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Abstract: Teacher life satisfaction is crucial for their well-being and the educational success of their
students, both essential elements for sustainable development. This study identifies the most relevant
predictors of life satisfaction among Peruvian teachers using machine learning. We analyzed data from
the National Survey of Teachers of Public Basic Education Institutions (ENDO-2020) conducted by
the Ministry of Education of Peru, using filtering methods (mutual information, analysis of variance,
chi-square, and Spearman’s correlation coefficient) along with embedded methods (Classification and
Regression Trees—CART; Random Forest; Gradient Boosting; XGBoost; LightGBM; and CatBoost).
Subsequently, we generated machine learning models with Random Forest; XGBoost; Gradient
Boosting; Decision Trees—CART; CatBoost; LightGBM; Support Vector Machine; and Multilayer
Perceptron. The results reveal that the main predictors of life satisfaction are satisfaction with
health, employment in an educational institution, the living conditions that can be provided for
their family, and conditions for performing their teaching duties, as well as age, the degree of
confidence in the Ministry of Education and the Local Management Unit (UGEL), participation in
continuous training programs, reflection on the outcomes of their teaching practice, work–life balance,
and the number of hours dedicated to lesson preparation and administrative tasks. Among the
algorithms used, LightGBM and Random Forest achieved the best results in terms of accuracy (0.68),
precision (0.55), F1-Score (0.55), Cohen’s kappa (0.42), and Jaccard Score (0.41) for LightGBM, and
accuracy (0.67), precision (0.54), F1-Score (0.55), Cohen’s kappa (0.41), and Jaccard Score (0.41). These
results have important implications for educational management and public policy implementation.
By identifying dissatisfied teachers, strategies can be developed to improve their well-being and,
consequently, the quality of education, contributing to the sustainability of the educational system.
Algorithms such as LightGBM and Random Forest can be valuable tools for educational management,
enabling the identification of areas for improvement and optimizing decision-making.
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1. Introduction

Life satisfaction is an essential component in terms of achieving happiness and finding
purpose in life [1]. This subjective concept reflects how a person perceives their own
life [2,3]. Various international indicators offer perspectives on how life satisfaction varies
across different countries. For example, the Better Life Index of the Organisation for
Economic Co-operation and Development (OECD) compares well-being on a scale from 0
to 10. According to this index, the countries with the highest levels of life satisfaction are
Finland (7.9), Iceland (7.6), Switzerland and the Netherlands (7.5), and Norway (7.3) [4].
On the other hand, the 2024 World Happiness Report highlights Finland (7.7), Denmark
(7.6), Iceland (7.5), Sweden, and Israel (7.3) as the happiest countries, while Peru scores a
relatively low value of 5.8 [5]. Another relevant indicator is the Human Development Index
(HDI) of the United Nations Development Programme (UNDP), which classifies countries
into development levels on a scale from 0 to 1. Countries with the highest HDI, such as
Switzerland (0.97), Norway (0.97), Iceland (0.96), Hong Kong (0.96), and Sweden (0.95),
tend to report higher levels of life satisfaction. In contrast, Peru, with an HDI of 0.76, is
ranked at a high level but still below the highest indices [6]. These indicators highlight the
importance of economic, social, and human development factors in life satisfaction.

Improving people’s life satisfaction involves identifying the factors that influence it.
Various studies have shown that demographic and socioeconomic factors, such as gen-
der, marital status, and monthly income [1,7–10], play an important role. Additionally,
psychological factors such as emotional intelligence, ego integrity, extroversion, conscien-
tiousness, and job satisfaction [11,12] are also crucial. Participation in and enjoyment of
leisure time are presented as aspects that positively influence life satisfaction [13]. Likewise,
the balance between work and one’s personal life [4,14], as well as physical factors such
as a healthy lifestyle and both objective and subjective health status [15–17], significantly
affects people’s life satisfaction.

In the field of educational work, the challenges faced by teachers for various reasons
affect the success of their important role as facilitators of learning, integral development,
the promotion of critical thinking, and the development of social-emotional skills in stu-
dents [18]. Teacher well-being, understood as the degree of satisfaction of teachers with the
personal, social, and material conditions that allow them to perform their professional work
in an optimal and meaningful way, is a crucial condition that needs to be identified and
understood in order to design educational policies that promote healthy and productive
work environments, which in turn improves educational outcomes and the well-being of
society in general [11,18–20].

In recent years, machine learning (ML) has demonstrated its versatility and trans-
formative potential across various fields, such as healthcare, engineering, occupational
psychology, agriculture, finance, marketing, and transportation [21–46]. In the educational
field, it has been used to evaluate students’ academic performance and to identify and
mitigate academic risk [47–50]. However, despite the growing interest in studying life
satisfaction using ML, there is a notable lack of studies specifically focusing on the life
satisfaction of basic education teachers. To date, no study has been found that investi-
gates the life satisfaction of these teachers while simultaneously considering a wide range
of predictors.

In light of this, the present study aims to identify the most significant predictors of
life satisfaction among Peruvian teachers. To achieve this, we analyzed data provided by
the National Survey of Public Basic Education Teachers (ENDO-2020), supplied by the
Ministry of Education of Peru [51], using an ensemble of feature selection methods that
combines both filtering and embedded techniques. Additionally, we assessed the suitability
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of the selected features for predicting teachers’ life satisfaction across eight cutting-edge
ML algorithms. Finally, we identified the most optimal algorithms for predicting the life
satisfaction of Peruvian teachers. This approach will not only enhance the understanding
of factors affecting teachers’ well-being, but also provide valuable tools for designing
interventions and educational policies that promote a healthier and more satisfying work
environment for educators.

The remainder of the article is organized as follows: Section 2 reviews the relevant
literature. Section 3 details the methodology employed in the experiments. Section 4
presents the results obtained. Section 5 discusses these results, and finally Section 6
provides our conclusions.

2. Literature Review
2.1. Concept of Life Satisfaction and Influencing Factors

Life satisfaction is a widely explored topic in psychology and refers to individuals’
overall evaluation of their life as a whole [52]. It is an evaluative process in which people
judge the quality of their life based on a personal set of criteria [53,54].

Numerous studies have demonstrated that economic income is positively correlated
with life satisfaction [9,55,56]. The balance between work and personal life also emerges as
a crucial variable [57,58]. Additionally, a healthy lifestyle and a positive attitude towards
well-being have been found to significantly impact life satisfaction [59].

In the context of teachers’ life satisfaction, several factors play a significant role. Job
satisfaction [60,61] and workload [62], for example, significantly influence teachers’ over-
all satisfaction. A study conducted in Switzerland revealed that dispositional optimism,
burnout, and job satisfaction are key determinants of teachers’ life satisfaction [63]. Addi-
tionally, research in Italy found that progress towards personal work goals and positive
affectivity are important predictors of teachers’ life satisfaction [61]. Occupational stress
has also been observed to be associated with lower life satisfaction among teachers in
Pakistan [64]. A study in Peru demonstrated that school leadership positively influences
teachers’ life satisfaction [65]. Finally, research in Spain revealed a strong relationship
between perceived emotional intelligence and teachers’ life satisfaction.

