing Data

Upon successfully training the models and identifying the best-performing one based
on validation loss, the next step involves applying this model to the test data. This process
allows for the evaluation of the model’s predictive performance on previously unseen
data points.
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Before inputting the testing data into the network, it is crucial to apply scaling to the
data. Additionally, the architecture of the models relies on a logarithmic transformation
of the target variable. Once the model generates predictions, an inverse transformation is
performed to revert the solubility values to their original scale. This process consists of
two main steps: first, the inverse scaling procedure is carried out to reverse the initial data
scaling; second, the 10th power is applied to reverse the logarithmic transformation. This
results in the predicted solubilities being expressed on their original scale.

3. Result and Discussion

The dependent variable (x) is closely linked to three independent variables: P, T, and
the specific chemical type. Together, these independent factors influence the target variable
x. To characterise the chemicals under consideration comprehensively, a variety of de-
scriptors can be applied. Each descriptor adheres to its own distinct statistical distribution,
highlighting the limitation of relying on a single descriptor. Therefore, exploring multiple
descriptors is essential for a more accurate understanding. In addition to the three primary
characteristics, two engineered dimensions, PD and TD, are introduced. These engineered
variables provide a standardised framework for incorporating P and T, facilitating a more
cohesive analysis.

To model the target variable x, representing the mole fraction of H2, a logarithmic
transformation of the original data is selected. This approach is informed by a significant
observation: the distribution of x exhibits a lognormal pattern, with values predominantly
clustering around zero (see Figure 6). The logarithmic transformation serves two key
purposes. Firstly, it aids in the development of a normal distribution, which is a common
assumption in statistical modelling. Secondly, and perhaps more critically, it prevents
the generation of negative predictions for values close to zero. This consideration is vital
to ensure that the model’s predictions remain consistent with the physical constraints of
the data.
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It is noteworthy that DNN models, in contrast to their DT counterparts, possess a
unique capability for extrapolation. This allows DNN models to generate predictions that
extend beyond the predefined range of target values. Consequently, this feature enhances
the model’s versatility and its capacity to offer insights into scenarios that fall outside the
range of the training data.

3.1. Statistical Error Analyses

This section presents a comprehensive assessment of each model’s performance, em-
ploying both graphical illustrations and statistical methods. The previously mentioned
MSE, calculated using logarithmically transformed and scaled solubility values, is not
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utilised. Instead, the evaluation focuses on calculating the Root-Mean-Squared Error
(RMSE) related to the actual solubility values expressed in mole fraction units. This adjust-
ment facilitates a more direct and accessible understanding of the error scale. Additionally,
the Symmetric Mean Absolute Percentage Error (SMAPE) is calculated, which ranges from
0 to 100%. The formulations for the model metrics utilised are provided in Table 5.

Table 5. Model metrics for assessing the accuracy of developed models.

Metric Formula Range Ideal Value

Residual (Resi) Resi = yi − ti (−∞, ∞) 0
Root-Mean-Squared Error
(RMSE) RMSE =

√
1
n

n
∑

i=1
(Resi)

2 [0, ∞) 0

Symmetric Percentage Error
(SPE) SPE = 100 × Resi

|yi |+|ti |
[−100, 100] 0

Symmetric Mean Absolute
Percentage Error (SMAPE) SMAPE =

100
n

×
n
∑

i=1

|Resi|
|yi|+ |ti|

[0, 100] 0

Table 6 provides a comprehensive overview of the model metric values derived from
the models developed in this study, each evaluated across distinct datasets. The use of
these model metrics offers a quantitative perspective for assessing the performance of the
models under various conditions. The top performer in each dataset—training, validation,
and testing—is highlighted using bold formatting, which improves the clarity of their
identification.

Table 6. Model metrics values for the models developed in this study for different sets.

