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Abstract: This study analyzes and evaluates natural and anthropogenic geosites within the potential
Geopark Slovak Karst using a slightly modified Geosite Assessment Model (GAM). It focuses on
three case studies from this area: Jasovská Cave, Gombasecká Cave, and Domica Cave, including
their surroundings. The aforementioned caves represent the primary points of interest and draw in
high concentrations of visitors. We aim to highlight opportunities for dispersing visitors to other
nearby geosites and encouraging their extended stay in the region. Based on the research results,
it can be concluded that the highest point values (from 22.5 to 23.5 points) are achieved by three
UNESCO caves (Jasovská Cave, Domica Cave, and Baradla Cave). These caves have a high level of
both main and additional values. Gombasecká Cave has a total point value of 20.5 points, with a
high level of main values and a medium level of additional values. Other geosites reach total point
values from 9 to 16 with different levels of main and additional values. The three accessible caves will
continue to be the main object of interest for tourists. The networking of other nearby geosites with
caves in the form of educational trails and their greater promotion could help visitors stay longer in
the region and direct their attention to these geosites. The research methodology used in this study
proved to be suitable and we can see its further use in the evaluation of geosites across the entire
territory of the potential Geopark Slovak Karst.

Keywords: Slovak Karst geopark; geoheritage; geosite; cave; GAM

1. Introduction

The term “geosite” is an often-reinterpreted term in the literature, dealing with geo-
tourism [1–4], geodiversity [5,6], geoheritage [7,8], or geoparks [9,10]. Geosites represent
the skeleton, the fundamental basis, of a particular region when such places are analyzed
and evaluated in terms of the potential or use of the territory for geotourism. Accord-
ing to Goudie [11], geosites are parts of the geosphere that are particularly important for
understanding the Earth’s history. They are spatially limited and distinguishable from
the surroundings from a scientific point of view. More precisely, geosites are defined as
geological or geomorphological objects that have acquired scientific value (e.g., certain
sedimentological stratotypes, such as relict moraine, representing the extension of a glacier),
cultural–historical value (e.g., places with religious or mystical value), aesthetic value (e.g.,
some mountainous or coastal landscapes), and/or social/economic value (e.g., aesthetic
landscapes as tourist destinations) due to human perception or use.

Groups of geosites are often distinguished and referred to as natural sites (e.g., hydro-
geological, pedological, paleontological, and petrological sites) or anthropogenic (geohistor-
ical) sites (e.g., mines and bunkers). Geosites, in terms of dimensions, represent territories
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from several m2 (e.g., springs) up to several km2 (e.g., glaciers) in size. In addition to
the term geosite, the term “geomorphosite” is often used, but it is not easy to distinguish
between the two terms. Some authors consider geomorphosites a subgroup of geosites,
while others understand geomorphosites as the geomorphological equivalent of geosites.
Geosite research often takes place in an area known as a geopark. UNESCO Global Geop-
arks (UGGps) are defined as unified geographical areas where the landscape and sites are
of international geological significance and are managed with a holistic concept of protec-
tion, education, and sustainable development. A bottom-up approach combines nature
conservation with sustainable development while involving local communities. There are
currently 213 UNESCO Global Geoparks, spanning 48 countries [12]. A European Geopark
is defined as a territory that includes a specific geological heritage with a sustainable
territorial development strategy supported by a European development program. It must
have clearly defined boundaries and a sufficient area for territorial economic development.
A European Geopark must include a certain number of geological sites of exceptional
importance in terms of their scientific quality, rarity, aesthetic value, or educational value.
Most of the sites present in the territory of the European Geopark must be part of the
geological heritage. However, they can also have archaeological, ecological, historical,
or cultural significance [13]. The evaluation and inventorying of sites within geoparks,
specially protected areas (i.e., national and natural parks) or other regions, is a frequent
topic of research [14–40].

From the point of view of geotourism potential, the territory of the Slovak Republic
can be characterized as relatively diverse, with several territories having a wide variety of
suitable geosites. Despite its small area, thanks to the varied geological–geomorphological
substrate and the centuries-old use of the land by humankind, the territory of the Slo-
vak Republic is a suitable place for the location and creation of geoparks. To date, four
geoparks are registered in the Slovak Republic, which are part of the European Geoparks
Network: Banskoštiavnický Geopark, Banskobystrický Geopark, Malé Karpaty Geopark,
and Novohrad–Nógrád Geopark. The last of these four is part of the UNESCO Global
Geoparks Network.

Analyzing, evaluating, and establishing inventories of geosites are all essential in
regions that represent the sites of potential or aspiring geoparks. From the point of view of
geotourism, such potential geoparks represent a welcome addition and expansion of the
network of existing geoparks at the national or international level [41–57].

The “Concept of Geopark Development in Slovakia” from 2008 envisages several other
regions in the territory of the Slovak Republic that could become geoparks and thus expand
the European Geoparks Network or the UNESCO Global Geoparks Network. Creating a
geopark in terms of this concept must be preceded by an analysis of the geodiversity of
the given region, the characteristics of its natural and anthropogenic geosites, the setting
of adequate management of the area, and the involvement of local governments and
organizations. In this paper, we refer to an area that meets the conditions related to this
concept as a potential geopark.

Karst territories with surface and underground karst forms represent an ideal space
for a potential geopark. In such areas, as a rule, caves represent the main object of interest
for tourists and thus represent the dominant geosites of karst areas, which are so often the
subject of research and evaluation [58–75].

One of the regions with potential geoparks in the Slovak Republic is the karst territory
of the Slovak Karst, which, together with the neighboring Aggtelek Karst in Hungary, is the
largest karst area in Central Europe. Favorable geological conditions (i.e., the occurrence of
massive light Wetterstein limestones), together with the geological–tectonic development
of the territory, created favorable conditions for the emergence and expansion of the karst
phenomenon here. On a total area of approx. 800 km2 (together with the Aggtelek Karst),
a diverse range of forms of underground (endokarst) and surface (exokarst) karst was
created to form this territory. From the view of the types of karst relief, it is plain karst
with the occurrence of karst plains, which point to the midmountain leveling system. We
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can find several natural geosites in this area (caves, chasms, springs, sinkholes, limestone
pavements, canyons, and gorges). Settlement and centuries–old use of this territory by
humans has also caused the appearance of anthropogenic geosites (quarries, artificial lakes,
monasteries, and mining works). Due to the area’s valuable natural resources, there are
two national parks in this karst area: in Slovakia, there is the Slovak Karst National Park
(Figure 1), established in 2002; in Hungary, there is the Aggtelek National Park (established
in 1985).
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As a contribution to the literature, this paper aims to inventory and assess natural
and anthropogenic geosites on three case studies from the area of the potential Slovak
Karst Geopark.