2.2. Machine Learning Techniques and Their Application in the Study of Life Satisfaction

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on the
development of algorithms that enable computers to automatically identify patterns in data
and improve their performance through experience, without explicit programming [66]. AI,
on the other hand, is the broadest field within computer science. It encompasses a range of
technologies and methods designed to enable machines to think and act in ways similar
to humans.

The literature shows that various approaches have been explored when using ML
techniques to analyze life satisfaction, with the focus primarily on predictive modeling and
the analysis of influencing factors. ML has proven to be an effective tool for this purpose.
Byeon [67] developed a predictive model for elderly individuals in South Korea using the
classification and regression trees (CART) algorithm, identifying significant variables such
as subjective perceptions of friendship, health status, family relationships, and educational
level. Zhang and Li [68] applied Support Vector Machines to predict life satisfaction
in elderly individuals, combining factor analysis with a Particle Swarm Optimization
algorithm to achieve an accuracy of 94.23%. Pan and Cutumisi [69] used Random Forest
and K-Nearest Neighbors with data from secondary school students in the United Kingdom
and Japan, based on the 2018 Programme for International Student Assessment (PISA). They
found that Random Forest outperformed K-Nearest Neighbors and highlighted factors
such as the meaning of life, student competence, teacher support, exposure to bullying,
and ICT resources as important in predicting students’ life satisfaction. Khan et al. [70]
demonstrated the effectiveness of Random Forest in predicting life satisfaction in Denmark,
achieving an accuracy of 93.80% and a macro F1 score of 70.60%, and emphasized the
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relevance of explainable artificial intelligence (XAI) in researching subjective well-being.
Finally, Jaiswal et al. [71] built a model to predict overall happiness and found that Random
Forest provided the highest accuracy at 92.27%, revealing a notable difference in satisfaction
between countries based on GDP per capita.

Another relevant approach in studying life satisfaction is using ML techniques to
analyze influencing factors. Morrone et al. [72] employed ordinal classification trees,
accounting for both ordinal and diverse satisfaction categories, and found that greater
disadvantages are linked to lower satisfaction levels. Lee [73] used Random Forest methods
to analyze the 2021 Youth Socioeconomic Survey’s data from South Korea, identifying
21 key variables, including work values, that affect youth life satisfaction. Shen et al. [74]
explored various ML algorithms to predict life satisfaction in older adults, highlighting that
subjective social status, positive emotions, and negative emotions are critical predictors.
Kim et al. [16] examined how leisure-related factors affect happiness in individuals over
65 in South Korea, finding that satisfaction with leisure, free time, and public facilities are
significant predictors, with Support Vector Machine being the most effective algorithm.
Finally, Jang and Masatsuku [75] analyzed the happiness of Korean residents through topic
modeling and neural networks, revealing that variables such as family life, income, social
status, health, and perceived inequality are keys to happiness.

2.3. Ensemble of Feature Selection Methods

These approaches are based on the principle that integrating the results of multiple
feature selection algorithms can be more effective than relying on a single algorithm [76,77].
The ensemble of feature selection methods utilizes the concept of model ensembling in
machine learning, where multiple feature selectors are employed in an initial phase and
their results are combined in a later phase to produce a unified final outcome [78]. Several
studies have shown that ensembles of feature selection methods often improve performance
metrics in classification problems compared to the individual use of a single selection
method [79–84].

3. Materials and Methods

The machine learning approach used in exploring predictors of teachers’ life satis-
faction focuses on identifying relevant features from the database of the National Survey
of Teachers of Public Educational Institutions of Regular Basic Education (ENDO) and
validating them using metrics obtained during the testing phase of the models. Figure 1
illustrates the flow chart of our methodological approach, which consists of four steps:
(1) data extraction, (2) data cleaning and preprocessing, (3) feature selection, and (4) training
and model evaluation.
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3.1. Data Extraction

The data for the present research were obtained from ENDO, available on the official
website of the Peruvian Ministry of Education [51] ENDO-2020 was applied remotely (via
telephone) from 24 November to 1 December 2020 to a sample of 28,127 teachers from
regular basic education institutions in all regions of Peru. This survey collects updated
information from teachers throughout the country, covering socio-demographic and so-
cioeconomic characteristics, training, and professional careers. It also includes teacher
perceptions about the working conditions that affect their well-being, their perceptions of
policies and programs promoted by the MINEDU that impact their work, as well as their
values and expectations for the future.

3.2. Data Cleaning and Preprocesing

Data cleaning and preprocessing are fundamental tasks in the work of the data scientist,
with significant implications for the performance of ML techniques [85,86]. Currently, it
is estimated that these tasks take up 60% to 80% of the total development time of a data
science project [87,88]. This proportion varies depending on the initial quality of the data,
as well as their complexity and nature. In the following, we detail the tasks performed in
this phase.

3.2.1. Initial Data Exploration

We performed this task to obtain an overview of the dataset’s characteristics, including
its size, the amount of missing data, the presence of outliers, and the distribution of
variables by data type. As observed in Table 1, the dataset consists of 150 variables and
28,216 rows. A total of 1.5265 × 106 missing cells were found, representing 36.1% of the
total. No duplicate rows were found. The variables are distributed into 125 categorical and
25 numerical variables.

Table 1. General summary of the “ENDO-2020” dataset.

Attribute Value Obtained

Variables 150
Rows 28,216

All missing cells 1.5265 × 106

Missing cell (%) 36.1%
Duplicate rows 0

Duplicate rows (%) 0.0%

Variable types Categorical: 125
Numerical: 25

3.2.2. Missing Data Handling

In this task, we meticulously selected 92 columns, excluding those that contained a
single value in all rows and those with more than 10% missing values. These exclusions
were made to avoid potential errors or unforeseen results in the analysis, as suggested in
previous studies on the impact of incomplete data on analysis quality [89,90].

Missing values were imputed using the mode for categorical variables and the median
for numerical variables, methods commonly accepted for their computational simplic-
ity [91,92]. Figure 2a shows an overview of the variables before imputation, while Figure 2b
shows the variables after the imputation process.
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3.2.3. Data Transformation

Given that the dataset consisted of 38 categorical columns, of which 15 were nominal
and 23 were ordinal, in addition to 54 numerical columns, it was necessary to apply various
encoding and normalization techniques, as most ML algorithms do not support categorical
data [93,94]. To represent the 15 nominal categorical variables, the One Hot Encoding
technique was employed, converting each category into a new binary column indicating
the presence or absence of that category in each observation [16,95]. On the other hand, the
23 ordinal categorical variables were transformed using Ordinal Encoding, assigning each
category an ordered numerical value that preserved the natural order of the categories [96].
Additionally, the numerical columns were standardized to ensure that the values had
a distribution with a mean of 0 and a variance of 1 [97]. The implementations of these
techniques were carried out using the OneHotEncoder, OrdinalEncoder, and StandardScaler
classes from the preprocessing module of the Scikit-learn library in Python [98]. After this
task, we obtained a dataset with 18,911 rows and 121 columns.