Model Set R2 RMSE SMAPE (%) N

DNN 1
Training 0.99 0.007 1.82 1163
Validation 0.90 0.015 4.43 196
Testing 0.93 0.014 6.70 162

DNN 2
Training 0.99 0.009 2.26 1163
Validation 0.99 0.005 2.96 196
Testing 0.98 0.007 3.24 162

DNN 3
Training 0.98 0.012 2.64 1163
Validation 0.99 0.004 2.58 196
Testing 0.97 0.010 3.28 162

Upon thorough evaluation, DNN 1 is the best model based on its performance on
the training set, achieving an RMSE of 0.006991 and an SMAPE of 1.82%. However, its
effectiveness appears to diminish when applied to the validation and testing datasets, as
indicated by RMSE values of 0.014867 and 0.014058, and SMAPE values of 4.43% and 6.70%,
respectively. In contrast, DNN 2 and DNN 3 display a notable consistency in their ability
to generalise beyond the training data. Both models demonstrate similar error rates in the
training and testing sets. Specifically, DNN 2 has a testing set RMSE of 0.007050 and an
SMAPE of 3.24%, while DNN 3 shows a testing set RMSE of 0.009641 and an SMAPE of
3.28%. Remarkably, DNN 3 stands out for its superior predictive accuracy on the validation
sets, outperforming its peers in this regard.

Table 7 presents the model metrics associated with DNN 3 across each n-alkane within
the training, validation, and testing sets, providing a detailed view of the model’s predictive
accuracy. The Symmetric Mean Absolute Percentage Error (SMAPE) for all n-alkanes ranges
from 1.29% to 4.94% in the validation and testing sets. This relatively narrow error margin
across diverse n-alkanes indicates that DNN 3 is highly effective at generalising from the
training data to unseen data, maintaining a high level of accuracy even when predicting
the solubility of n-alkanes not included in the model’s training phase.
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Table 7. The model metrics for DNN 3 for each n-alkane.

Index n-Alkane R2 RMSE SMAPE
(%) N

Training (N = 1163)

1 n-Butane 0.982 0.008 2.62 100
2 n-Decane 0.988 0.007 1.55 253
3 n-Heptane 0.977 0.005 2.27 5
4 n-Hexadecane 0.991 0.004 1.35 181
5 n-Hexatetracontane 0.959 0.013 2.57 36
6 Methane 0.972 0.018 3.86 305
7 n-Octacosane 0.971 0.007 2.78 111
8 n-Octane 0.992 0.005 2.63 70
9 Propane 0.963 0.017 3.87 102

Validation (N = 196)

1 n-Dodecane 0.996 0.002 1.29 24
2 n-Ethane 0.985 0.007 4.51 63
3 n-Pentane 0.996 0.003 1.74 109

Testing (N = 162)

1 n-Eicosane 0.984 0.004 2.40 37
2 n-Hexane 0.996 0.002 1.86 57
3 n-Hexatriacontane 0.939 0.014 4.94 68

The consistency of low SMAPE values across different n-alkanes suggests that the
model has not only captured the underlying physical relationships governing H2 solubility
but also generalised these relationships well to new data. This ability to generalise is crucial
for the practical application of the model in real-world scenarios, where it may need to
predict solubility for n-alkanes beyond those included in the initial dataset. Essentially,
the DNN 3 model’s performance metrics underscore its robustness and reliability, demon-
strating that it has effectively learned the governing physical patterns of H2 solubility in
n-alkanes. This strong performance supports the model’s potential use in various industrial
applications, where accurate and reliable solubility predictions are essential for optimising
H2-based processes and systems.

Figure 7 presents a scatter plot that juxtaposes predicted values against actual experi-
mental values in the upper section, while the lower section depicts the alignment of the
Standard Prediction Error (SPE) with the experimental values. These values are derived
from the validation and testing sets, predicted using the DNN 3 model. To facilitate the
comparison of data samples, both plots share a common x-axis, ensuring a coherent align-
ment between the upper and lower sections. A closer examination of the scatter plot reveals
that the majority of data points are situated near the 45-degree line, indicating a strong cor-
relation between the model’s predictions and the actual experimental values. Additionally,
the SPE plot demonstrates that most data samples exhibit SPE values constrained within
−10% and 10%. This figure demonstrates the model’s exceptional performance when
tested with unseen n-alkanes, indicating that it has effectively identified the fundamental
physical patterns and key relationships governing their behaviour. Its ability to predict
the behaviour of new n-alkanes not included in the training dataset confirms its capacity
to generalise beyond the training data. This robustness highlights the model’s potential
for practical applications across various scenarios involving n-alkanes, showcasing its
capability to provide valuable insights in relevant fields.
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3.2. Comparison with the Literature Models

