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Abstract: Forecasting the future levels of air pollution provides valuable information that holds
importance for the general public, vulnerable populations, and policymakers. High-quality data are
essential for precise and reliable forecasts and investigations of air pollution. Missing observations
arise when the sensors utilized for assessing air quality parameters experience malfunctions, which
result in erroneous measurements or gaps in the dataset and hinder the data quality. This research
paper presents a novel approach for imputing missing values in air quality data in a univariate
approach. The algorithm employs the random forest (RF) algorithm to impute missing observations
in a bi-directional (forward and reverse in time) manner for air quality (particulate matter less than
2.5 µm (PM2.5)) data from the Republic of Serbia. The algorithm was evaluated against simple
methods, such as the mean and median imputation methods, for missing observations over durations
of 24, 48, and 72 h. The results indicate that our algorithm yielded comparable error rates to the
median imputation method for all periods when imputing the PM2.5 data. Ultimately, the algorithm’s
higher computational complexity proved itself as not justified considering the minimal error decrease
it achieved compared with the simpler methods. However, for future improvement, additional
research is needed, such as utilizing low-code machine learning libraries and time-series forecasting
techniques.

Keywords: data imputation; air quality; PM2.5; air pollution; missing observations; machine learning

1. Introduction

Air quality (AQ) is a continuous and significant factor in public health since it is asso-
ciated with increased mortality [1,2], cardiovascular diseases [2], increased susceptibility to
allergens [3], and respiratory illnesses [4–6]. Industrialization, urbanization, and popula-
tion growth can all contribute to an increase in the concentration of harmful particulate
matter in the air [7–9]. Among all the measured AQ parameters, the presence of particulate
matter with a diameter less than 2.5 µm (PM2.5) is especially problematic because it can
be inhaled deeply into the body through the respiratory system [10,11]. The origins of
these fine particles can be attributed to a byproduct of fossil fuels burning due to the use of
vehicles and the utilization of materials for home heating [12]. In highly populated regions
that experience significant traffic density, having accurate information about the AQ is
crucial for the proper functioning and well-being of the community.

In 2022, diseases of the circulatory system were the primary cause of death in the
Republic of Serbia (RS), where they constituted 47.3% of all recorded deaths. An additional
6% of deaths were ascribed to respiratory system diseases [13]. Both of these affected
groups are susceptible to heightened air pollution. Furthermore, the annual death toll due
to the consequences of air pollution amounts to approximately 6 to 7 million individuals
worldwide [14,15].
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The adverse effects of heightened air pollution on human health are extensively
documented and widely recognized. There are numerous solutions available to reduce
air pollution, but the responsibility for implementing them lies with decision makers.
One effective approach to address air pollution is to predict the upcoming levels of air
pollution. This offers helpful insights into future air pollution levels, which can be of great
significance to the general public, vulnerable populations, and policymakers. There is an
abundance of literature available on the topic of predicting air quality that ranges from
traditional time-series (TS) techniques to more advanced machine learning (ML) and deep
learning methods.

Classical TS forecasting methods primarily utilize the auto-regressive integrated mov-
ing average (ARIMA) model [16,17] or its variant that includes the seasonal component,
which is known as SARIMA [18]. Another relatively novel classical TS forecasting method
is Facebook’s Prophet [18–20]. Both methods are traditional TS forecasting techniques that
can be effectively used to predict AQ values. Additionally, ML-based methods are also
extensively employed in AQ forecasting. Various ML models can be employed for this
purpose, including extreme gradient boosting (XGBoost) [21], support vector regression
(SVR) [21–23], random forest [22], and recurrent neural networks and long short-term
memories [22,24]. The primary differentiation between TS forecasting methods and ML
methods lies in the data requirements of each approach. Specifically, TS forecasting meth-
ods can be utilized in a univariate manner, where future values are predicted based on the
past values of the modelled variable. However, ML-based methods typically require the
use of additional parameters, such as meteorological, traffic, and other data, to model the
target variable. In certain instances, when there is a lack of available data, this can pose a
significant problem.

However, in order to achieve accurate and reliable predictions of air pollution, it is
crucial to prioritize the quality of data. This applies to both traditional TS and ML methods,
as data quality is the key determinant of the accuracy of forecasts.