3.2.4. Split Dataset

We divided the dataset obtained in the previous phase into an 80:20 ratio, that is, we
used 80% for the model training process and 20% for the testing process. This practice is
common in studies of this nature, as observed in previous works [70,74]. The division was
performed completely randomly to avoid potential biases that could arise from the order
of the data. In this way, we obtained 15,128 instances in the training dataset and 3783 in the
testing dataset.

Due to the imbalance in the target variable “teacher’s life satisfaction”, we balanced
the data in the training dataset using the oversampling technique [99]. This technique
involves creating additional copies of the minority class instances until a balance with
the majority class is achieved. For this, we used the RandomOverSampler class [100],
which is part of the imblearn.over_sampling module in Python. Figure 3 shows the
class distribution of the target variable in three stages: (a) the training dataset, where an
initial imbalance is observed; (b) the test dataset, which reflects the same imbalance; and
(c) the test dataset after data balancing, where the oversampling technique has balanced
the class representation. When a classifier works with an imbalanced dataset, it tends to
show bias, achieving a higher accuracy for the majority class but an inferior performance
for the minority class [101]. In this context, balancing is crucial to improve the performance
of classification models and ensure a more equitable evaluation [102].
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Since the target variable “teacher life satisfaction” was imbalanced, we performed data
balancing in the training dataset using the oversampling technique [103]. This technique
involves creating additional copies of instances from the minority class until a balance is
achieved with the majority class. For this purpose, we utilized the RandomOverSampler
class [100] from the imblearn.over_sampling module in Python. Figure 3 illustrates the
class distribution for the target variable at three stages: (a) the training dataset, where an
initial imbalance is observed; (b) the testing dataset, which reflects the same imbalance; and
(c) the training dataset after data balancing, where the oversampling technique balances
the class representation. When a classifier works with an imbalanced dataset, it tends to
show bias, achieving higher accuracy in the majority class but a lower performance in the
minority class [101].

3.3. Feature Selection

Feature selection in ML is a key process that identifies an optimal subset of relevant
features, thereby improving model performance, reducing noise, and computational com-
plexity [104]. By eliminating redundant or irrelevant features, the model’s interpretability
is increased and more efficient and robust models are constructed [105]. The three most
commonly used feature selection methods are filter-based methods, wrapper-based meth-
ods, and embedded methods [106–108]. In this research, we combined filter-based methods
and embedded methods, using the stratified cross-validation technique with 10 folds.

3.3.1. Feature Selection by Filtering Methods

These techniques evaluate the relative value of each feature with respect to the target
variable on their own, independently of any specific learning model [106,109–111]. To
determine the quality of the feature subset or rate each variable according to a relevance in-
dex, researchers use statistical techniques, excluding those that fall below a predetermined
threshold [76]. The analysis of variance (ANOVA), mutual information, correlation coeffi-
cient, and chi-square test are some of the most popular filtering techniques [110]. In this
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research, we used the following filter methods: mutual information, ANOVA, chi-square,
and Spearman’s Correlation.

• Mutual information (MI) is a metric that quantifies the dependence between two
variables, indicating to what extent knowledge of a feature helps predict the target
variable [112]. Its value varies between 0 and 1, where 0 indicates no dependence
and a value of MI > 0 indicates some relationship between the feature and the target
variable [113]. For the selection of the k best features using the mutual information
filter, we set the parameters score_func = mutual_info_classif and k = ‘all’ in the
SelectKBest class of the Python module sklearn.feature_selection. Equation (1) allows
us to obtain these scores.

I(x; y) = ∑n
i=1 ∑n

j=1 p(x(i), y(j)).log
(

p(x(i), y(j))
p(x(i)).p(y(j))

)
, (1)

• where p(x(i), y(j)) is the joint probability density function of x and y, and p(x(i)) and
p(y(j)) are the marginal density functions. In Figure 4a, we show the fifteen most
relevant features obtained with this technique.
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• Analysis of variance (ANOVA F-test) is used to compare the means of different groups
and determine whether at least one of the means is significantly different from the
others [114]. In the context of feature selection, it is used to assess the relevance of
a feature in terms of predicting the target variable [115,116]. In this study, since our
target variable is categorical, we use this technique to select numerical features. To do
so, we employ the SelectKBest class, with the parameters score_func = f_classif and k
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= ‘all’ from the Python module sklearn.feature_selection. Equation (2) allows us to
obtain the score of this technique.

F = MSB
MSW ,

MSB =
ni∑n

i=1(yi−y)2

(k−1) ,

MSW =
∑k

i=1 ∑
ni
j=1

(
yij−yi

)2

(N−k) ,

(2)

• where MSB is the mean of squares between groups, ni is the number of samples in
group i, yi is the mean of group i, y is the overall mean of all groups, and k is the
number of groups.

• MSW is the mean of the squares within groups, yij is the value of sample j in group i,
and N is the total number of samples.

• We show the ANOVA F-test filter scores for the prediction of teachers’ life satisfaction
in Figure 4b.

• Chi-square analysis is used to determine whether there is a significant association
between two categorical variables [114]. In feature selection, this test is used to assess
the relevance of a feature in predicting a target variable [117]. In this study, since our
target variable is categorical, we applied this technique to select categorical features.
We use the SelectKBest class, with parameters score_func = chi2 and k = ‘all’, from
the Python module sklearn.feature_selection. Equation (3) shows how the score is
calculated for each feature using the following filter.

X = ∑n
i=1

(Oi − Ei)
2

Ei
, (3)

• where Oi is the observer frequency and Ei is the expected frequency.
• In Figure 4c, we show the scores obtained with this filter.
• Spearman correlation coefficient is a nonparametric measure that evaluates the mono-

tonic relationship between two variables based on the ranges of the data rather
than their exact values. It is useful in feature selection in ML to evaluate ordinal
or monotonic dependencies between features and the target variable, without requir-
ing assumptions about the distribution of the data [118,119]. We use the spearmanr()
function of the Python module scipy.stats to determine the value of the coefficients.
Equation (4) allows the calculation of these values.

ρ = 1 − 6∑ d2

n(n2 − 1)
,d = Rx − Ry, (4)

• where Rx and Ry are the ranks of the x e y variables, respectively.
• In Figure 5, we show the Spearman correlation matrix between the fifteen most

important variables and the variable “teacher life satisfaction”.