In our previous study [9], we developed and tested three DT-based models. These
included a basic DT model and three ensemble models: Gradient Boosting (GB), Random
Forest (RF), and Extra Trees (ET). Notably, ensemble models aggregate multiple simple
DT models, with each employing distinct aggregation techniques. The ensemble models
from our prior research utilised a considerable number of simple estimators, specifically
incorporating 84 estimators for the GB model, 70 for the RF model, and 90 for the ET model.

The current study introduced a more robust method for data separation, enhancing
data quality. However, to ensure equitable comparison, n-eicosane samples were used for
extra testing. These data were not used during training of the model. Illustrated in Figure 8
is a cumulative distribution function plot, depicting the absolute SPE for n-eicosane. This
plot illustrates the DNN models’ superior performance compared to both the basic DT
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model and the ensemble ET model. Remarkably, the DNN models demonstrate superior
efficacy to the GB and RF models.
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This study presents a more robust method for data separation, which significantly
enhances data quality. To ensure a fair comparison, similar to our prior study [9], extra test-
ing was conducted using n-eicosane samples, which were not included during the training
of the model. Figure 8 illustrates the cumulative distribution function plot, depicting the
absolute SPE for n-eicosane. This plot clearly demonstrates the superior performance of
the DNN models in comparison to both the basic DT model and the ensemble ET model.
Notably, the DNN models also exhibit greater efficacy than the GB and RF models.

Additionally, Table 8 provides model metrics for both our previous study [9] and
the DNN models developed in the current research. Among the models published in our
earlier work [9], only the RF predictions exhibit a close alignment with the DNN models,
with all maintaining an SMAPE of less than 5%. Furthermore, the generalisability observed
in the DNN models may be attributed to the robust data separation methodology employed
in this study.

Table 8. Model metrics for literature models and the DNN models developed in this study.

Model RMSE SMAPE (%)

DT [9] 0.0112 5.34
GB [9] 0.0068 5.15
RF [9] 0.0050 4.02
ET [9] 0.0071 5.44

DNN 1 0.0044 3.27
DNN 2 0.0035 2.63
DNN 3 0.0041 2.40

Nevertheless, it is important to note that the cut-off values for operational parameters
were adjusted in this study, and several incorrectly recorded data points were either
excluded or corrected. Consequently, the comparison may not definitively demonstrate
that the DNN is superior to ensemble DT-based models. Rather, it highlights that the
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models developed in this study represent a significant advancement towards achieving
greater accuracy and reliability.

3.3. Model Stability

The development of a DNN model involves various elements that introduce a degree
of uncertainty. This investigation focuses on two primary factors contributing to this
uncertainty. The first factor arises from the initial randomisation of the model’s weights,
while the second pertains to the random partitioning of data into training, validation, and
testing sets. To ensure the model’s effectiveness, it must be capable of effectively managing
and adapting to these inherent sources of randomness.

To conduct a comprehensive investigation into the effects of stochastic model train-
ing and the initialization of models with random weights, a rigorous procedure was
established that involved the creation, compilation, and fitting of 50 networks. Partic-
ular emphasis was placed on minimising other sources of randomness throughout the
experimental process. A key aspect of the methodology was the use of identical datasets,
which ensured consistency across the various phases of training and evaluation. The
hyperparameters detailed in Section 2.4 were consistently applied during both the com-
pilation and fitting of the models. However, to optimise computation time, all models
were trained for 600 epochs instead of the originally planned 1000. While this adjustment
may result in a slight reduction in prediction accuracy compared to previous sections, it
effectively illustrates the impact of randomness.