2. Study Area
2.1. The Slovak Karst

The Slovak Karst is located in the southern part of the Western Carpathians in the
southeast of the Slovak Republic in the Slovak Ore Mountains. The territory, with an area of
361.65 km2, covers four territorial administrative districts, namely Košice–Okolie, Gelnica,
Rožňava, and Revúca. In the south, it stretches along the state border with the Republic
of Hungary for a length of 57 km. The territory of the Slovak Karst is divided into nine
subdivisions, namely Jelšavský kras, Koniarska planina, Plešivecká planina, Silická planina,
Turnianska kotlina, Horný vrch, Dolný vrch, Zádielska planina, and Jasovská planina. The
core zones of the territory are represented by the areas Silica–Jasov (27,299 ha), Plešivecká
planina (5471 ha), and Koniarska planina (1595 ha). The territory’s highest point is Dvorník
Hill (932 m a.s.l.).

At the beginning of the Middle Triassic, limestone and dolomite layers began to form
from the calcareous organisms of reefs on the subsided basins of the Late Permian. The sea
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retreated from the karst region, probably at the beginning of the Cretaceous. The uplift of
the Gemer base caused the gravitational slide of limestone blocks in the form of mantels up
to several tens of kilometers [76,77]—the first traces of karsting in Gombasek and Včeláre
date from the Upper Cretaceous period. The flattening of the territory was caused by
meandering surface flows from the Slovak Ore Mountains. The lifting and cutting of the
area by the rivers Štítnik and Slaná occurred about 7 million years ago, while vertical
caves and chasms such as Zvonivá jama, Malá Žomboj, Obrovská priepast’, and Brázda
were created. More minor uplifts in the Pliocene about 3 million years ago were of great
importance for the creation of the horizontal levels of several caves, such as Gombasecká,
Ardovská and Hrušovská caves, or the Domica–Baradla cave system lP [78–80]. The
territory of the Slovak Karst (Figure 2) is built mainly of light Triassic Wetterstein and
Steinalm limestones with a lesser amount of dark-gray Gutenstein limestones [77,81,82].
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Figure 2. The geological structure of the Slovak Karst National Park and its surroundings.

The division of the initially uniform limestone territory into separate plateaus was
caused by the uplift of the territory of the Slovak Karst and Aggtelek Karst in the late
Tertiary, which was accompanied by an intensive deepening of the surface flows dividing
this territory into plateaus. They are separated by the Štítnik and Slaná canyons, up to
400 m deep [83]. The plateaus of the Slovak Karst belong to the most fully developed
karst plateaus in Europe and represent a typical Central European plateau karst of a
temperate climate zone, with the perfect development of almost all surface and subsurface
karst phenomena [84]. Limestone pavements are widespread on almost all plain surfaces,
while the most representative area in terms of their occurrence is the Kečovské Karrens
(Kečovské škrapy) [85]. Various types of sinkholes are abundantly represented; on the
edges of the plateaus, there are also blind valleys ending in a limestone wall or dry valleys
with sinkholes at the bottom [86–88].
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The Slovak Karst finds itself in a mildly warm and humid climatic region with a cold
winter, experiencing average winter temperatures of −2 to −5 ◦C and summer temperatures
of 16 to 18 ◦C. The annual number of days with snow cover is around 60–80, and the number
of summer days is between 30 and 50. The average annual temperature is around 8.8 ◦C.
The annual average precipitation ranges from 630 to 780 mm. A significant seasonal change
of weather is characteristic.

The territory of the Slovak Karst is drained by the rivers Slaná, Štítnik, and Bodva
with their side tributaries. The territory is characterized by a general lack of water, which
is most pronounced on the surface of the plateaus. Numerous karst lakes (Smradl’avé
jazero, Jašteričie jazero, and Farárova jama) can be found on the edges of the plateaus
near the junction of karst and non-karst rocks [89]. The lack of water on the surface is
compensated for by the accumulation of groundwater inside the plateaus, drained by
springs and springs of shallow circulation at their foothills with fluctuating yields, such
as Čierna, Hučiaca, Brzotínska, or Pstružia vyvieračka. The regimes of springs connected
with waters of deeper circulation, such as Vel’ká studňa, Teplá voda (Včeláre), or Kunová
Teplica, are more constant. A particular type is represented by periodic springs based
on the principle of an underground reservoir, which is gradually filled with water before
compressed air pushes it to the surface at once [90,91].

The soil cover on the karst plateaus of this territory is significantly conditioned by
the georelief, as well as the geological bedrock. Karst ridges and mounds are mainly
covered by rubified rendzins, representing the most widespread soil type. In dry valleys
and plateaus, characteristic cambisols are rubified. The territory is characterized by the
frequent occurrence of terra rossa, either in an autochthonous form or, even more so, in a
resedimented form [92].

The specific characteristics and peculiar conditions of the territory of the Slovak Karst
are also reflected in the diversity of its flora and fauna [93]. Within Slovakia, several flora
taxa occur only in the Slovak Karst, e.g., Sadler’s fern (Ferula sadleriana), the pisiform grass-
pea (Latyhrus pisiformis), or the short–necked sedge (Carex brevicollis). The peculiarities of
the territory also create specific conditions for animals, predominantly of the steppe and
forest–steppe zones, such as the predatory bush cricket (Saga pedo), the European ground
squirrel (Spermophillus cittelus), the praying mantis (Mantis religiosa), or the mollusk Pupilla
triplicata. The occurrence of 217 species of birds has also been confirmed. Bats, which find
suitable living conditions in the caves of the Slovak Karst, are the most abundant cave
fauna, some of which are endemics and troglobites, such as the shrew Eukoenenia spelaea, the
cave shrew Niphargus aggtelekiensis, the beetle Duvalius bokor, the shrew Neobisium slovacum,
and the springtail Pseudosinella aggtelekiensis [94–103].