3.3.2. Feature Selection by Integrated Methods

The integrated method is more efficient and practical in terms of computational
resources compared to the wrapper method, while maintaining a similar performance level.
This is because it avoids the need to repeatedly run the classifier and examine each feature
subset separately [119]. These methods incorporate feature selection as part of the training
process [106,120]. In this research, we employ the methods embedded in the classification
and regression trees (CART), Random Forest, Gradient Boosting, XGBoost, LightGBM, and
CatBoost algorithms. In Figure 6, we show the results of the application of these methods.
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3.3.3. Feature Selection through Ensemble of Methods

Our approach proposes the combination of filter methods and integrated or embedded
methods for feature selection in predicting teachers’ life satisfaction. Figure 7 shows the
algorithms employed in our study.
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3.3.4. Subset of Data with Characteristics Most Relevant to Satisfaction with
Teachers’ Lives

To construct the subset of data with the most relevant features in terms of predicting
teachers’ life satisfaction, we opted for the majority voting approach. The majority voting
approach consists in multiple feature selection algorithms being applied to the dataset,
where each one “votes” for the features it considers important [76]. The features selected
by the majority of algorithms are retained in the final feature set. This approach seeks to
combine the strength of several methods to obtain a more robust and reliable selection.

In this study, we included variables selected by at least 2 algorithms, resulting in a
total of 28 features. To determine the optimal number of features, we trained a logistic
regression model with default hyperparameters. This algorithm was chosen because it
was not considered during feature selection or at the model training and evaluation stage,
making it neutral in our study. We evaluated the contribution of each variable using
six metrics: balanced accuracy, F1-score, precision, recall, Cohen’s kappa coefficient, and
Jaccard Score.

In Figure 8, we show that, by using the first 10 variables, the metrics are stabilized. This
suggests that these variables form the subset of data with the most relevant characteristics.

Table 2 provides an overview of the subset of data, that includes the 10 most relevant
features for predicting teachers’ life satisfaction. This dataset consists of 18,911 instances
and 11 columns: 10 of them represent predictor variables and 1 represents the target
variable (“satisfied”). In the “satisfied” variable, 0 represents “not satisfied”, 1 represents
“satisfied”, and 2 represents “very satisfied”. From this dataset, 15,128 instances correspond
to the training set and 3783 relate to the test set. A detailed description of each of these
features is found in Table A1.
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Table 2. Subset of data with the most relevant features for predicting teachers’ life satisfaction.

P1_24_B P1_24_E P1_24_C P1_24_F P1_22_A P1_2 P1_22_D P1_26_E P1_26_C P1_9_A_SD_HORA Satisfied

3.0 3.0 3.0 3.0 2.0 1.022093 3.0 1.0 1.0 −0.550070 2
2.0 2.0 2.0 1.0 1.0 1.869359 1.0 1.0 1.0 −0.970063 1
2.0 2.0 2.0 1.0 2.0 1.869359 2.0 2.0 1.0 1.969885 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.0 3.0 3.0 3.0 2.0 −0.460624 3.0 1.0 1.0 1.129900 2
3.0 3.0 2.0 3.0 2.0 −0.460624 3.0 1.0 1.0 0.289915 2
3.0 3.0 2.0 2.0 2.0 0.068918 2.0 1.0 1.0 −0.550070 2

3.4. Training and Model Avaluation

We performed our experiments in Jupyter Notebook using the following libraries:
we applied Scikit-learn for data preprocessing, feature selection, and model training and
evaluation; we applied R’s matplotlib and ggplot2 for data visualization; and we applied
numpy for numerical computations. All these libraries were installed in the Anaconda
Navigator 2.6.0 suite, an open-source environment and package manager for Python and R.
Anaconda Navigator was installed on a computer with the following features: an Intel(R)
Core (TM) i5-12450H 12th generation 2.50 GHz processor, 40.0 GB RAM, and a Windows
11 Home 64-bit operating system.

3.4.1. Training and Hyperparameters Tuning

In this research, we trained models using a variety of algorithms, including Random
Forest, XGBoost, Gradient Boosting, Decision Trees—CART, CatBoost, LightGBM, Support
Vector Machine, and Multilayer Perceptron. We performed the fine-tuning of hyperparam-
eters to find the most optimal ones, because these maximize the performance of the ML
models [121].

There are two common approaches to hyperparameter fine-tuning: Grid Search and
Random Search [122,123]. Grid Search performs an exhaustive exploration of all possible
combinations within a predefined hyperparameter space, evaluating each configuration to
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identify the most optimal one [124,125]. Although this method guarantees the evaluation
of all combinations, it can be computationally expensive, especially when the number of hy-
perparameters is large and the range of values is wide. On the other hand, Random Search
selects random combinations of hyperparameters within the defined search space [121].
This approach allows for a wider and more efficient exploration of the space, with a
smaller number of evaluations [126,127]. In our research, we use Random Search with
the stratified cross-validation (StratifiedKFold) of 100 different random combinations of
hyperparameters, with K = 10. This means that the data are divided into 10 subsets (folds),
each maintaining the same class distribution as the original dataset, which is ideal for
classification problems with unbalanced classes [122]. The model is trained and evaluated
10 times, using 9 folds for training and 1 for validation, thus obtaining 10 accuracy scores,
the average of which is used as the final score. Figure 9 shows this process graphically.
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Table 3 presents the hyperparameters for each model, including the search space,
description, default values, and optimized values.

Table 3. Hyperparameter fine-tuning.

Model Hyperparameter Search Space Description Default Values Optimal Values

Random
Forest

n_estimators [10:100] step 1 Number of trees 100 85
criterion [“gini”, “entropy”] Criteria for evaluating divisions “gini” “entropy”
max_depth [2:20] step 1 Maximum depth None None

min_samples_split [2:10] step 1 Minimum number of samples to
split node 2 2

min_samples_leaf [1:10] step 1 Minimum samples to be a leaf node 1 1

max_features [“auto”, “sqrt”, “log2”, None] Number of characteristics to consider
for the best division “sqrt” “sqrt”

bootstrap [True, False] Method for sampling input data True True

XGBoost

n_estimators [10, 17, 25, 33, 41, 48, 56, 64, 72, 80] Number of trees None 80
max_depth [3, 5, 7] Maximum Depth None 3
learning_rate [0.01:0.1] step 0.03 Learning rate None 0.01
subsample [0.6:0.9] step 0.1 Proportion of samples to train each tree None 0.8
colsample_bytree [0.6:0.9] step 0.1 Proportion of features per tree None 0.8
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Table 3. Cont.

