Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy
Abstract
:1. Introduction
2. Literature Review
2.1. Distributed Generation for Low Income
2.2. Socio-Environmental Benefits of Solar DG
3. Materials and Methods
3.1. Model Specification
- 1st scenario—trading the surplus at 70% of the electricity tariff of the local power utility company;
- 2nd scenario—trading the surplus at 80% of the electricity tariff of the local power utility company;
- 3rd scenario—trading the surplus at 100% of the electricity tariff of the local power utility company.
3.2. Simulation and Data Processing Tools
3.2.1. Photovoltaic Software
3.2.2. System Advisor Model
4. Case Study
4.1. Study Area
4.2. Local Solar Potential
4.3. Analysis of Possible Configurations
Cases | Power (kWp) | Required Area (m2) | Panel No. | Power per Panel (Wp) | Unit Cost (USD) |
---|---|---|---|---|---|
Case 1 | 2.554 | 15.522 | 8 | 340 | 3346.16 |
Case 2 | 5.108 | 31.045 | 16 | 340 | 6092.60 |
Case 4 | 6.100 | 34.926 | 18 | 340 | 7993.58 |
Case 5 | 6.800 | 38.807 | 20 | 340 | 6771.14 |
Case 3 | 7.300 | 42.687 | 22 | 340 | 7547.86 |
5. Results and Discussion
5.1. Electrical Performance Analysis
5.2. Economic Analysis
- In the 70% sales scenario (Figure 8), the estimated monthly revenue average in simulated case 1 (lower generation of surplus electricity) is USD 23.54, i.e., 19.80% less than the BF transfer (Table 2). In case 3 (greater generation of surplus electricity), the estimated average monthly revenue is USD 85.06, which represents approximately 71.55% of the BF transfer. Case 4 and case 5 present average revenues of 58.47% and 66.10% of the BF transfer, respectively;
- In the 80% sales scenario (Figure 9), the cases with average revenues closest to the BF transfer are case 3 (81.77%), followed by case 5 (75.54%) and case 4 (66.82%). Case 1 (22.63%) and case 2 (54.47%) have much lower average revenues compared to the BF transfer;
- In the 100% sale scenario (Figure 10), case 3 (102.21%) exceeds the BF transfer value. Case 1 (28.29%) remains well below the BF allowance. Case 5 (94.42%) and case 4 (83.53%) present values approximate with the BF transfer.
5.3. An Estimate of Environmental Benefits
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collier, S.H.C.; House, J.I.; Connor, P.M.; Harris, R. Distributed local energy: Assessing the determinants of domestic-scale solar photovoltaic uptake at the local level across England and Wales. Renew. Sustain. Energy Rev. 2023, 171, 113036. [Google Scholar] [CrossRef]
- Gebara, C.H.; Laurent, A. National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits. Renew. Sustain. Energy Rev. 2023, 173, 112934. [Google Scholar] [CrossRef]
- Centro de Estudos Avançados em Economia Aplicada (Cepea). Report on the Gross Domestic Product (GDP) of Brazilian Agribusiness. 2023. Available online: https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx (accessed on 20 June 2024).
- Bursztyn, M. Solar energy and sustainable development in the Semiarid region: The challenge of integrating public policies. Estud. Avançados 2020, 34, 167–186. [Google Scholar] [CrossRef]
- Benti, N.E.; Mekonnen, Y.S.; Asfaw, A.A.; Mulatu, D.L.; Tegenu, A.W.; Chernet, A.G.; Abreham, B.A. Techno-economic analysis of solar energy system for electrification of rural school in Southern Ethiopia. Cogent Eng. 2022, 9, 2021838. [Google Scholar] [CrossRef]
- Amir, N.; Gozan, M.; Lee, M.; Winarso, K. Techno-economic and environmental analyses of a grid-connected renewable energy power system in Madura, Indonesia. Int. J. Ambient Energy 2022, 44, 317–333. [Google Scholar] [CrossRef]
- Al-falahi, M.D.A.; Jayasinghe, S.D.G.; Enshaei, H. A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar] [CrossRef]
- Abouaiana, A. Rural Energy Communities as Pillar towards Low Carbon Future in Egypt: Beyond COP27. Land 2022, 11, 2237. [Google Scholar] [CrossRef]