Since 1995, the territory of the Slovak Karst has been included in the UNESCO World
Natural Heritage List as part of the “Caves of the Slovak and Aggtelek Karst” project.

2.2. Geosites of the Territory

In the studied territory of the Slovak Karst, we focused on three case studies. At the
center of these three areas is an accessible cave, listed as a UNESCO World Heritage Site.
Thus, this cave represents the area’s main geosite, with the largest concentration of visitors
in the entire Slovak Karst. In its vicinity, we also selected other geosites. We evaluated their
potential in order to point out other opportunities for the development of geotourism in
the area, given that this would subsequently lead to more extended stays of visitors in the
region and their broader dispersion.

2.3. Jasovská Cave and Its Surroundings (Figure 3)

GS1, Jasovská Cave (Figure 4)—The cave itself is located in the easternmost part of the
Jasovská Plateau on the edge of the Medzevská pahorkatina upland. In 1846, it was made
available by the religious order of Premonstratensians. The entrance to the cave is under
the Jasovská Rock near the village of Jasov. Since 1995, Jasovská Cave has been registered
among the natural monuments in the UNESCO World Heritage List within the Slovak and
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Aggtelek Karst caves. The upper and some lower parts, mostly oval–shaped corridors,
were created by the action of the formerly submerged waters of the Bodva river. Stagnant
waters also formed some parts of the cave spaces. It is an important wintering place for
19 species of bats out of the total 24 species that live in Slovakia. It is known for being
the location of paleontological sites of cave bear (Ursus spelaeus) and cave hyena (Crocuta
spelaea) bones, as well as for its archaeological sites and fascinating history. Since 1995,
speleoclimatic stays have been carried out in the cave [104–107].
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GS2, Jasovská Rock (Jasovská skala)—In addition to Jasovská Cave, the Jasovská Rock
also hides smaller caves. The massif is built mainly of Middle Triassic gray Gutenstein
dolomites and light Steinalm limestones and dolomites of the siliceous mantle. At the
top of the Jasovská Rock are the ruins of the Jasovský Castle from the beginning of the
14th century. An educational trail, Jasovská skala, has been built on the site, which leads
from the bottom of Jasovská Cave to its top, then to the ruins of the castle, and from there
through the Jasovské Oaks and to Jasovský Lake.

GS3, Premonstratensian Monastery, Jasov (Figure 5)—The first definite mention of this
monastery in Jasov dates from 1243. The building of the Premonstratensian Monastery
itself underwent several reconstructions, the most significant of which took place in the
middle of the 18th century, when the original complex was practically demolished and
replaced by the current late-Baroque monastery complex. Even though it is not a geosite,
it is closely related to the geosites of the surrounding area and has historically directly
conditioned their use and anthropogenic changes [108].

GS4, NNR Jasovské Oaks (Jasovské Dubiny)—In the northern part of Jasovská Rock,
in the immediate distance from Jasovský Lake, there is the territory of the national nature
reserve Jasovské Oaks (Dubiny), which has an area of 35 ha. This site is the oldest nature
reserve in the territory of the Slovak Karst. It was declared a nature reserve in 1950 to
protect preserved natural communities in places crossed by xerothermic biotopes [94].

GS5, Jasovský Lake (Figure 6)—This lake is located near the monastery complex
north of the Jasovská Rock. It was built in the first half of the 15th century thanks to the
Premonstratensians from Jasov. The pond is fed by the Teplica karst spring. Part of the
complex of the pond is also an extensive historic cellar [108].

GS6, Hatinská Cave—Freely accessible to the public, Hatinská Cave is located 7.5 km
south of Jasov and 1.3 km east of the village of Debrad’. Since 2013, the cave has been freely
accessible to the public, although there is no marked trail leading to it. This cave, which is
40 m long, is represented by an inactive fluviokarst passage [109].

GS7, Devil’s Rock—Devil’s Rock is a lonely limestone rock massif located southeast
of the village of Jasov, only 1.7 km from the entrance of Jasovská Cave. With a height of
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more than 2 m and a diameter of more than 5 m, the rock stands out from the practically
flat terrain [108].
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2.4. Gombasecká Cave and Its Surroundings (Figure 7)

GS8, Gombasecká Cave (Figure 8)—The cave itself is located at the western foot of the
Silická Plateau in the Slovak Karst National Park. It was officially opened to the public
only in 1955. Since 1968, as the first cave in Slovakia, it has been used for speleoclimatic
healing stays—i.e., speleotherapy. The cave was included as a natural monument in the
UNESCO World Heritage List, as part of the Slovak and Aggtelek Karst caves, in 1995.
The spaces, arranged in two levels, were created in the Middle Triassic limestones of
the siliceous mantle along tectonic faults due to the corrosion and erosion activity of the
Čierny stream and its tributaries. Several parts of the cave have a rich and varied sinter
filling. Characteristic are the extremely long straws, which reach up to 3 m. The cave is
known for hosting the discovery of the genuine cave animal of the Slovak caves and the
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largest troglobite, which is a centipede of the genus Typhloiulus sp. with a body length of
26 millimeters [110–112].
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GS10, Ruins of the Pauline Monastery, Gombasek (Figure 9)—The Ruins of the Pauline 
Monastery, a church built in 1371, are located only 700 m north of Gombasek Cave, from 
where an educational trail leads to them. Only a few walls, bare masonry, church walls, 
and fragmentary remains of interior plasters have been preserved. Similar to the case of 
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astery as a historical monument that, in the past, was directly related to the use and an-
thropic changes in the surrounding geosites [115]. 

Figure 8. Gombasecká Cave with its unique thin-straw stalactites (GS8).

GS9, Gombasek Quarry (Figure 9)—This site is an active quarry on the southeastern
slope of the Plešivecká Plateau on the western edge of the village of Slavec. In addition to
limestone mining, it provides an ideal opportunity to learn about the geological values of
the Plešivecká Plateau and the Slovak Karst. During mining, several cavities filled with
Upper Cretaceous sediments were discovered in the quarry, the oldest evidence of karst
processes in the Slovak Karst. The favorable location of the nearby Gombasecká Cave
makes this quarry a potential destination for geotourism participants [113,114].
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GS10, Ruins of the Pauline Monastery, Gombasek (Figure 9)—The Ruins of the Pauline
Monastery, a church built in 1371, are located only 700 m north of Gombasek Cave, from
where an educational trail leads to them. Only a few walls, bare masonry, church walls,
and fragmentary remains of interior plasters have been preserved. Similar to the case of the
Premonstratensian Monastery in Jasov, here, we present the Ruins of the Pauline Monastery
as a historical monument that, in the past, was directly related to the use and anthropic
changes in the surrounding geosites [115].