Model Hyperparameter Search Space Description Default Values Optimal Values

Gradient
Boosting

loss [“log_loss”] Loss function “log_loss” “log_loss”

learning_rate [0.001, 0.005, 0.01, 0.025, 0.05,
0.075, 0.1, 0.15, 0.2] Learning rate 0.1 0.025

min_samples_split
[500:595] step 5 + [601:696] step 5
+ [702:797] step 5 + [803:898] step
5 + [904:1000] step 5

Minimum samples to split a node 2 606

min_samples_leaf [20, 28, 37, 46, 55, 64, 73, 82, 91,
100] Minimal samples in a leaf node 1 100

max_depth [2:10] step 1 Maximum tree depth 3 8

max_features [“log2”,”sqrt”] Number of characteristics to consider
for the best division None “sqrt”

criterion [“friedman_mse”,
“squared_error”] Criteria for evaluating divisions “friedman_mse” “squared_error”

subsample [0.5, 0.618, 0.8, 0.85, 0.9, 0.95, 1.0] Proportion of samples to train each tree 1.0 0.618
n_estimators [100:1000] step 100 Number of sequential trees 100 200

Decision
Trees-CART

max_depth [10, 20, 30, 40, 50, None] Maximum tree depth None None

criterion [“gini”, “entropy”] Criteria for measuring the quality of
a division “gini” “entropy”

min_samples_split [2, 3, 4, 5, 7, 10, 15] Minimum samples to split a node 2 2
min_samples_leaf [1, 2, 3, 4, 5, 7] Minimal samples in a leaf node 1 3

max_features [“sqrt”, “log2”] Maximum number of characteristics to
be considered for a division None “sqrt”

CatBoost

iterations [100:500] step 100 Number of iterations (trees) 1000 400
depth [3: 10] step 1 Maximum tree depth 6 10
learning_rate [0.01, 0.05, 0.1, 0.2] Learning rate 0.093 0.2
l2_leaf_reg [1:9] step 2 L2 regularization in leaf 3.0 1

border_count [32, 50, 100, 200] Number of division limits in
numerical characteristics 254 32

bagging_temperature [0.5, 1, 2, 3] Controls the intensity of
random sampling 1.0 3

random_strength [1, 2, 5, 10] Intensity of random noise to handle
equal predictions 1.0 5

one_hot_max_size [2, 10, 20] Maximum size to use
one-hot encoding 215 2

LightGBM

num_leaves [20:140] step 10 Maximum number of leaves per tree 31 80
max_depth [3, 5, 7, 9, 11, 13] Maximum depth −1 9
learning_rate [0.0001, 0.001, 0.01, 0.1, 1.0] Learning rate 0.1 0.1
n_estimators [100, 300, 500, 700, 900] Number of trees 100 300
min_child_samples [5, 15, 25, 35, 45] Minimum samples in leaf nodes 20 35
subsample [0.6, 0.7, 0.8, 0.9, 1.0] Proportion of data to train each tree 1.0 0.7
colsample_bytree [0.6, 0.7, 0.8, 0.9, 1.0] Proportion of characteristics per tree 1.0 0.8

reg_alpha [1.0 × 10−4, 1.78 × 10−3, 3.16 ×
10−2, 5.62 × 10−1, 1.0 × 101] Regularization L1 0.0 3.16 × 10−2

reg_lambda [1.0 × 10−4, 1.78 × 10−3, 3.16 ×
10−2, 5.62 × 10−1, 1.0 × 101] Regularization L2 0.0 1.78 × 10−3

min_split_gain [0.0, 0.25, 0.5, 0.75, 1.0] Minimum gain for splitting a node 0.0 0.0
scale_pos_weight [1, 10, 25, 50, 75, 99] Balancing unbalanced classes 1.0 10

Support
Vector
Machine

C [0.1, 1, 10, 100, 1000] Regularization parameter 1.0 0.1
gamma [1, 0.1, 0.01, 0.001, 0.0001] Kernel coefficient “scale” 1
kernel [“linear”, “rbf”] Kernel function “rbf” “linear”

Multilayer
Perceptron

hidden_layer_sizes [50, 100, 150] Number of neurons in the hidden layer 100 150
activation [“tanh”, “relu”] Activation function “relu” “relu”
solver [“adam”, “sgd”] Optimization method “adam” “adam”
alpha [0.0001, 0.001, 0.01] Adjustment parameter 0.0001 0.0001
learning_rate [“constant”, “adaptive”] Learning rate “constant” “constant”
max_iter Entero aleatorio entre 100 y 1000 Number of training iterations 200 848

3.4.2. Model Evaluation

In order to evaluate the performance of the algorithms used in our study, we applied
Tukey’s test [126]. This test is fundamental in comparative analyses such as the present
one, where we evaluate multiple algorithms in terms of various performance metrics.
Tukey’s test allows us to accurately identify which groups of algorithms show significant
differences in their performance, ensuring a robust comparison and controlling for type I
errors [124]. The data used in this test were generated using the 100-fold K-Fold stratified
cross-validation technique.

In addition to Tukey’s test, we evaluated the performance of the algorithms on the test
dataset, taking as references the confusion matrix and the metrics derived from it, such
as accuracy, balanced accuracy, recall, precision, F1-Score, Cohen’s kappa coefficient, and
Jaccard Score. Each of these metrics is detailed below.
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A confusion matrix is a tool that allows the visualization of the distribution of false
predictions. It provides a detailed analysis of the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) [128].

Figure 10 illustrates a confusion matrix for a classification problem with three classes
(A, B and C). The elements AA, BB, and CC represent the true positives of classes A, B and C,
respectively, meaning that the samples were correctly classified. However, AB symbolizes
the samples in class A that were misclassified as class B. The class A false negatives (FNA)
are determined by adding AB and AC (FNA = AB + AC), which correspond to the class A
samples that were incorrectly classified as class B or C. For any class in a row, false negatives
are calculated by summing the errors in that row. The false positives for a predicted class
are obtained by summing all the errors in the corresponding column. Thus, the false
positive of class A (FPA) is the sum of BA and CA (FPA = BA + CA).
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Accuracy is defined as the proportion of correct predictions made by the model with
respect to the total number of predictions. We define it formally by means of Equation (5).

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

Balanced accuracy is a metric that considers both the sensitivity or recall of each class,
and which is especially useful in classification problems with unbalanced classes. Equation
(6) formally defines this metric.

Balanced Accuracy =
1
N ∑N

i=1 Recalli, (6)

where Recalli is the recall for class i.
Recall, also known as sensitivity or True Positive Rate, is a metric that measures

the ability of a model to correctly identify positive observations. Equation (7) allows the
calculation of this metric.

Recalli =
TPi

TPi + FNi
, (7)

where TPi indicates the true positives for class i, i.e., the number of samples of class i that
were correctly classified, and FNi indicates the false negatives for class i, i.e., the number of
samples of class i that were incorrectly classified as belonging to any other class.

Precision is defined as the quotient between the number of true positives and the total
sum of positives. The formal definition of this metric is presented in Equation (8).