Missing observations (MOs) significantly contribute to the poor quality of AQ data.
MOs occur when the sensors used to measure AQ parameters malfunction, which leads to
either erroneous measurements that need to be removed by the researcher or gaps in the
dataset. Figure 1 showcases 10 chosen AQ measurement stations in the RS from the Serbian
Environmental Protection Agency (SEPA) network, which provides a concise representation
of the seriousness of MOs over a 4-year span from 2018 to 2021. Figure 1 clearly illustrates
the presence of MOs that extend over a significant duration, which presents a challenge for
researchers in terms of ensuring data quality. In Figure 1, the average percentage of MOs
for the AQ stations was 15.3%, with the lowest value being 3.9% (station b, Figure 1) and
the highest value being 30.9% (station j, Figure 1). The possible explanation of the MOs
in the SEPA network can be attributed to technical errors at the measurement sites, which
occur randomly and are unrelated to the actual measured values, i.e., the data itself.

Figure 1 depicts the extent of MOs in AQ data that researchers must contend with. As
a result, over the years, numerous AQ imputation techniques have been created, suggested,
and assessed [15,25–27]. The mean-before-after method, which is a variation of a simple
imputation method (mean imputation method), is displayed in [28]. This method takes
into account two data points before and after the gap. Similar to this, bi-directional long
short-term memory, which is a neural network architecture, evaluates data both before
and after the MO location [29]. A comparison of other advanced methods, as well as
deep learning methods, was done to analyze PM2.5 data from Peru [30]. In [31], it is
displayed that Kalman smoothing on structural time series was the most effective method
for data imputation using air quality data from Sydney. Furthermore, the MICE method
demonstrated its advantages in the imputation of missing AQ data [32]. A method known
as missforest, which is associated with the random forest algorithm, was employed to
successfully impute missing AQ values for data from Kuwait [33].
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City Park; i—Kosjerić; j—Niš “Sveti Sava” Elementary School. 
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Figure 1. Missing PM2.5 observations at selected air quality measuring stations from 1 January 2018
until 31 December 2021; a—Novi Sad Rumenačka St.; b—Belgrade Old Town; c—Belgrade New
Belgrade; d—Belgrade Mostar; e—Smederevo Center; f—Obrenovac Center; g—Valjevo; h—Bor City
Park; i—Kosjerić; j—Niš “Sveti Sava” Elementary School.

The goal of this paper was to present a newly developed algorithm for imputing
missing values in univariate AQ data. The decision to employ a strictly univariate approach
was made due to the recognition that additional data for ML algorithms may not always be
easily accessible. Therefore, having a robust, accurate, and reliable univariate method is
advantageous. The algorithm is designed to determine the location of MOs, divide the data
into “before” and “after” segments, and utilize the ML model to predict and fill in MOs in
both forward and reverse directions in time.

2. Methods and Data
2.1. Algorithm Workflow

The PM2.5 data, which includes missing observations, were used as the input time
series for the algorithm (Figure 2). The algorithm first identifies the gaps in the data, i.e.,
the MOs’ locations and sizes. Then, the input TS data are divided into two separate TSs:
TS1 and TS2. TS1 is used as the TS from which the algorithm will make a forecast in the
future, as is typically done in forecasting problems. On the other hand, TS2 is employed to
make a forecast backward in time. To enable backward forecasting, TS2 is inverted.

The algorithm proceeds by applying a data transformation for both TS1 and TS2
(Figure 2). The data transformation aims to reduce the range of data used for forecasting in
order to simplify the data-modeling process (usually to make the data more stationary).
The data transformation utilized in this research was the log transformation.