GS11, Pauline Quarry—During the activity of the Pauline monastic order in Gombasek,
a quarry operated by the Pauline order was used to extract limestone for the construction
of the monastery and other buildings in the vicinity, which no longer exist today. It is
located between the cave and the Ruins of the Pauline Monastery. All of the aforementioned
locations are connected by the educational trail through Gombasek [115].

GS12, Black Resurgence (Čierna vyvieračka)—This karst spring is located near the
entrance of Gombasecká Cave. The cave was discovered through a trench made directly in
the spring of 1951. During the season of spring, the waters of the extensive underground hy-
drological system of the Plešivecká Plateau between Silická l’adnica Cave and Gombasecká
Cave leave the underground [112].

GS13, White Resurgence (Biela vyvieračka)—The White Resurgence is located at the
western foot of the Silická Plateau, only 820 m northeast of Gombasecká Cave. This spring
drains part of the Silická Plateau, and its waters flow from the massive accumulation of
slope debris. A noteworthy feature of this site is the artificial historical retaining wall,
which collects water from the karst spring [116].

2.5. Domica Cave and Its Surroundings (Figure 10)

GS14, Domica Cave (Figure 11)—Domica Cave is located on the southwestern edge
of the Silická Plateau. The Club of Czechoslovak Tourists opened this cave in 1932. In
addition to making the cave accessible, they introduced electric lighting and dammed the
underground river Styx, allowing an underground boat cruise that operates depending
on the hydrological conditions. Since 1995, Domica has been included in the UNESCO
World Heritage List within the Slovak and Aggtelek Karst caves. Together with the Čertova
diera Cave, this cave is part of the Domica–Baradla cave system, which has a length of
more than 30 km, with ¼ being located in Slovakia and ¾ in Hungary. The corrosive
and erosive activity of the submerged waters of the Styx and the Domický stream created
it. This cave’s underground spaces are richly decorated with various forms of sinter
decoration, including shields and drums. The cave represents a unique archaeological site,
especially concerning Neolithic Bukovohora culture. At the same time, it is an essential
chiropterological site. The presence of 160 species of animals has been confirmed here,
including troglobiont and endemic fauna, such as the shrew Eukoenenia spelea and the
hornbill Niphargus aggtelekiensis [116–125].

GS15, Domické Karrens (Domické škrapy)—Near Domica Cave, there is a national
nature reserve named Domické škrapy. It is a territory with an area of 24 ha and numerous
occurrences of loose karrens. In 1973, it was declared a national nature reserve. At this site,
surface karst phenomena are mainly represented by different types of karrens [112]. At the
same time, this site is home to rare xerothermic communities of plants and animals typical
of the Slovak Karst. An educational trail of the same name passes through this territory,
dedicated to the presentation of the protected area [88,94,103].

GS16, Baradla Cave, Aggtelek—Baradla Cave forms a more significant part of the
cross-border Domica–Baradla cave system, with a length of more than 30 km, and just
like Domica Cave, Baradla Cave, in the village of Aggtelek, is also accessible. It has
eleven entrances, four of which are open to the public [126]. The submerged waters
of the Styx and the Domický streams create the cave system. The underground spaces
of the Baradla Cave are richly decorated, and it is a significant location in terms of the
occurrence of sinter shields and drums. The cave system is a vital biosphere site and is
included in the list of the Ramsar Convention [91]. It is also home to many species of
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troglobites and endemic invertebrates, such as the shrew Eukoenenia spelaea and the cave
shrew Niphargus aggtelekiensis [88]. Speleotherapy is also implemented and developed in
Baradla Cave [127,128].
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lake is a geological curiosity and a great tourist attraction [84,88]. 
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GS17, Aggtelek Rock (Figure 12)—This site is a protruding limestone massif on the
southwestern slope of the Silická Plateau with the entrance to the accessible Baradla Cave;
it represents a significant dominant feature of the village of Aggtelek and, at the same
time, a location frequently visited by tourists, with good tourist infrastructure and an
information center. Visitors to the Aggtelek Karst and Baradla Cave are concentrated here.
The surroundings of the Aggtelek Rock represent an ideal educational location regarding
the prospect of redistributing visitors to other localities [88].
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GS18, Aggtelek Lake—This lake is located east of the Hungarian village of Aggtelek,
in the immediate vicinity, just one kilometer from the entrance of Baradla Cave. With an
area of up to 1.13 ha, it is one of the most extensive karst lakes. It is formed at the interface
of clayey gravels and Triassic limestones while representing the end of a blind valley. This
lake is a geological curiosity and a great tourist attraction [84,88].

GS19, Kečovské Karrens (Kečovské škrapy)—Just 3 km northeast of Domica Cave,
300 m northeast of the village of Kečovo on the southwestern slope of the Maliník hill
(492 m above sea level), there is the protected site of Kečovské škrapy, declared in 1981. This
territory, with an area of 7 ha, represents the largest karren field on a limestone hillside in
Slovakia. Numerous occurrences of fissures and various rare types of karrens characterize
it. It is also a remarkable example of the consequences of anthropic activity: due to the
removal of original forest stands and long–term grazing by herds of goats and sheep, the
shallow soil cover has been gradually erased, exposing the limestone bedrock [94].

GS20, Kečovská Resurgence (Kečovská vyvieračka)—Just 700 m north of the village
of Kečovo and the site of Kečovská škrapy, there is a karst spring (resurgence) named
Kečovská vyvieračka. It drains part of the underground of the Silická Plateau. Its waters
serve as a water source for the village of Kečovo and its surroundings. There are several
smaller caves near this karst spring.