- Jean, W.; Brasil Junior, A.C.P. Solar Model for Rural Communities: Analysis of Impact of a Grid-Connected Photovoltaic System in the Brazilian Semi-arid Region. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1090405. [Google Scholar] [CrossRef]
- Goodbody, C.; Walsh, E.; McDonnell, K.P.; Owende, P. Regional integration of renewable energy systems in Ireland—The role of hybrid energy systems for small communities. Int. J. Electr. Power Energy Syst. 2013, 44, 713–720. [Google Scholar] [CrossRef]
- Rodrigues, S.D.; Garcia, V.J. Transactive energy in microgrid communities: A systematic review. Renew. Sustain. Energy Rev. 2023, 171, 112999. [Google Scholar] [CrossRef]
- Jean, W.; Brasil, A.C.P., Jr.; Frate, C.A.; Badibanga, R.K. Techno-economic analysis of a PV-wind-battery for a remote community in Haiti. Case Stud. Chem. Environ. Eng. 2020, 2, 100044. [Google Scholar]
- Nobre, P.; Pereira, E.B.; Lacerda, F.F.; Bursztyn, M.; Haddad, E.A.; Ley, D. Solar smart grid as a path to economic inclusion and adaptation to climate change in the Brazilian Semiarid Northeast. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 499–517. [Google Scholar] [CrossRef]
- Pandey, A.K.; Tyagi, V.V.; Selvaraj, J.A.L.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884. [Google Scholar] [CrossRef]
- Lupangu, C.; Bansal, R.C. A review of technical issues on the development of solar photovoltaic systems. Renew. Sustain. Energy Rev. 2017, 73, 950–965. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Rev. 2020, 126, 109836. [Google Scholar] [CrossRef]
- Charfi, W.; Chaabane, M.; Mhiri, H.; Bournot, P. Performance evaluation of a solar photovoltaic system. Energy Rep. 2018, 4, 400–406. [Google Scholar] [CrossRef]
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Azmi, A.; Ramli, M.A.M. Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renew. Energy 2019, 138, 775–792. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- El-Houari, H.; Allouhi, A.; Rehman, S.; Buker, M.S.; Kousksou, T.; Jamil, A.; Amrani, B.E. Design, simulation, and economic optimization of an off-grid photovoltaic system for rural electrification. Energies 2019, 12, 4735. [Google Scholar] [CrossRef]
- Imam, A.A.; Al-Turki, Y.A.; Kumar, S.R. Techno-economic feasibility assessment of grid-connected PV systems for residential buildings in Saudi Arabia-A case study. Sustainability 2020, 12, 262. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generations Costs; International Renewable Energy Agency: Masdar City, United Arab Emirates, 2019. [Google Scholar]
- Qerimi, D.; Dimitrieska, C.; Vasilevska, S.; Rrecaj, A.A. Modeling of the Solar Thermal Energy Use in Urban Areas. Civ. Eng. J. 2020, 6, 1349–1367. [Google Scholar] [CrossRef]
- Ministério do Desenvolvimento e Assistência Social, Família e Combate à Fome (MDASFCF). Programa Bolsa Família. 2023. Available online: https://www.gov.br/mds/pt-br/acoes-e-programas/bolsa-familia (accessed on 19 June 2024).
- Hossain, M.; Mekhilef, S.; Olatimiwa, L. Performance evaluation of a stand-alone PV-wind-diesel-battery hybrid system feasible for a large resort center in South China Sea, Malaysia. Sustain. Cities Soc. 2016, 28, 358–366. [Google Scholar] [CrossRef]
- Zhang, S.; He, Y. Analysis on the development and policy of solar PV power in China. Renew. Sustain. Energy Rev. 2013, 21, 393–401. [Google Scholar] [CrossRef]
- Gaslac, L.; Willis, S.; Quispe, G.; Raymundo, C. A hybrid energy system based on renewable energy for the electrification of low-income rural communities. IOP Conf. Ser. Earth Environ. Sci. 2018, 168, 012005. [Google Scholar] [CrossRef]
- Ibrik, I. Micro-Grid Solar Photovoltaic Systems for Rural Development and Sustainable Agriculture in Palestine. Agronomy 2020, 10, 1474. [Google Scholar] [CrossRef]
- Schuetze, B.; Hussein, H. The geopolitical economy of an undermined energy transition: The case of Jordan. Energy Policy 2023, 180, 113655. [Google Scholar] [CrossRef]