Feature discovery or feature generation is a crucial initial step in ML modeling. As
previously stated, the imposed constraints of this research are that only PM2.5 data were
used, without incorporating any additional data, such as meteorological conditions, traffic
patterns, or other air quality parameters. Consequently, the available features that could
be employed were solely the PM2.5 data. The features used in this research consisted of
lagged features, i.e., look-back data, which referred to the number of data points analyzed
prior to a given data point, as well as rolling window statistics, such as the mean, median,
and standard deviation. The new parameters introduced into the algorithm in this step
were the number of lagged features and the window size for the rolling window statistics.
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Once the features are generated, the data are passed to the random forest (RF) regres-
sion model. The RF model was introduced by Breiman in 2001 [34] and has since become
one of the most widely used ML algorithms. The versatility of the RF algorithm in the
Earth sciences can be seen in its wide utilization across many fields, such as near-Earth
physics [35–38], lithological prediction [39,40], mineral prospectivity [41–43], and land
classification [44]. The RF model is a tree-based model that can be seen as a progression
and enhancement of decision trees (DTs). DTs use a measure of homogeneity, such as
the Gini index or entropy for classification tasks or the mean square error for regression
tasks, to split a group of instances, where the resulting group has pure (more homogenous)
target variables (the majority belonging to one class or similar range of values). This allows
them to make predictions, either for classification problems (class prediction) or regression
problems (number prediction). Upon receiving a new instance, the DT model assigns it
to a suitable group based on the features of the given instance, and subsequently assigns
the target class of the group to the new instance. DTs are simple models that were subse-
quently improved and surpassed by the RF model. DTs have several drawbacks, including
a tendency to overfit and limited predictive power when dealing with larger and more
complex datasets. However, one of their benefits is their interpretability. The RF model is a
collection of DTs (ensemble model) that employs the bootstrap method with replacement
to generate multiple bootstrap samples from the original dataset, which enables training
more DTs. The ultimate prediction is determined through voting in classification problems
or averaging in regression problems. The RF model has the number of trees as a hyperpa-
rameter, which determines the number of DTs used to train the model. The RF model offers
advantages in terms of its lower susceptibility to overfitting by averaging the predictions
of multiple DTs. Due to the aforementioned reasons and the ease of implementation in
modern software packages and libraries, the RF model is considered an excellent initial
choice when developing novel research areas.

The RF model was trained on 80% of the data, while the remaining 20% was kept
aside for testing and generating values for imputation. This research employed the random
search hyperparameter optimization technique, which involved testing 50 models within
the range of 10 to 1000 trees. The optimized model was subsequently employed to produce
values for imputation. As the model generated a new value, it was added to the feature list
as an additional entry in the test set. The model then proceeded to generate another value.
This process was repeated iteratively until all the data were inputted.

The identical procedure of model creation, training, tuning, and so forth that was
carried out for TS1 was replicated for TS2. The TS1 and TS2 imputed values were used
to calculate an average imputed value from the model, which resulted in a total of three
values: forward, backward, and averaged imputation.

Alongside this process, baseline imputation methods were applied, including simple
methods like mean and median imputations, where the MOs were imputed with the mean
or median values of the dataset.

The error quantification for this research was done in a straightforward manner by
using the absolute error (AE) and its aggregate: the mean absolute error (MAE). This
research utilized multiple AQ monitoring stations, and because of that, the mean, median,
minimum, and maximum MAE for each imputation method are displayed throughout this
research paper.

2.2. Dataset Preparation

This research utilized AQ data obtained from the Serbian Environmental Protection
Agency (SEPA) network. The SEPA network employs Grimm EDM 180 PM monitors [45,46]
throughout the RS, which are fully automated PM monitors that operate on the principle of
light scattering, i.e., an optical particle counter, for PM detection. As the AQ data collected
by the SEPA network are sent to the European Environmental Agency (EEA) database,
all PM measurements adhered to the standardization requirements established by the
European Union and the EEA. The initial dataset comprised AQ measurements from 2018
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to 2021 for different parameters, including PM2.5, PM10, SO2, CO, and NO, across different
locations in the RS. The initial datasets were employed to identify the longest uninterrupted
sequences of recorded PM2.5 data. Figure 3 displays a total of nine stations that were
considered suitable for the current study. The durations of the consecutive data ranged
from 4715 h, which was equivalent to approximately 196 consecutive measured days in
Belgrade New Belgrade, to 8735 h, which was equivalent to 364 consecutive measured days
in Belgrade Mostar and Old Town.
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Figure 3. Distribution of air quality monitoring stations whose data were utilized in this research
across the Republic of Serbia.