Precisioni =
TPi

TPi + FPi
, (8)

where TPi indicates the true positives for class i and FPi indicates false positives for class i.
F1-Score combines precision and recall into a single metric, being useful for evaluating

model performance, especially in unbalanced datasets. In this study, we use Weighted
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F1-Score; this approach calculates the F1-Score for each class and weights it according to
the number of instances of each class. Equation (9) allows us to calculate this value.

F1 − Scorei = 2
(

PrecisioniXRecalli
Precisioni+Recalli

)
,

Weighted F1 − Score = ∑N
i=1

( ni
n xF1 − Scorei

)
,

(9)

where Precisioni is the precision of class i, and Recalli is the recall of class i.
Cohen’s kappa coefficient evaluates the agreement between two evaluators in clas-

sification problems [129]. A value of 1 represents perfect agreement, while a kappa of 0
indicates an agreement no better than what would be expected by chance.

In the context of ML, Cohen’s kappa coefficient is used to measure the agreement
between the predictions of a model and the actual labels in classification problems. Equation
(10) shows the calculation of this metric.

kappa =
po − pe

1 − pe
, (10)

where po is the proportion of observations in which the evaluators agree and pe is the
proportion of expected agreements by chance.

Jaccard Score, also known as the Jaccard index, is a metric that evaluates how similar
two datasets are. In the context of multiclass classification, it is determined by calculating
the ratio of the intersection size to the union size of the label sets. We show the calculation
of this metric in Equation (11).

J(A, B) =
|A ∩ B|
|A ∪ B| , (11)

where A represents the predicted labels and B the reference labels.

4. Results

We present the results based on metrics such as confusion matrix, accuracy, balanced
accuracy, recall, F1-Score, precision, Cohen kappa coefficient, and Jaccard Score, obtained
through 100-fold stratified K-Fold cross-validation of the training dataset. Additionally, we
applied the Tukey statistical test to compare these metrics across the algorithms. Finally,
we validated the aforementioned metrics on the test dataset.

In Figure 11, we present the most relevant features in terms of predicting the life
satisfaction of Peruvian teachers. The variables P1_24_B, P1_24_C, P1_24_E, P1_24_F,
P1_22_A, P1_2, P1_22_D, P1_26_C, P1_26_E, P1_9_D_LV_HORA, and P1_9_A_SD_HORA
are used in the majority of methods, with their high selection frequency highlighting
their importance. For a more detailed description of each variable, we present Table A1,
which provides a data dictionary, with definitions and codes corresponding to each feature
selected by the ensemble of methods.

Table 4 shows the average performance of the algorithms on the training dataset, using
100-fold stratified K-Fold cross-validation. Notably, the CatBoost and LightGBM models
achieved the highest values across all evaluated metrics. Specifically, CatBoost reached an
accuracy, balanced accuracy, and recall of 0.824, with a precision and F1-Score of 0.82. On
the other hand, LightGBM obtained an accuracy, balanced accuracy, recall, precision, and
F1-Score of 0.81, indicating high consistency and the ability to balance classes effectively.
Both models also excel in Cohen kappa (CatBoost: 0.74, LightGBM: 0.72) and Jaccard Score
(CatBoost: 0.71, LightGBM: 0.70), reflecting high agreement and a good intersection over
union for the predicted labels with the true ones. Random Forest also shows a strong
performance, with a precision of 0.79. However, the Gradient Boosting, Support Vector
Machine, and XGBoost models show significantly lower performances, with precisions of
0.68, 0.62, and 0.63, respectively.
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Table 4. Summary statistics of the metrics obtained on the training dataset.

Model Accuracy Balanced
Accuracy Recall Precision F1 Score Cohen Kappa

Coefficient
Jaccard
Score

CatBoost 0.824 ± 0.026 0.824 ± 0.026 0.824 ± 0.026 0.823 ± 0.027 0.822 ± 0.027 0.737 ± 0.039 0.714 ± 0.036
CART 0.762 ± 0.026 0.762 ± 0.026 0.762 ± 0.026 0.756 ± 0.028 0.755 ± 0.028 0.642 ± 0.039 0.622 ± 0.034
Gradient Boosting 0.677 ± 0.029 0.677 ± 0.029 0.677 ± 0.029 0.677 ± 0.029 0.676 ± 0.029 0.515 ± 0.043 0.516 ± 0.033
LightGBM 0.814 ± 0.024 0.814 ± 0.024 0.814 ± 0.024 0.811 ± 0.025 0.811 ± 0.025 0.721 ± 0.036 0.698 ± 0.033
MLP classifier 0.735 ± 0.026 0.735 ± 0.026 0.735 ± 0.026 0.735 ± 0.027 0.732 ± 0.026 0.603 ± 0.039 0.586 ± 0.032
Random Forest 0.791 ± 0.024 0.791 ± 0.024 0.791 ± 0.024 0.787 ± 0.025 0.787 ± 0.025 0.687 ± 0.036 0.661 ± 0.032
SVM 0.615 ± 0.032 0.615 ± 0.032 0.615 ± 0.032 0.644 ± 0.031 0.619 ± 0.031 0.422 ± 0.048 0.451 ± 0.033
XGBoost 0.633 ± 0.032 0.633 ± 0.032 0.633 ± 0.032 0.634 ± 0.032 0.631 ± 0.032 0.449 ± 0.048 0.466 ± 0.034

Figure 12 graphically shows the distribution of the evaluated metrics. The graph
highlights that the CatBoost, LightGBM and Random Forest algorithms show higher
medians in all the evaluated metrics compared to the other algorithms. Although some
outliers are observed in these models, their performance remains robust, as the inter-quartile
variability, indicated by the length of the boxes, is lower compared to the other algorithms.

Table 5 shows the results of the one-factor ANOVA test applied to the balanced
accuracy, Sensitivity, F1-Score and Cohen’s kappa coefficient metrics. These metrics, which
are particularly useful for dealing with unbalanced datasets. The last column reflects p-
value = 0.00, indicating a p-value < 0.05 for all metrics evaluated. This suggests a significant
difference in the performance of at least two of the evaluated algorithms.
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Table 5. ANOVA test on the metrics evaluated.

Sum of Squares df Mean Square F Sig.

Balanced
accuracy

Between groups 4.633 7 0.662 880.466 0.000
Within groups 0.595 792 0.001
Total 5.229 799

Sensitivity
Between groups 4.633 7 0.662 881.058 0.000
Within groups 0.595 792 0.001
Total 5.228 799

F1 Score
Between groups 4.414 7 0.631 804.628 0.000
Within groups 0.621 792 0.001
Total 5.035 799

Cohen kappa
coefficient

Between groups 10.425 7 1.489 881.251 0.000
Within groups 1.338 792 0.002
Total 11.763 799

Table 6 presents the results of the Tukey test for the metrics of balanced accuracy, sen-
sitivity, F1-Score, and Cohen kappa coefficient. With a significance level of 0.05, according
to the Tukey test, we can state that group 7, composed of the CatBoost and LightGBM
algorithms, has a superior average performance compared to the other algorithms eval-
uated. The Random Forest algorithm, which is used in group 6, closely follows in terms
of performance. Additionally, the Support Vector Machine algorithm shows the lowest
average performance across all evaluated metrics.