3. Methods

In our evaluation, we used the existing GAM (Geosite Assessment Model) first used by
Vujicic et al. [129] and modified it slightly. When compiling the indicators and their groups,
Vujicic et al. used methodological procedures and criteria for evaluating geosites presented
in the works of several other authors [130–138]. The GAM is based on the division of indi-
cators into two main groups: main values, with three subgroups (Scientific/Educational
value—VSE; Scenic/Aesthetic value—VSA; Protection value—VPr), and additional val-
ues, with two subgroups (Functional value—VFn; Touristic value—VTr). Each subgroup
contains a certain number of indicators, with five levels of point values, from 0 to 1.

On top of these indicators used by Vujičič et al. [129], we added one indicator for
each subgroup within the group of main values. Regarding the Scientific/Educational
value, we added the indicator I5, “Research and education “in situ””, as we consider the
possibility of conducting scientific research or education directly at the geolocation to be an
essential indicator of the overall evaluation. With this indicator, we focused on whether
the geosite is physically accessible for research and education, whether there is enough
space for a more significant number of people, whether the location is fenced or locked,
and whether special entry permits are required. In the Scenic/Aesthetic value subgroup,
we added the indicator I10, “Basic physiognomy of the site”, where we assume that concave
forms, convex forms, or combined concave–convex forms hold higher Aesthetic/Scenic
value and are more attractive to visitors there. We also added the indicator I15, “Protected
biota”, to the subgroup of Protection value, as we assume that the occurrence of rare or
specially protected plant and animal species (e.g., bats) increases the attractiveness of the
given geolocation.

After adding these three indicators, the group of main values contained 15 evaluation
indicators; similarly, the group of additional values contains 15 evaluation indicators
(Tables 1–5). Every single geosite was evaluated using 30 indicators, while for each indicator,
a given geolocation was assigned a point value in the range of (0–0.25–0.5–0.75–1). The total
resulting point value of the geolocation was thus calculated according to a simple formula:

GAM = main values (VSE+VSA+VPr) + additional values (VFn+VTr).
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Table 1. The structure of the Geosite Assessment Model (GAM) used by Vujičič et al. [129], supple-
mented for this study.

Scientific/Educational Value (VSE)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I1
Rarity

Number of closest identical
sites Common Regional National International The only

occurrence

I2
Representativeness

Didactic and exemplary
characteristics of the site due

to its own quality and
general configuration

None Low Moderate High Utmost

I3
Knowledge on

geoscientific issues

Number of written papers in
acknowledged journals,

theses, presentations, and
other publications

None Local publi-
cations

Regional
publica-

tions

National
publica-

tions

International
publica-

tions

I4
Level of

interpretation

Level of interpretive
possibilities relating to

geological and
geomorphologic processes,

phenomena, and shapes and
level of scientific knowledge

None

Moderate
level of

processes
but hard to
explain to

non-experts

Good
example of
processes

but hard to
explain to

non-experts

Moderate
level of

processes
but easy to
explain to
common
visitors

Good
example of
processes

and easy to
explain to
common
visitors

I5
Research and

education “in situ”

Possibility of conducting
scientific research or

education directly at the
geosite—suitability of the

space, availability, need for
permits, etc.

None Low Moderate High Utmost

Table 2. The structure of the Geosite Assessment Model (GAM) used by Vujičič et al. [129], supple-
mented for this study.

Scenic/Aesthetic Value (VSA)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I6
Viewpoints

Number of viewpoints
accessible by a pedestrian

pathway—each must present
a particular angle of view
and be situated less than

1 km from the site

None 1 2 to 3 4 to 6 More than 6

I7
Surface

Whole surface of the
site—each site is considered

in quantitative relation to
other sites

Small - Medium - Large

I8
Surrounding

landscape and
nature

Panoramic view quality,
presence of water and
vegetation, absence of

human–induced
deterioration, vicinity of

urban areas, etc.

- Low Medium High Utmost
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Table 2. Cont.

Scenic/Aesthetic Value (VSA)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I9
Environmental
fitting of sites

Level of contrast to the
surrounding nature, contrast

of colors, appearance of
shapes, etc.

Unfitting - Neutral - Fitting

I10
Basic

physiognomy of
the site

Predominant geometric
shape of the geosite Flat, linear Concave Convex Linear–

convex
Concave–

convex

Table 3. The structure of the Geosite Assessment Model (GAM) used by Vujičič et al. [129], supple-
mented for this study.

Protection Value (VPr)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I11
Current condition Current state of the geosite

Totally
damaged

(as a result of
human

activities)

Highly
damaged

(as a result
of natural
processes)

Moderately
damaged

(with essential
geomorphologic

features
preserved)

Slightly
damaged No damage

I12
Protection level

Protection by local or
regional groups, national
government, international

organizations, etc.

None Local Regional National International

I13
Vulnerability

Vulnerability level of the
geosite

Irreversible
(with

possibility of
total loss)

High
(could be

easily
damaged)

Medium
(could be

damaged by
natural

processes or
human

activities)

Low
(could be
damaged
only by
human

activities)

None

I14
Suitable number

of visitors

Proposed number of visitors
on the site at the same time,

according to surface area,
vulnerability, and current

state of the geosite

0 0 to 10 10 to 20 20 to 50 More than
50

I15
Protected biota

Occurrence of specially
protected and rare plant and
animal species in the geosite

None 1 2 to 3 4 to 6 More than 6
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Table 4. The structure of the Geosite Assessment Model (GAM) used by Vujičič et al. [129], supple-
mented for this study.

Functional Value (VFn)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I16
Accessibility

Possibility of approaching
the site

None
(inaccessible)

Low
(accessible

on foot with
special

equipment
and expert-

guided
tours)

Medium
(accessible
by bicycle
and other
means of

man-
powered
transport)

High
(accessible

by car)

Utmost
(accessible

by bus)

I17
Additional natural

values

Number of additional
natural values within a

radius of 5 km (geosites also
included)

None 1 2 to 3 4 to 6 More than 6

I18
Additional

anthropogenic
values

Number of additional
anthropogenic values within

a radius of 5 km
None 1 2 to 3 4 to 6 More than 6

I19
Vicinity of

emissive centers

Closeness of emissive
centers

More than
100 km

100 to
50 km 50 to 25 km 25 to 5 km Less than

5 km

I20
Vicinity of

important road
networks

Closeness of important road
networks within a radius of

20 km
None Local Regional National International

I21
Additional

functional values

Presence of parking lots, gas
stations, mechanics, etc. None Low Moderate High Utmost

Table 5. The structure of the Geosite Assessment Model (GAM) used by Vujičič et al. [129], supple-
mented for this study.