The chosen PM2.5 measurement stations were distributed throughout the RS, with
three located in the capital and largest city of Belgrade (Mostar, New Belgrade, and Old
Town). The other two largest cities in the RS, Novi Sad and Niš, each had one selected
PM2.5 measurement station. The remaining stations were spread across various localities
in the RS, including Obrenovac, Valjevo, and Smederevo. In terms of the area and station
classifications, the three largest cities (Belgrade, Novi Sad, and Niš) had stations situated
in urban areas of the city. These stations assessed either traffic-related or background air
pollution levels. The Mostar AQ station in Belgrade was situated near a prominent traffic
junction that experienced heavy traffic congestion during peak hours throughout the day.
Additional AQ stations were situated in suburban or urban environments and assessed
either background or traffic pollutants.
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Once the suitable AQ stations were determined, MOs of 24, 48, and 72 h were intro-
duced into the TS. Random locations for the missing observations were chosen for each
AQ station, which resulted in varying lengths of TS1 and TS2 in order to test the algorithm
and precisely gauge its effectiveness. To quantify the error rates of the aforementioned
imputation methods, the original, i.e., measured, data, which were located where the
MOs were introduced, were separated and preserved for subsequent use when the models
imputed the data.

A decision was made to select relatively small values of MOs (24, 48, and 72 h)
and compare our algorithm with simple imputation methods, such as mean and median
imputations. Additionally, the algorithm was provided with the maximum amount of
available data in the given circumstances from the SEPA network. In order to provide the
algorithm with optimal conditions for success, we specifically generated small MO values
that yielded more data for model training and a narrower range of data that needed to be
imputed. However, the decision to use mean and median imputations was made to provide
the proposed algorithm with relatively simple yet widely utilized methods for comparison.
Mean and median imputations, while straightforward, are suitable for data imputation in
certain cases. However, they are not recommended for long sequences of data, particularly
those with expected periodic patterns or variability [47,48], such as AQ data.

Furthermore, selecting the longest measured sequences of data from the SEPA network
enabled the model to be in optimal conditions for demonstrating an enhancement over
simple imputation methods. In other words, our algorithm was provided with the most
favorable conditions in terms of the quantity of data, as well as the methods to which it
was compared.

It is important to mention that certain AQ monitoring stations that were considered to
be of interest (e.g., displaying high error rates and having a high variability in the data or
other) were subjected to testing with alternative imputation techniques. These techniques
included classic RF, which incorporates additional features, such as meteorological data
and time parameters (time of day, day of week, etc.), and incorporates a classical instance-
based approach and modern imputation techniques, like the iterative imputer [49] with
the dataset consisting of data up to the MO location. Due to the greater number of stations
and variations in the conditions and lengths of the MOs, not all stations underwent testing
with alternative techniques and different features. Only a limited number of stations were
selected for this purpose and are displayed in the results section.

3. Results
3.1. One Day (24 h) of Consecutive Missing Observations

Figure 4 displays the MAE distribution for all five imputation methods used on a
dataset with nine AQ measurement stations with 24 consecutive MOs. The distribution
revealed the presence of a significant outlier in all the imputation methods. Specifically,
for the forward imputation method (Figure 4a), the MAE for the given AQ station was
approximately 147 µg/m3, while for the other methods, it ranged from 80 µg/m3 to around
100 to 120 µg/m3. This outlier skewed the average MAE calculated for all AQ stations
using a given imputation method, as was evident when comparing the mean and median
MAE values. When comparing the imputation methods based on the median MAE value,
two methods stood out with similar minimal values: forward imputation with 7.55 µg/m3

(Figure 4a) and median imputation with 7.87 µg/m3 (Figure 4e).
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In the distributions presented in Figure 4, only eight AQ stations were included out
of the total of nine that were analyzed. Upon investigating the reason for the omission of
one station from the distribution, it was found that the algorithm failed to converge on one
specific example, which resulted in the absence of any results for that AQ station.