- Farahi, S.; Fazelpour, F. Techno-economic assessment of employing hybrid power system for residential, public, and commercial buildings in different climatic conditions of Iran. Environ. Prog. Sustain. Energy 2018, 38, 14–623. [Google Scholar] [CrossRef]
- Jariso, M.; Khan, B.; Tesfaye, D.; Singh, J. Modeling and designing of stand-alone photovoltaic system. In Proceedings of the ICECA 2017 IEEE International Conference on Electronics, Communication, and Aerospace Technology, Coimbatore, India, 20–22 April 2017; pp. 347–358. [Google Scholar]
- Kiros, S.; Khan, B.; Padmanaban, S.; Alhelou, H.H.; Leonowicz, Z.; Mahela, O.P.; Holm-Nielsen, J.B. Development of stand-alone green hybrid system for rural areas. Sustainability 2020, 12, 3808. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Santos, A.; Ma, Z.; Olsen, C.; Jørgensen, B.N. Framework for Microgrid Design Using Social, Economic, and Technical Analysis. Energies 2018, 11, 2832. [Google Scholar] [CrossRef]
- Ribó-Pérez, D.; Marín-Taurá, A.; Sota, C.; Pajín, L. Renewables, territory and acceptance: Good practices to improve the implementation of renewable energy projects in Spain. Rev. Diecisiete 2023, 8, 63–74. [Google Scholar]
- Al-Saidi, M.; Lahham, N. Solar energy farming as a development innovation for vulnerable water basins. Dev. Pract. 2019, 29, 619–634. [Google Scholar] [CrossRef]
- Butera, F.M.; Caputo, P.; Adhikari, R.S.; Mele, R. Energy access in informal settlements. Results of a wide on site survey in Rio De Janeiro. Energy Policy 2019, 134, 110943. [Google Scholar] [CrossRef]
- Nygaard, I.; Dafrallah, T. Utility led rural electrification in Morocco: Combining grid extension, mini-grids, and solar home systems. Wiley Interdiscip. Rev. Energy Environ. 2015, 5, 155–168. [Google Scholar] [CrossRef]
- Collado, J.R.N.; Wang, H. Slum upgrading and climate change adaptation and mitigation: Lessons from Latin America. Cities 2020, 104, 102791. [Google Scholar]
- Kyriakarakos, G.; Balafoutis, A.T.; Bochtis, D. Proposing a Paradigm Shift in Rural Electrification Investments in Sub-Saharan Africa through Agriculture. Sustainability 2020, 12, 3096. [Google Scholar] [CrossRef]
- Singh, R.; Wang, X.; Mendoza, J.C.; Ackom, E.K. Electricity (in)accessibility to the urban poor in developing countries. Wiley Interdiscip. Rev. Energy Environ. 2014, 4, 339–353. [Google Scholar] [CrossRef]
- Jean, W.; Brasil Junior, A.C.P.; da Silva, E.C.M. Smart grid systems infrastructures and distributed solar power generation in urban slums—A case study and energy policy in Rio de Janeiro. AIMS Energy 2023, 11, 486–502. [Google Scholar] [CrossRef]
- Falih, H.H.; Hamed, A.J.; Khalifa, A.H.N. Techno-economic assessment of a hybrid connected PV solar system. Int. J. Air-Cond. Refrig. 2022, 30, 3. [Google Scholar] [CrossRef]
- Diemuodeke, E.O.; Addo, A.; Dabipi-Kalio, I.; Oko, C.C.; Mulugetta, Y. Domestic energy demand assessment of coastline rural communities with solar electrification. Energy Policy Res. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Nacer, T.; Hamidat, A.; Nadjemi, O.; Bey, M. Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas. Renew. Energy 2016, 96, 305–318. [Google Scholar] [CrossRef]
- Ibrahim, M.; Anisuzzaman, M.; Kumar, S.; Bhattacharya, S.C. Demonstration of PV micro-utility system for rural electrification. Sol. Energy 2002, 72, 521–530. [Google Scholar] [CrossRef]
- Asghar, N.; Amjad, M.A.; Rehman, H.; Munir, M.; Alhajj, R. Achieving sustainable development resilience: Poverty reduction through affordable access to electricity in developing economies. J. Clean. Prod. 2022, 376, 134040. [Google Scholar] [CrossRef]
- Absolar: Associação Brasileira de Energia Solar Fotovoltaica. Available online: https://www.absolar.org.br/ (accessed on 22 June 2023).
- ANEEL: Agência Nacional de Energia Elétrica. Available online: https://www.gov.br/aneel/pt-br (accessed on 22 June 2023).