Touristic Value (VTr)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I22
Promotion

Level and number of
promotional resources None Local Regional National International

I23
Organized visits

Annual number of organized
visits to the geosite None Less than

12 per year
12 to 24 per

year
24 to 48 per

year
More than
48 per year

I24
Vicinity of visitor

center

Closeness of visitor center to
the geosite

More than
50 km 50 to 20 km 20 to 5 km 5 to 1 km Less than

1 km

I25
Interpretative

panels

Interpretative characteristics
of informative panels’ text

and graphics, material
quality, size, fitting to

surroundings, etc.

None Low quality Medium
quality

High
quality

Utmost
quality
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Table 5. Cont.

Touristic Value (VTr)

Indicators and Descriptions Grades (0–1)

Indicator Description 0 0.25 0.5 0.75 1

I26
Number of visitors Annual number of visitors None

Low
(less than

5000)

Medium
(5001 to
10.000)

High
(10.001 to
100.000)

Utmost
(more than

100.000)

I27
Tourism

infrastructure

Level of additional
infrastructure for tourists

(pedestrian pathways,
resting places, garbage cans,

toilets, wellsprings, etc.)

None Low Medium High Utmost

I28
Tour guide services

Tour guides’ expertise level,
knowledge of foreign

language(s), interpretative
skills, etc., if tour guides

exist

None Low Medium High Utmost

I29
Hostelry services

Hostelry service(s) close to
the geosite

More than
50 km 25–50 km 10–25 km 5–10 km Less than

5 km

I30
Restaurant services

Restaurant service(s) close to
the geosite

More than
25 km 10–25 km 10–5 km 1–5 km Less than

1 km

These results allowed us to compile a matrix of main and additional values (Figure 13),
similar to Vujicic et al.’s [129] procedure. In Figure 13, on the X-axis are the main values,
and on the Y-axis are additional values. The matrix is divided into 9 fields (zones) labelled
Z1 to Z9, while the main grid lines that form the fields have a value of 5 units for both the
X-axis and the Y-axis. Thus, if a given geolocation has a sum of main values of 9 and a sum
of additional values of 4, it is located in field Z2, which means that it has an intermediate
level of main values and a low level of additional values.
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4. Results

From an analysis of the assessment results according to the GAM (Table 6), it follows
that the highest point values are achieved by the accessible caves of the territory registered
in the UNESCO World Natural and Cultural Heritage List, which proves our previous
assumption. According to the matrix (Figure 13), three geosites (Jasovská Cave (GS1),
Baradla Cave (GS16), and Domica Cave (GS14)) belong to field Z9 (high main and high
additional values).

Table 6. Point values of individual geosites and their inclusion in the different fields.

Geosite
Label Geosite Name Main Values

(VSE + VSA+ VPr)

Sum of
Main

Values

Additional
Values

(VFn + VTr)

Sum of
Additional

Values
Overall Field

GS1 Jasovská Cave 3.75 + 3.75 + 4.25 11.75 4 + 7 11 22.75 Z9

GS2 Jasovská Rock 2 + 3.25 + 3.25 8.5 3.5 + 4 7.5 16 Z5

GS3
Premonstratensian
Monastery, Jasov 2.75 + 2.5 + 2.5 7.75 3.5 + 3.75 7.25 15 Z5

GS4 NNR Jasovské Oaks 2.5 + 1.75 + 3 7.25 3 + 1.75 4.75 12 Z2

GS5 Jasovský Lake 2.25 + 2.25 + 2.75 7.25 2.75 + 2.5 5.25 12.5 Z5

GS6 Hatinská Cave 1 + 1.5 + 2.25 4.75 2.25 + 2 4.25 9 Z1

GS7 Devil’s Rock 1.75 + 1.5 + 2.25 5.5 2.5 + 2 4.5 10 Z2

GS8 Gombasecká Cave 3.5 + 3.75 + 3.5 10.75 3.5 + 6.25 9.75 20.5 Z6

GS9 Gombasek Quarry 2.25 + 3.25 + 1 6.5 2.5 + 2 4.5 11 Z2

GS10

Ruins of the Pauline
Monastery,
Gombasek

1.75 + 1.5 + 1.5 4.75 3 + 3.75 6.75 11.5 Z4

GS11 Pauline Quarry 2 + 1.5 + 1.25 4.75 3.25 + 2.5 5.75 10.5 Z4

GS12 Black Resurgence 2 + 1.25 + 3.25 6.5 2.75 + 3 5.75 12.25 Z5

GS13 White Resurgence 3 + 1.75 + 2.75 7.5 3 + 4 7 14.5 Z5

GS14 Domica Cave 4 + 3.75 + 4 11.75 3.75 + 7 10.75 22.5 Z9

GS15 Domické Karrens 2.75 + 3 + 3 8.75 2.25 + 3.25 5.5 14.25 Z5

GS16
Baradla Cave,

Aggtelek 3.75 + 4 + 4 11.75 4 + 7.75 11.75 23.5 Z9

GS17 Aggtelecká Rock 3.25 + 2.75 + 3 9 3.25 + 3.75 7 16 Z5

GS18 Aggtelecké Lake 2.5 + 1.75 + 3.25 7.5 3.5 + 4 7.5 15 Z5

GS19 Kečovské Karrens 2.5 + 2.5 + 3.25 8.25 1.75 + 1.75 3.5 11.75 Z2

GS20
Kečovská

Resurgence 2.5 + 1.75 + 2.75 7 2.25 + 1.75 4 11 Z2

A high point value is particularly shown in the Scientific/Educational and Scenic/Aesthetic
values. Caves are rare and represent a good level of interpretation of natural processes; scientific
research and education projects are often carried out “in situ” within them. Due to the high
degree of protection of these sites (domestic and international), however, in the case of the
aforementioned scientific research and education, special permits are required from the relevant
authorities, and the sites are locked and secured by security elements. The three studied
caves are spatially extensive, with rugged relief and diverse sinter decoration, and have high
Scenic/Aesthetic value. They are in the highest level of protection according to national
legislation (national natural monument—fifth level of protection), which reflects their high
natural value. From the point of view of the current state, we classify these three sites as slightly
damaged due to accessibility works or other interactions with humans. We also register a high
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level of additional values here—both Functional and Touristic. The caves’ scores in both of
these subcategories mainly represent good transport accessibility due to the vicinity of roads
of regional and national importance and developed tourist infrastructure (parking lots, shops
selling souvenirs and educational materials, local restaurants and accommodation services,
etc.). These caves represent the most visited geosites in the Slovak and Aggtelek Karst territory
for individual visitors and organized domestic and foreign bus tours. The annual number of
visitors to these monitored caves reaches tens of thousands. They are well advertised in the
media and by various tourist guides, and commentary is carried out by their guide services and
supplemented by educational panels.