Regarding the severe outlier, all imputation methods in Figure 4 indicated that the
dataset originated from the city of Valjevo. This dataset covered the period from 20 June
2018 to 31 March 2019, thus totaling 6803 h or 283 consecutive measuring days. After
analyzing the Valjevo dataset, it was evident that there was a significant increase in the
PM2.5 parameter values that started from the month of October (Figure 5). The locations of
MOs are depicted in Figure 5 by the green dashed line, which were situated in the highly
fluctuating section of the increased PM2.5 values. In the locations of the 24 h MOs, the
PM2.5 values varied between approximately 80 µg/m3 and 250 µg/m3, thus exhibiting
distinct peaks and lows. Due to the wide range of PM2.5 concentrations and the significant
variability in these concentrations, none of the tested models were successful in accurately
imputing the data with a relatively low margin of error. In addition to the higher error
rate that resulted from the fluctuating levels of PM2.5, one possible explanation is that the
decrease in temperature, which started in October 2018, led the residents of Valjevo to rely
on wood and other combustible materials for home heating. This, in turn, contributed to the
rise in ambient pollution levels. The Pearson’s and Spearman’s correlation coefficients were
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computed to determine the relationship between temperature and PM2.5 concentrations for
the given period. The results indicate a moderate, negative correlation, meaning that as the
ambient temperature decreased, the PM2.5 concentration increased and vice versa. These
findings align with similar results obtained from [6].
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Furthermore, two additional models, namely, the classic RF and iterative imputer, were
tested on the data to evaluate their suitability for this extreme example. The two models
used incorporated meteorological variables, such as the temperature, dew point, relative
humidity, wind direction, wind speed, and visibility, as well as time-related variables,
including time of day, day of week, and day or night classification. Both models surpassed
the performance of the five previously used models; however, they still exhibited significant
MAE values of 79.7 µg/m3 and 90 µg/m3 for the 24 h MO period.

3.2. Two Days (48 h) of Consecutive Missing Observations

The median imputation method yielded the lowest mean MAE value across all AQ
measurement stations in the case of 48 h of MOs (Figure 6e). This was followed by the
mean imputation (Figure 6d) method and the forward imputation method (Figure 6a).
The application of backward imputation in this particular scenario resulted in the poorest
overall performance, with an average value of 32.19 µg/m3. When examining the median
MAE values, the situation varied, and the most effective method overall was forward
imputation, followed by median imputation.
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Choosing the most efficient method for the 2-day MO case came down to deciding
between forward and median imputation, as the mean and median MAE values were quite
similar for both methods. However, it was crucial to consider both the computational com-
plexity and time of the proposed method. The average duration for the proposed algorithm
to generate the forward and backward data imputations was 13.21 min. However, the time
split between the forward and backward imputations was not always evenly divided at
50–50%. In contrast, the median and mean imputation methods were instantaneous on
modern computers. Consequently, the proposed method in this research was less effective
when compared with straightforward methods for the 48 h MOs scenario.

Figure 7 provides an illustration of the imputations made by different models for
the Niš “Sveti Sava” elementary school example. Figure 7a displays the 48 h MO period,
along with the actual PM2.5 values and imputations from different models. The proposed
algorithm’s forward forecast yielded the most favorable results in terms of minimal MAE
values, with a value of 2.34 µg/m3. This was closely followed by the average forecast from
our algorithm (3.3 µg/m3), and then by the RF classic (4.16 µg/m3) and iterative imputer
(4.17 µg/m3). When examining Figure 7b, it shows the complete PM2.5 data for the specified
location, along with the temperature for the given time period and the locations of the MOs.
This situation is comparable to the previous example. During the winter, the decrease
in temperature led to an increase in air pollution due to the heightened usage of wood
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and other materials for home heating. Due to the positioning of the MOs, the backward
forecast was trained using values that were higher than those used in the forward forecast.
As a result, the backward forecast predicted larger values than the forward forecast and
performed as the third worst model. The two models with the lowest performance were the
mean imputation method, with a value of 21 µg/m3, and the median imputation method,
with a value of 8.2 µg/m3. This information is noteworthy because both methods made
use of the entire dataset rather than just the portion of the dataset before the locations
of the MOs. Mean values are highly susceptible to the influence of outlier values, which
results in the mean imputation method producing more inaccurate estimations. In contrast,
median values are not affected by outliers, which leads to more accurate estimations. When
a dataset has significant variations in its data values, it is more efficient to use the median
instead of the mean for imputation [50].
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3.3. Three Days (72 h) of Consecutive Missing Observations