Upon completing each iteration of model training, a rigorous testing phase was
conducted using the designated testing data. The evaluation metric employed was the
SMAPE. Figure 9 provides a visual representation of this process, depicting the SMAPE
values obtained from a diverse set of 50 DNNs, each subjected to distinct training processes.
This figure includes a histogram (subplot (a)) and a QQ plot (subplot (b)). Notably, both
graphical representations collectively support the conclusion of a normal distribution of
the errors.
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The normal distribution of errors across the 50 distinct DNNs offers valuable insights
into the model’s stability and robustness. This distribution indicates a consistent perfor-
mance across various training processes, suggesting that the model’s behaviour is not
unduly affected by random factors, which results in predictable outcomes. Furthermore,
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models exhibiting normally distributed errors tend to demonstrate greater robustness, as
they are resilient to variations in training conditions. This resilience significantly enhances
their ability to generalise effectively to new, unseen data.

In contrast, the subsequent experiment revealed a more pronounced influence of ran-
domness arising from the data partitioning process. A systematic approach was employed
for data partitioning, beginning with the segregation of the data samples belonging to
n-eicosane, which was designated as the additional testing set in the previous study [9].
These samples were set aside for testing across all models. The remaining dataset was then
divided into three distinct subsets—training, validation, and testing—in a ratio of 60:20:20.
This division was executed using a group-based methodology aimed at preserving the
integrity and coherence of data groups throughout the modelling process.

Figure 10 illustrates both the associated histogram (shown in subplot (a)) and the QQ
plot (displayed in subplot (b)). Unlike the first experiment, where the errors exhibited a well-
defined normal distribution, the errors in the second experiment displayed a distribution
that deviated from the normal pattern. This observation suggests that the randomness
introduced by data partitioning had a more substantial impact on the model’s performance
than the randomness introduced by weight initialization. Consequently, inconsistent data
partitioning can lead to increased variability in the model’s performance, hindering its
ability to generalise effectively to new data. The notable degree of randomness observed
in the second experiment can be attributed to the differing distribution of data across the
various sets.
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This study’s findings underscore the importance of appropriate data partitioning,
especially in scenarios where available experimental data samples are limited. In such
instances, achieving a consistent distribution of data across different sets is crucial for
minimising the adverse effects of randomness on the model’s performance. Notably, when
a more extensive dataset is available for training, the potential impact of randomness
introduced by data partitioning may be reduced, owing to the larger sample size. This
observation further highlights the significance of strategic data management, which can
ultimately lead to more reliable and robust model outcomes.

Figure 11 provides a graphical representation of the outcomes derived from the two
experiments conducted: the training randomness experiment and the splitting randomness
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experiment. In this visual depiction, the x-axis and y-axis represent the logarithmically
transformed solubility values and P, respectively, for n-eicosane. To facilitate a deeper
understanding, the instances were arranged in isotherms. The key observation from this
figure is the marked contrast in model performance across the various training trials, which
employed a fixed data partitioning approach and different data partitioning methods.
Notably, the trials using the fixed approach demonstrate superior accuracy and precision
compared to those constructed with different data partitioning strategies.
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In Figure 11, the experimental data points are represented by circles on the graph. The
full-coloured intervals indicate the 95% confidence interval for model predictions in the
first experiment, while the pale-coloured intervals correspond to the second experiment. A
significant trend is observed, as the experimental data points align more closely with the full-
coloured intervals, which suggests an improvement in model accuracy. Furthermore, the
lengths of these full-coloured intervals are notably shorter than those of the pale-coloured
intervals, reflecting an increased precision in prediction.

However, it is important to acknowledge that, despite the overall accuracy and preci-
sion, there are instances where the target values fall outside the prediction intervals. These
occurrences underscore the limitations of the model and reveal areas where predictive
errors persist. It is also important to note that the experiment was designed to demonstrate
the effects of randomness, and therefore only a limited number of epochs were considered.