Gombasecká Cave (GS8) achieves a high level of main values and an intermediate level
of additional values, thus reaching the Z6 field. In the group of main values, it achieves
parameters similar to those of GS1, GS16, and GS14. A relatively short tour route conditions
its intermediate level of additional values compared to the three aforementioned geosites,
as well as a lower level of accommodation development and catering services and slightly
worse transport accessibility.

Within the matrix, most geosites are located in field Z5 (intermediate level of main
values and intermediate level of additional values). These include the following eight
geosites: the Jasovská Rock, GS2; the Premonstratensian Monastery, Jasov, GS3; Jasovský
Lake, GS5; the Black Resurgence (Čierna vyvieračka), GS12; the White Resurgence (Biela
vyvieračka), GS13; the Domické Karrens, GS15; the Aggtelek Rock, GS17; and Aggtelek
Lake, GS18. Their common feature is their proximity to the four highest-rated geosites
(accessible caves). The Jasovská Rock and Jasovský Lake geosites are located close to
Jasovská Cave. Both of these locations’ Scientific/Educational value is identical and reaches
an intermediate level. The Jasovská Rock has a higher Scenic/Aesthetic value due to its
panoramic possibilities. Jasovský Lake has a slightly higher conservation value due to the
presence of protected biota. Both locations are sparsely visited, and no significant markings
exist for them. At the Jasovská Rock, overcoming an elevation gain is also necessary.

Near Gombasecká Cave are two geosites: the Black Resurgence (Čierna vyvieračka)
and the White Resurgence (Biela vyvieračka). Both represent point geosites with dimensions
of several m2; at the same time, they are equipped with educational panels, and their
perspectives in geotourism are limited by their small dimensions and low point values.
Three other geosites are located near Domica Cave: the Domické Karrens and, further
east (already in Hungary’s territory), the Aggtelek Rock and Aggtelek Lake. The geosite
Domické Karrens is made accessible by an educational trail. However, its attendance is low
due to the small promotion of the location, the necessity to overcome a slight elevation, the
worse condition of the marked trail, and the overall lower attractiveness for tourists.

The location of the Domické Karrens achieves higher conservation values, as it is
a protected area in terms of national legislation (i.e., a national nature reserve) with the
occurrence of protected biota. The Aggtelek Rock geosite (with the Aggtelek entrance to
Baradla Cave (GS16) at its foot) achieves higher Scenic/Aesthetic values, mainly due to the
view parameters. It is accessible via a marked path with a stone staircase, which tempts the
visitors of Baradla Cave to climb to the top. The geosite Aggtelek Lake is a peculiarity in
this karst area; its bottom is clogged with clay, so rainwater is retained there. There is no
marked path leading to it. Moreover, it dries up during the dry summer. It has a higher
conservation value due to the presence of protected biota.

A unique site is the Premonstratensian Monastery in Jasov, which represents an
anthropogenic (geohistorical) geosite related to the historical use and formation of the
surrounding monitored natural geosites. The monastery building is accessible to visitors
after prior reservation of entry, while its attendance is significantly lower than the accessible
caves of the studied territory. The monastery is still currently used by the Premonstratensian
monastic order, which limits its tourist potential.

Two monitored geosites reached the Z4 field: the Ruins of the Pauline Monastery, GS10,
and the Pauline Quarry, GS11. A common characteristic of both of these anthropogenic sites
in this field is a low level of main values and an intermediate level of additional values.
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From the point of view of the main values, the current state of geosites is an unfavorable
indicator. We see favorable indicators of additional values—especially near the Gombasecká
Cave visitor center. At the same time, they lag in other indicators, especially regarding the
number of visitors. The reason for this is their small capacity and insufficient promotion.

Within the matrix, there are five geosites in field Z2: the NNR Jasovské Oaks, GS4;
Devil’s Rock, GS7; Gombasek Quarry, GS9; the Kečovské Karrens, GS19; and the Kečovská
Resurgence (karst spring), GS20. The geosites in this field have a medium level of primary
values and a low level of additional values. The geosite of the NNR Jasovské Oaks has
favorable Protection values, but its Functional values are less favorable, especially regard-
ing its accessibility and the vicinity of important road networks. Among the additional
values, the promotion or implementation of organized visits at this site lags significantly
behind. It becomes the destination of a few tourists ascending to the Jasovská Rock, who
descend towards Jasovský Lake. The geosite Devil’s Rock attracts a minimum number of
visitors from Jasovská Cave, conditioned not only by insufficient promotion but mainly
by insufficient transport infrastructure and the absence of a nearby visitor center or infor-
mation panels. The geosite Gombasek Quarry, with an intermediate level of main values,
is mainly conditioned by geological values. At the same time, this site is at high risk
and is characterized by insufficient accessibility and the absence of a visitor center with
tourism infrastructure. The neighboring geosites of the Kečovské Karrens and Kečovská
Resurgence (karst spring) are characterized by unfavorable accessibility from Domica Cave
and unfavorable distance from a road network, as well as insufficient tourist infrastructure.
In contrast, only a fraction of visitors to Domica Cave visit both geosites.

In field Z1, characterized by low levels of main and additional values, only the geosite
Hatinská Cave, GS6, was placed. It is not characterized by attractiveness, conditioned by
Educational and Scenic values. There is no hiking trail leading to this small cave that is
freely accessible to the public, and there is no tourism infrastructure. Due to the absence of
information panels, this geosite is challenging, and visitors are negligible.