During the three days or 72 consecutive hours of MOs, the situation was analogous
to the previous two examples. Figure 8 compares the forward and median imputation
methods (Figure 8a,e), which were the two best overall methods. As previously mentioned,
while there was a comparison between the two methods in terms of MAE values, the
computational complexity and time for our method was not justified by the reduction
in error estimates. In fact, the error values between a simple and instantaneous method
and our method were quite similar. Furthermore, it is worth mentioning that similar to
the previous example, the median imputation method yielded more accurate estimates of
PM2.5 MOs compared with the mean imputation method, which showed that when having
highly fluctuating data, a better choice is the median imputation method.
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Given the previous results and the use of the iterative imputer and classic RF up to
the locations of the MOs, a different approach was taken for the example that involved
three days of consecutive MOs. From the previous two examples, it was observed that
there was a correlation between the temperature and the rise in PM2.5 concentrations. The
correlation between the temperature and PM2.5 may be indirect due to the heating season
in the RS, which begins on October 15 and ends on April 15 nationwide. This seasonal
pattern could be an important feature for the model. In this example, in addition to the
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usual meteorological features (temperature, relative humidity, wind speed, visibility) and
time features (time of day, day of week), a binary feature was included to indicate the
beginning and end of the heating season in the RS. In addition, the RF model was provided
with the complete dataset both before and after the locations of the MOs. The example used
was Belgrade, Old Town, which included data from 31 March 2019 to 29 March 2020, thus
totaling approximately 8702 consecutive measured hours (equivalent to 362 consecutive
measured days). The MAE for the model that did not include the heating season feature
was 11.9 µg/m3. However, when the heating season feature was included in the model, the
MAE decreased to 7.8 µg/m3. In addition, the feature importance analysis determined that
the heating season feature was the second most informative, after visibility and before wind
speed, temperature, and relative humidity. Similarly, in the same example, the forward
imputation yielded an MAE value of 7.8 µg/m3, while the backward imputation resulted
in a significantly higher value of 99 µg/m3. The MAE values for the mean and median
imputation models were 19.6 µg/m3 and 9.4 µg/m3, respectively.

4. Discussion
4.1. Benefits and Limitations

Considering the results presented earlier, it is necessary to address the limitations of the
suggested method. While our proposed method showed favorable results in certain cases,
it did not outperform simpler methods, like the mean and median imputation, overall.

Our method incurred significantly greater computational complexity and time com-
pared with the other methods employed in this research study. The computational time
for the classical, instance-based RF and iterative imputer methods, which are effective and
modern techniques for data imputation, was only a few seconds. Regarding the mean
and median imputation methods, as previously mentioned, the computational time was
very fast, i.e., instantaneous on modern computers. Regarding our proposed method,
the average computational time (on a standard home computer) for the entire algorithm
was approximately 13 min. However, it is important to note that there was an unequal
time distribution between the forward and backward imputations, with a 50–50% split
not always being observed. Also, the computational time mentioned was achieved by
allowing the algorithm to fully leverage the maximum processing capabilities. Therefore,
for configurations with lower capacities, the computational time could be greater.

It is worth noting that the task of locating extended, uninterrupted sequences of
measured data can be challenging. In this research paper, we selected nine SEPA AQ
measurement stations that had a minimum of 4715 continuous measured data points and a
maximum of 8735 continuous measured hours. This research paper presented the ideal
situation for our proposed method; however, in reality, the data were characterized by a
high frequency of low-duration MOs (low MO duration but high occurrence frequency)
and a low frequency of high-duration MOs (high MO duration but relatively low occur-
rence frequency).

One more constraint of this research is that we employed the RF model to produce
imputed values. The RF model possesses hyperparameters, such as the number of trees.
However, our approach introduced new parameters that should be taken into account,
thereby increasing the complexity of our method. The number of features in this research
can be regarded as a parameter, as it is connected to lagged values and rolling window
statistics. The researcher needs to determine the optimal number of lagged values to utilize,
as well as the size of the rolling window. In theory, our method can be adjusted for each
specific case, but this inevitably leads to a higher level of computational complexity.

Our method has a drawback in which the model generates values to sequentially fill
in missing data. These generated values are then transferred to the feature set one-by-one,
where they are used as data points to generate new values. This approach has a weakness in
which it is trained using measured data. Introducing a synthetic data point in the feature list
poses a challenge, unless that data point has a correct, i.e., expected value. In other words,
the errors in our model accumulate at a faster rate compared with standard forecasting
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problems because each new generated data point is contingent upon the “correctness” of
the previous generated data point.

Finally, it is important to acknowledge that creating a one-size-fits-all method for data
imputation on AQ data is highly challenging. Another factor to consider is the increased
difficulty in making the method exclusively univariate due to the presence of numerous
location-specific factors (as observed with the heating period feature in this research) and
the influence of multiple different factors on AQ values (traffic patterns for a given location,
weather conditions, holiday season, etc.). An option is to individually address each dataset
that requires data imputation by employing a variety of methods specifically tailored for
the specific data at hand.