4. Summary and Conclusions

In conclusion, this study sought to leverage the capabilities of three distinct DNN
models to predict H2 solubility across a diverse range of n-alkanes. To achieve this, we
gathered a comprehensive dataset that includes data for 15 different n-alkanes, sourced
from publicly available resources. The key insights derived from our investigation can be
summarised as follows:

• We employed a group-wise data partitioning approach to divide the dataset into
training, validation, and testing sets, consisting of 9, 3, and 3 n-alkanes, respectively.
Notably, the testing chemicals exhibited satisfactory performance, highlighting the
adaptability of our developed models to novel n-alkanes not included in the cur-
rent dataset.
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• Our analysis of three model structures revealed that a DNN relying exclusively on
dense layers is particularly prone to overfitting. Importantly, the integration of dropout
layers effectively mitigated this issue.

• The DNN 3 model, characterised by its incorporation of batch normalisation and
dropout layers, along with distinct input types, demonstrated remarkable perfor-
mance. This was evidenced by an RMSE of 0.004 and an SMAPE of 2.58% on the
validation dataset.

• The predictive performance of single DN models was notably comparable to that of
ensemble methods, such as RF and GB, within the context of our study’s database.
This significant improvement can be attributed not only to the inherent characteristics
of the models, which effectively mitigate overfitting, but also to our unique data
partitioning strategy.

• The stability experiment conducted revealed that the implemented data-splitting
scheme produces consistent predictions across multiple training trials. This finding
underscores the robustness of our model’s performance, even in the presence of
potential variations during the training phase. Furthermore, the analysis of prediction
confidence intervals demonstrated a remarkably high level of precision.

• Our study enhances the understanding of H2 solubility across various chemical com-
positions, which is crucial for multiple industrial sectors, particularly in H2-based
renewable energy facilities. These advancements contribute to the safe and efficient
design of H2-based systems, promoting cleaner fuels and improving overall sustain-
ability in energy production.

Our findings suggest promising avenues for further research, which could significantly
contribute to sustainability efforts. We recommend investigating hyperparameter optimisa-
tion, exploring various learning rate decay scenarios, and considering transfer learning.
Additionally, testing different characteristic properties, such as group contribution methods
or chemical descriptors, is advisable. With the acquisition of additional experimental
data in the future, there is potential to refine the weights of pre-trained models, thereby
improving their precision and accuracy. These advancements will support the development
of more efficient H2-based systems, fostering cleaner energy technologies and promoting a
transition to sustainable energy solutions.
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Nomenclature

Parameters
MSE Mean squared error
MW Molecular weight, g/mol
N Number of data samples
P Pressure, bar
PC Critical pressure, bar
PD Reduced or dimensionless pressure
Q1 First quartile
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Q3 Third quartile
Resi Residual
RMSE Root-mean-squared error
SD Standard deviation
SMAPE Symmetric mean absolute percentage error
SPE Symmetric percentage Error
T Temperature, K
TB Boiling point temperature, K
TC Critical temperature, K
TD Reduced or dimensionless temperature
ti Target value
VC Critical volume, mL/mol
x H2 solubility, mole fraction
yi Model output
ZC Critical compressibility factor
ρC Critical density, g/mL
ω Acentric factor

Abbreviations
API Application programming interface
EoS Equation of states
DNN Deep neural network
DT Decision tree
ET Extremely randomised trees
GB Gradient boosting
H2 Hydrogen gas
IQR Interquartile range
ML Machine learning
NN Neural network
QQ Quantile–Quantile
RF Random forest
SVM Support vector machine

Appendix A. Python Packages and System Information

Table A1 provides an overview of the Python packages utilised in this study, while
Table A2 outlines the specifications of the computer system employed for this research.

Table A1. The main used Python packages with their corresponding release version.

Package Version

python [54] 3.9.16
numpy [55] 1.26.4
pandas [56] 2.0.3
matplotlib [57] 3.7.2
seaborn [58] 0.12.2
sklearn [59] 1.3.0
scipy [60] 1.11.1
tensorflow [61] 2.10.1
cudnn [62] 8.2.1
cuda [63] 11.3
keras [64] 2.10.0
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Table A2. Specifications of the used system for modelling.

Part Specifications

CPU 11th Gen Intel(R) Core (TM) i7-11370H @ 3.30 GHz
RAM 31 GB
GPU NVIDIA GeForce RTX 3050 Ti Laptop GPU
SSD Total Size: 943 GB
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