5. Discussion

The research findings presented here indicate that within each of the three case studies,
a dominant geosite is identified, represented by three caves listed as UNESCO World
Natural Heritage Sites. Domica Cave and Jasovská Cave receive the highest ratings for both
main and additional values. In contrast, Gombasecká Cave ranks lower in additional values,
which we classify as intermediate. These caves serve as the primary attractions and focal
points for visitors. They are well promoted in media, tourist guides, and directional signage.
While visitor awareness is strong, there is a need for improvements in transportation and
tourist infrastructure.

In the immediate vicinity of these three caves (within a 1 to 50 min walk), several
additional geosites remain relatively unknown to the general public, apart from the Baradla
Cave in Aggtelek, Hungary. Enhanced promotion of these sites could encourage visitors to
extend their stay in the region and help reduce the concentration of tourists in the more
accessible caves. Ideally, these geosites could be interconnected by an educational trail,
forming a thematic route with a broader appeal. A unified ticket could be introduced, both
granting access to the caves and offering visitors the opportunity to explore additional
geolocations. Revenue from ticket sales could fund the maintenance and development
of the educational trail. These geosites can be considered “satellite geosites”, with their
attractiveness and potential visitor numbers being dependent on the extent of connectivity
through educational trails, local awareness, and effective promotion. We view these
initiatives as crucial for developing a sustainable geopark and fostering geotourism in this
area. The lower ratings of these “satellite geosites”—most of which fall into the medium
category for both main and additional values—can be offset by the more prominent caves,
which have the potential to serve as a catalyst for geotourism in the surrounding areas.

Our research results confirm that the chosen methodology is well suited for analyzing
the potential of the observed geosites, particularly in evaluating their main and additional
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values as key elements of the proposed geopark. This is also confirmed by the results of the
works of other authors [34,129]. The geosites studied here are not limited to natural or karst
sites; many are cultural and historical landmarks that reflect the use of the surrounding
landscape and the anthropogenic changes it has undergone. This analysis provides an
in-depth insight into the interaction between the region’s natural environment and human
activity throughout history. Our approach envisions connecting these geosites through
educational trails or organized tourist excursions, designed thematically to highlight the
continuity and interconnectedness of the sites. This networking will enhance the public’s
understanding of their value and create opportunities to develop services beyond the
accessible caves.

Based on the applied methodology, our research team independently conducted
individual evaluations and quantified the main and additional values of each studied
geosite. To enhance future research, it would be advantageous to broaden the sample of
respondents to include the general public, possibly through questionnaires. Visitors to
the studied accessible caves would be an ideal target group for evaluating these geosites,
which would help minimize the subjectivity inherent in our research team’s assessments.
One limitation of this research is its narrow geographical focus, restricted to the areas
surrounding Jasovská Cave, Gombasecká Cave, and Domica Cave. Future studies would
benefit from expanding the scope to cover the entire Slovak Karst National Park, allowing
for a more comprehensive analysis of the potential geosites across the entire region rather
than just select sites. Establishing a network of geosites throughout this national park
holds significant potential for boosting tourism, a particularly urgent goal given the recent
notable decline in visitor numbers, including those to the accessible caves.

A forward–looking analysis of geosite potential, aimed at optimizing their use for
tourism, would also require a well–organized record and systematic documentation of
relevant knowledge. Therefore, we propose creating a comprehensive database of geosites
in Slovakia. This database would systematically catalog and organize the collected data
in a readily accessible and searchable format using inventory sheets. It could be modeled
on existing resources such as the State List of Specially Protected Parts of Nature and
Landscape of the Slovak Republic or the Cave Database of the Slovak Republic. For
the Slovak Karst National Park, the database could be managed by the national park
administration or, as in the examples above, by the Slovak Museum of Nature Protection
and Speleology.

To effectively implement conservation measures and assess the prospects for geo-
tourism and the networking of sites within potential geoparks, we propose categorizing
geosites into at least three levels of importance: international, national, and local. This
categorization would not only guide conservation efforts but also provide a framework for
evaluating and enhancing the geotouristic potential of these sites.

6. Conclusions

This study makes a significant contribution to the literature by identifying and show-
casing geosites with potential interest in a region currently underdeveloped for tourism.
By increasing public interest in these sites, it will be possible to retain tourists in the region
and redistribute them from major attractions, like the caves, to surrounding geosites. This
strategy offers the public a more comprehensive understanding of natural geological values
within the context of their interaction with human activity and the landscape. Shifting
visitors from the caves to nearby locations could also lead to better integration and en-
hancement of services, acting as a catalyst for the broader development of geotourism and
overall tourism in the Slovak Karst region.

Exploring these geosites is crucial in raising awareness of the region’s natural, cultural,
and historical significance. These sites have the potential to serve as field study locations
not only for students of geography, geology, and related sciences but also as valuable
excursion destinations for elementary– and secondary–school students. This approach
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fosters regional awareness, emphasizing the appreciation and protection of the national
park’s natural assets.

Establishing a Slovak Karst Geopark would significantly boost and further develop
tourism in the area. This paper serves as an initial study, focusing on the analysis and
evaluation of geosites through three case studies. Expanding this analysis to include the
entire Slovak Karst area is essential for further discussions about establishing a geopark.
If realized, the accessible caves will continue to be the main attractions, while visitors
will also have the opportunity to explore thematic routes connecting various geosites
near these caves. These geosites offer diverse potential in attractiveness and other factors,
providing a viable alternative to the caves and adding significant value to educational and
research initiatives.

However, a challenge in developing geotourism within the potential Slovak Karst
Geopark is balancing the demands of nature conservation with the current technical and
tourism infrastructure limitations. Addressing these challenges will be critical to ensuring
the effective and sustainable management of the area.
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102. Háberová, I.; Dzubinová, Z.; Fajmonová, E.; Jančová, M.; Karasová, E.; Lisická, E.; Petrík, A.; Uhlířová, J. Flóra a vegetácia

Plešiveckej planiny. Výskumné Práce Ochr. Prírody 1988, 6, 5–96.
103. Mucina, L.; Maglocký, Š. A list of vegetation units of Slovakia. Doc. Phytosoc. 1985, 9, 175–220.
104. Kučera, B.; Hromas, J.; Skřivánek, F. Jeskyně a Propasti v Československu; Academia: Praha, Czech Republic, 1981; p. 252.
105. Prikryl, L’.V. Dejiny Speleológie na Slovensku; Veda SAV: Bratislava, Slovakia, 1985; p. 158.
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