In Figure 13, we present the confusion matrices of the constructed models, where the
classes represent the following meanings: 0—“not satisfied”; 1—“satisfied”; and 2—“very
satisfied”. The XGBoost, Random Forest, and LightGBM algorithms excel in classifying the
“very satisfied” class, with high true positive values (XGBoost: 1482, Random Forest: 1418,
LightGBM: 1409) indicating high precision in identifying the most satisfied teachers. On
the other hand, CatBoost and LightGBM are effective in classifying the “satisfied” class,
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with high true positive values (CatBoost: 1109, LightGBM: 1108) demonstrating a greater
ability to identify satisfied teachers. Regarding the “not satisfied” class, the XGBoost and
Support Vector Machine algorithms stand out with 98 true positives each, indicating their
effectiveness in identifying dissatisfied teachers.

Table 6. Results of the Tukey test for the metrics evaluated.

Balanced Accuracy Sensitivity
HSD Tukey a HSD Tukey a

Model N Subset for Alpha= 0.05 Model N Subset for Alpha = 0.05
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Support Vector
Machine 100 0.615 Support Vector

Machine 100 0.615

XGBoost 100 0.633 XGBoost 100 0.633
Gradient
Boosting 100 0.677 Gradient

Boosting 100 0.677

MLP Classifier 100 0.735 MLP Classifier 100 0.735
Decision

Trees—CART 100 0.762 Decision
Trees—CART 100 0.762

Random Forest 100 0.791 Random Forest 100 0.791
LightGBM 100 0.814 LightGBM 100 0.814
CatBoost 100 0.824 CatBoost 100 0.824

Sig. 1.000 1.000 1.000 1.000 1.000 1.000 0.117 Sig. 1.000 1.000 1.000 1.000 1.000 1.000 0.117

F1 Score Cohen Kappa Coefficient
HSD Tukey a HSD Tukey a

Model N Subset for Alpha = 0.05 Model N Subset for Alpha = 0.05
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Support Vector
Machine 100 0.619 Support Vector

Machine 100 0.422

XGBoost 100 0.631 XGBoost 100 0.449
Gradient
Boosting 100 0.676 Gradient

Boosting 100 0.515

MLP Classifier 100 0.732 MLP Classifier 100 0.603
Decision

Trees—CART 100 0.755 Decision
Trees—CART 100 0.642

Random Forest 100 0.787 Random Forest 100 0.687
LightGBM 100 0.811 LightGBM 100 0.721
CatBoost 100 0.822 CatBoost 100 0.737

Sig. 1.000 1.000 1.000 1.000 1.000 1.000 0.125 Sig. 1.000 1.000 1.000 1.000 1.000 1.000 0.117

The means for the groups in the homogeneous subsets are displayed. a using the sample size of the harmonic
mean = 100,000.
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(h) Multilayer Perceptron.

With respect to false negatives, XGBoost shows the lowest number of false negatives
(60 teachers) for class 0, meaning “not at all satisfied”. This suggests its effectiveness in
minimizing errors in terms of classifying dissatisfied teachers. For class 1, “satisfied”,
CatBoost shows the lowest number of false negatives (544 teachers), demonstrating its
accuracy in correctly identifying satisfied teachers. For class 2, “very satisfied”, XGBoost
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again shows the lowest value (490 teachers) of false negatives, indicating its robustness in
identifying the most satisfied teachers.

In Figure 14, we show that the XGBoost and Gradient Boosting models excel in terms
of the recall metric, both showing values of 0.63. These results suggest that these models
are effective in identifying true positives, which is crucial in an educational context in order
to ensure that both satisfied and dissatisfied teachers are correctly identified. The ability
to accurately identify these instances can better inform decisions regarding interventions
and support for teachers. However, the highest precision is observed in the LightGBM
and Random Forest models, both with a value of 0.55, indicating that these models have a
lower false positive rate.
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Regarding the F1-Score metric, the highest value is 0.55, achieved by the LightGBM
and Random Forest models. This indicates that these models display a good balance
between precision and recall, which is crucial for practical applications in education where
both aspects are important. Additionally, the Cohen kappa coefficient, which measures the
agreement between predicted and actual labels, is highest in LightGBM (0.42) and Random
Forest (0.41) assessments, reinforcing the idea that these models have greater consistency
in their predictions.

Regarding the F1-Score metric, the LightGBM and Random Forest models have the
highest values at 0.55, indicating a good balance between precision and recall. Additionally,
the Cohen kappa coefficient, which measures the agreement between predicted and actual
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labels, is higher in LightGBM (0.42) and Random Forest (0.41), reinforcing the consistency
of these predictions.

Finally, in the Jaccard Score metric, the LightGBM and Random Forest models achieve
the highest values at 0.41. These results indicate that LightGBM has a greater ability to
correctly match predicted labels with true labels compared to the other models. A higher
Jaccard Score reflects better precision and fewer errors.

5. Discussion

In our study, we found that teachers’ personal well-being, represented by the variables
“Satisfaction with Health” (P1_24_B) and “Satisfaction with Living Conditions for the
Family” (P1_24_C), is crucial to their overall life satisfaction. Health is a fundamental
component of well-being, as good health allows for greater participation in daily and
work activities, which positively contributes to life satisfaction [16]. Moreover, satisfaction
with the living conditions that teachers can provide for their children and family suggests
that the ability to ensure a suitable living environment is a significant source of personal
satisfaction, aligning with the findings reported by [130]. This implies that teachers who are
able to care well for their families tend to feel more satisfied with their lives, highlighting
the importance of family support and stability in personal well-being [131].

On the other hand, we found that job satisfaction, represented by the variables “Satis-
faction with Work in the Educational Institution” (P1_24_E) and “Satisfaction with Condi-
tions for Performing Teaching Duties” (P1_24_F), was relevant in predicting life satisfaction.
These findings confirm that job satisfaction is closely linked to overall well-being and work
motivation, supporting the results of previous studies [11,132]. This connection highlights
the importance of a favorable work environment and adequate teaching conditions in the
overall well-being of educators.

In addition to these variables, the ability to reflect on pedagogical outcomes (P1_26_C)
and participation in continuous learning processes (P1_26_E) proved essential for teachers’
life satisfaction. A teacher who can reflect on their results is able to learn from their
experiences and continually improve their practice [133,134]. Similarly, a teacher who
actively participates in continuous training programs stays updated on the latest trends
in education, pedagogy, and didactics, developing new skills and knowledge to enhance
their teaching practice, which increases job satisfaction and emotional well-being [135].
Therefore, educational institutions should create spaces and opportunities for teachers to
reflect on their classes and share experiences with colleagues, as well as provide access to
training courses, workshops, and other professional development activities.