- Bernal, N. Socio-Environmental Vulnerability and the Impacts of Resettlement and Extreme Weather Events on the Tuxá Indigenous People of Rodelas-Bahia. Ph.D. Thesis, University of Brasilia UNB, Brasilia, Brazil, 2021. [Google Scholar]
- Bernal, N.; Rodrigues-Filho, S. Multidimensional impacts of a hydropower reservoir on indigenous communities: Displacement, division and pilgrimage among the Tuxá people of the Bahia state, Brazil. Sustain. Debate 2021, 12, 220–235. [Google Scholar]
- Chanudet, V.; Descloux, S.; Harby, A.; Sundt, H.; Hansen, B.H.; Brakstad, O.; Serça, D.; Guerin, F. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci. Total Environ. 2011, 409, 5383–5391. [Google Scholar] [CrossRef] [PubMed]
- Ometto, J.P.; Pacheco, F.S.; Stech, J.; Cimbleris, A.C.P. Carbon Dynamic and Emissions in Brazilian Hydropower Reservoirs. In Energy Resources: Development, Distribution and Exploitation; Alcântara, E.H., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- Sikar, E.; Matvienko, B.; Santos, M.A.; Rosa, L.P.; Silva, M.B.; Santos, E.O.; Rocha, C.H.E.D.; Bentes, A.P., Jr. Tropical reservoirs are bigger carbon sinks than soils. Int. Ver. Theor. Angew. Limnol. 2017, 30, 838–840. [Google Scholar] [CrossRef]
- Kelman, J.; Tucci, C.; Braga, B.; Pinguelli, L. As hidrelétricas e o efeito estufa. Rev. Bras. Energ. 2008, 334, 193e–194. [Google Scholar]
- Tremblay, A.; Varfalvy, L.; Roehm, C.; Garneau, M. Greenhouse Gas Emissions—Fluxes and Process, Hydroelectric Reservoir and Natural Environments; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gradella, M.V.; Gazoli, J.R. Energia Solar Fotovoltaica: Conceitos e Aplicações, 2nd ed.; Érica: São Paulo, Brazil, 2012. [Google Scholar]
- Jean, W.; Brasil Junior, A.C.P. Simulación de un sistema fotovoltaico para una comunidad en Haití. ENERLAC. Rev. Energía Latinoamérica Caribe 2020, 4, 44–55. [Google Scholar]
- Sajjad, I.A.; Manganelli, M.; Martirano, L.; Napoli, R.; Chicco, G.; Parise, G. Net-Metering Benefits for Residential Customers: The Economic Advantages of a Proposed User-Centric Model in Italy. IEEE Ind. Appl. Mag. 2018, 24, 39–49. [Google Scholar] [CrossRef]
- Syed, F.; Ullah, A. Estimation of economic benefits associated with the reduction in the CO2 emission due to COVID-19. Environ. Chall. 2021, 3, 100069. [Google Scholar] [CrossRef]
Cases | Sale at 70% (USD) | Sale at 80% (USD) | Sale at 100% (USD) | Variation in Relation to BF (%) | Payback (Years) | ||
---|---|---|---|---|---|---|---|
Sale at 70% | Sale at 80% | Sale at 100% | |||||
Case 1 | 23.54 | 26.91 | 33.63 | 19.80 | 22.63 | 28.29 | 8.29 |
Case 2 | 56.66 | 64.75 | 80.94 | 47.66 | 54.47 | 68.08 | 6.27 |
Case 4 | 69.51 | 79.44 | 99.30 | 58.47 | 66.82 | 83.53 | 5.68 |
Case 5 | 78.58 | 89.80 | 112.26 | 66.10 | 75.54 | 94.42 | 5.60 |
Case 3 | 85.06 | 97.21 | 121.52 | 71.55 | 81.77 | 102.21 | 5.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jean, W.; Bursztyn, M.; Bernal, N.; Brasil Junior, A.C.P.; Litre, G.; Nogueira, D. Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy. Sustainability 2024, 16, 7527. https://doi.org/10.3390/su16177527
Jean W, Bursztyn M, Bernal N, Brasil Junior ACP, Litre G, Nogueira D. Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy. Sustainability. 2024; 16(17):7527. https://doi.org/10.3390/su16177527
Chicago/Turabian StyleJean, Wesly, Marcel Bursztyn, Nelson Bernal, Antonio C. P. Brasil Junior, Gabriela Litre, and Daniela Nogueira. 2024. "Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy" Sustainability 16, no. 17: 7527. https://doi.org/10.3390/su16177527
APA StyleJean, W., Bursztyn, M., Bernal, N., Brasil Junior, A. C. P., Litre, G., & Nogueira, D. (2024). Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy. Sustainability, 16(17), 7527. https://doi.org/10.3390/su16177527