4.2. Future Perspectives

In addition to the limitations displayed earlier, there are a few noteworthy points
that need to be highlighted, and further research can be expanded upon. Based on our
research, we consider the proposed method of providing imputations or forecasts of MOs
using two directions to be an interesting approach that deserves further investigation. In
order to conduct future research, it is possible to explore two alternative methods. One
possible approach is to use a low-code ML library like PyCaret [51] instead of the currently
used RF method. PyCaret not only offers the ability to train, test, validate, and tune the
model but also the capability to do so quickly, thereby reducing the computational time
and complexity of our approach. In addition, a comparison can be made between the
forward and backward imputations to determine whether divergence occurs. If it does,
only one of the imputations should be used. In addition to this, another comparable
approach that can be employed is the utilization of standard TS forecasting techniques,
such as ARIMA or Facebook’s Prophet [52]. These methods are robust TS forecasting
techniques that incorporate automated workflows for tuning parameters, specifically in
the case of the ARIMA technique. Furthermore, it is worth considering a hybrid approach
that combines PyCaret, which is a standard ML framework, with TS forecasting techniques.
This combination has the possible potential to further improve the proposed algorithm,
which we plan to conduct in the future.

Furthermore, an interesting parameter for future research in data imputation methods
is the planetary boundary layer (PBL), which is a parameter that is not measured but
modeled. The PBL exhibits a negative correlation with PM2.5 values [53], which makes this
valuable information to include in future models. Additionally, the PBL is thinner during
nighttime and in colder months. This is consistent with our observation that as the ambient
temperature decreased, there was an increase in ambient AQ pollution. Future research in
the field is expected to explore various perspectives in utilizing non-inherently measured
data. This was because sensors often require maintenance periods, experience downtime,
and may encounter malfunctions.

Finally, it is important to acknowledge for future research that AQ should be consid-
ered not only as a variable that changes over time, but also as a variable that changes both in
space and time, as air pollution moves across different locations and periods, as displayed
in [54,55]. Regarding data imputation methods, if the stations are in close proximity to
each other, the MOs of one station can be assumed to be the same as the values of the
other station in the event of a malfunction. Furthermore, studying the spatial and temporal
fluctuations of air pollution is crucial, as it can provide insights into the movement of
pollutants and the factors that impact their dispersion.

5. Conclusions

The matter of AQ is a crucial concern for public health that necessitates attention in
vulnerable regions. Data quality is a critical aspect that includes the quantity of missing
data. One possible approach to enhance data quality in AQ measurements is through the
use of imputation methods.
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This research paper proposes a novel method for imputing missing values in AQ
data that was tested on PM2.5 data from the Republic of Serbia. The method relies solely
on univariate data, which means that only the data of the parameter itself was used
for imputation. This decision was made due to the limited availability or unreliability
of additional data in certain situations. Hence, it is beneficial to devise a technique for
estimating or imputing data for a particular AQ parameter solely using its own data.

The algorithm we proposed yielded comparable results to the median imputation
methods during the specified period of MOs (24, 48, and 72 consecutive hours). The
computational complexity of our algorithm was not justified by the marginal error reduction
it achieved, as the reduction was neither substantial nor consistent across all AQ stations.

Our research analysis revealed a strong correlation between the decreased ambient
temperature throughout the year and a significant increase in PM2.5 concentrations. This
was interpreted as individuals utilizing wood and other flammable substances for residen-
tial heating, thereby elevating the surrounding levels of PM2.5 and other particles.

When the data gathered from this research was incorporated into an ML model as a
binary feature called heating season, the model exhibited improved MAE values compared
with when the feature was not included. The feature importance ranking placed the heating
season feature as the second most informative, just below visibility and above wind speed.

The limitations of this research are thoroughly discussed and can be summarized as
follows: computational complexity/time, the lack of long uninterrupted streams of data,
data quality issues, and the challenge of developing a solely univariate method.

However, there are future research opportunities that will be further developed. Fur-
ther research is required to explore the application of time-series forecasting techniques,
potentially in conjunction with low-code ML libraries, to reduce the computational com-
plexity and time.
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