Our study also reveals that trust in educational and governmental institutions, repre-
sented by the variable of trust in the Ministry of Education (P1_22_A) and in the UGEL
(P1_22_D), plays a crucial role in teachers’ life satisfaction. This finding aligns with previous
research suggesting that trust in these institutions is positively associated with percep-
tions of support and job stability, factors that directly influence personal and professional
well-being [136–138].

Another important variable identified is age (P1_2). This finding confirms what is
reported by the World Happiness Report [139], which states that, in most countries, life
satisfaction gradually declines from childhood through adolescence into adulthood. This
implies that, as teachers age, they may face greater personal and professional challenges
that negatively impact their life satisfaction. Furthermore, it underscores the need to design
well-being policies that consider different life stages to more effectively support teachers
throughout their careers.

Finally, teachers’ life satisfaction is also influenced by the balance between their work
and personal life, as reflected in the variables of the number of hours spent on household
chores and caregiving during the week (P1_9_D_LV_HORA) and the number of hours spent
preparing lessons and handling administrative tasks during the week (P1_9_A_SD_HORA).
This suggests that reaching an appropriate balance between these activities may be crucial
for teachers’ personal well-being. Research indicates that an imbalance between work
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and personal responsibilities can lead to increased stress and life dissatisfaction [140,141].
Therefore, it is essential for teachers to effectively split their time between work demands
and personal responsibilities to maintain a high level of life satisfaction. The ability to
handle these tasks efficiently not only contributes to their personal well-being but can also
enhance their professional performance and job satisfaction [142].

Another interesting finding is that the LightGBM and Random Forest algorithms
excel in five of the seven metrics evaluated, including precision, F1-Score, Cohen’s kappa
coefficient, Jaccard Score, and accuracy. These results suggest that these algorithms could
be considered for implementing effective interventions in the educational sector. Precision
in predicting teachers’ life satisfaction is crucial for identifying dissatisfied teachers and
designing appropriate solutions. Our findings are consistent with those reported by Pan
and Cutumisu [69], who successfully predicted the life satisfaction of secondary school
students in the UK and Japan, where the Random Forest algorithm performed better than
K-Nearest Neighbors (KNN) model. Similarly, Khan et al. [70] found that Random Forest
predicted life satisfaction of Danish citizens with an accuracy of 93.80% and a macro F1
score of 70.60%. Jaiswal et al. [71] also reported that Random Forest was able to predict
overall happiness with a precision of 92.27%, the highest among the algorithms evaluated.

In this study, we explored new predictors of life satisfaction among Peruvian teachers
using an ensemble approach of feature selection methods and machine learning. According
to our literature review, there are no studies addressing this issue with our approach, which
adds novelty and interest to our work. However, it is important to note some limitations.
First, the data analyzed are from 2020, and although the ENDO 2021 exists, it does not
include as many variables as the ENDO 2020. Second, although Grid Search is more
thorough in exploring hyperparameters, we did not use it due to its high computational
cost, opting instead for Random Search. Future studies are expected to benefit from more
powerful computing resources and more up-to-date data.

6. Conclusions

In this study, we identified the most relevant predictors of life satisfaction among basic
education teachers in Peru using data from the ENDO-2020. We employed an ensemble
approach to feature selection methods, combining filtering techniques such as mutual
information, analysis of variance, chi-square, and Spearman’s Rank Correlation Coefficient
with integrated methods like classification and regression trees, Random Forest, Gradient
Boosting, XGBoost, LightGBM, and CatBoost.

Our results show that the most relevant variables in terms of predicting teachers’ life
satisfaction are satisfaction with their health, their employment at educational institutions,
the living conditions they can provide for their family, and the conditions for performing
their teaching duties. Other important variables include age, the degree of trust in the
Ministry of Education and the Local Management Unit (UGEL), participation in continuous
training programs, reflection on the outcomes of their teaching practice, work–life balance,
and the number of hours dedicated to lesson preparation and administrative tasks.

In addition, we found that the LightGBM and Random Forest algorithms performed
the best on five of the seven metrics evaluated. Using the test dataset, LightGBM achieved
an accuracy of 0.55, an F1-Score of 0.55, a Cohen’s kappa coefficient of 0.42, and a Jaccard
Score of 0.41. Random Forest achieved an accuracy of 0.54, an F1-Score of 0.55, Cohen’s
kappa coefficient of 0.41 and a Jaccard Score of 0.41. These results suggest that LightGBM
and Random Forest are the most suitable models for predicting teachers’ life satisfaction.

Our findings provide a significant contribution to understanding teachers’ job satisfac-
tion, and offer a methodological approach that can be replicated in similar contexts. Models
such as LightGBM and Random Forest can assist decision-makers in the educational sector
by identifying teachers with lower satisfaction levels and taking proactive measures to
improve their working conditions and overall well-being. This, in turn, would help to
enhance educational quality and reinforce the sustainability of the education system. To
achieve this, educational administrators should implement strategies such as creating an
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optimal work environment, offering continuous training programs, and providing spaces
dedicated to reflecting on pedagogical practices. Improving teachers’ job satisfaction will
not only benefit the educators themselves but will also positively impact students’ academic
performance and the cohesion of the educational community.
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Appendix A

Table A1. Data dictionary of the features selected by the ensemble of methods.

Feature Description

P1_24_B Satisfaction with your health
P1_24_C Satisfaction with the living conditions you can provide for your children/family
P1_24_E Satisfaction with your job at the educational institution
P1_24_F Satisfaction with the conditions for carrying out their teaching duties
P1_22_A Degree of trust with the Ministry of Education
P1_2 Age
P1_22_D Degree of trust with the Local Management Unit (UGEL)
P1_26_C Reflection on the results of their pedagogical practice
P1_26_E Participation in continuing education programs
P1_9_D_LV_HORA Hours dedicated to household chores and childcare/parental care from Monday to Friday
P1_9_A_SD_HORA Hours spent on class preparation and administrative tasks on Saturdays and Sundays
P1_6 Number of students under your care

P1_27_E Difficulty in planning activities under the competency-based approach of the National Basic
Education Curriculum

P1_22_C Level of trust in the Regional Education Directorate or Management
P1_26_B Difficulty in systematizing pedagogical practice
P1_9_D_SD_HORA Hours spent on housework and child/parent care on a Saturday and Sunday
P1_9_E_SD_HORA Hours devoted to leisure or sports (excluding sleep) on a Saturday and Sunday
P1_9_A_LV_HORA Hours spent preparing classes and administrative tasks from Monday to Friday
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