Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review
Abstract
:1. Introduction
Beams | Oil pan |
Console | Pedal bracket |
Control box | Roof |
Doors | Seals |
Engine | Seats |
Frames | Steering column and armature |
Hood | Transmission case |
Liftgate | Wheels |
2. Methods
3. Are Current Mg Alloys Applied in Cars Sustainable?
Interventions to be considered in comprehensive environmental life cycle assessment of magnesium alloys applied in cars |
|
4. Are Current Magnesium Alloys in Cars Environment Friendly, Ecofriendly or Green?
- -
- Notwithstanding the use of lightweighting materials, the overall weight of cars tends to increase.
- -
- If compared with ICEV, environmental benefits in the use stage tend to be reduced in battery electric cars.
- -
- When there are energy efficiency gains in the use stage, there are rebound effects.
5. Reducing the Life Cycle Environmental Burden of Magnesium Alloys
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Errico, F.; Tauber, M.; Just, M. Magnesium Alloys for Sustainable Weight-Saving Approach. A Brief Market Overview, New Trends and Perspectives. 2022. Available online: https://re.public.polimi.it/handle/11311/1221171 (accessed on 14 July 2024).
- Emadi, P.; Andilab, B.; Ravindran, C. Engineering lightweight aluminum and magnesium alloys for a sustainable future. J. Indian Inst. Sci. 2022, 102, 405–420. [Google Scholar] [CrossRef]
- Singh, C.; Panda, S.S.; Singh, S.S.; Jain, J. Development of sustainable novel Mg-Ca-Sc alloys with an exceptional corrosion resistance. J. Alloys Compd. 2023, 955, 170251. [Google Scholar] [CrossRef]
- Caradonna, J.L. Routledge Handbook of the History of Sustainability; Routledge: London, UK; New York, NY, USA, 2018; ISBN 978-1-315-54301. [Google Scholar]
- Reijnders, L. Defining and operationalizing sustainability in the context of energy. Energies 2022, 15, 5169. [Google Scholar] [CrossRef]
- Tost, M.; Hitch, M.; Chandurkar, V.; Moser, P.; Feiel, S. The state of environmental sustainability considerations in mining. J. Clean. Prod. 2018, 182, 969–977. [Google Scholar] [CrossRef]
- Li, M.; Tamura, T.; Omura, N.; Miwa, K. The solidification behavior of the AZ61 magnesium alloy during electromagnetic vibration processing. J. Alloys Compd. 2010, 494, 116–122. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, D.; Ren, J.; Yao, C.; Huang, X. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool. Adv. Mech. Eng. 2016, 8, 1687814016628392. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Zhang, T.; Han, J.; Geng, J.; Hwang, Y. Comparison of extraction behavior of magnesium from magnesite/magnesia by aluminothermic process in flowing argon. J. Sustain. Metall. 2022, 8, 1758–1768. [Google Scholar] [CrossRef]
- Lee, J.U.; Kim, H.J.; Jin, S.; Kim, Y.J.; Kim, Y.M.; You, B.S.; Bae, J.H.; Park, S.H. Chemical and mechanical properties of stainless environment-friendly and inflammable Mg alloys: A review. J. Magnes. Alloys 2024, 12, 841–872. [Google Scholar] [CrossRef]
- Kumar, D.; Phanden, R.A.; Takur, L. A review of environment friendly and lightweight magnesium-based metal matrix composites and alloys. Mater. Today Proc. 2021, 38, 359–364. [Google Scholar] [CrossRef]
- Hu, Y. Demand forecasting for green metal materials using non-equidistant grey prediction with robust nonlinear interval regression analysis. Environ. Dev. Sustain. 2022, 24, 9809–9851. [Google Scholar] [CrossRef] [PubMed]
- Sabzehmeidani, M.; Kazemzad, M. Insight in the microstructural properties and corrosion properties of AZ31 Mg alloy coated with polyurethane containing nanostructures of copper metal organic frameworks. Mater. Lett. 2023, 341, 134294. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Zhang, X.; Yang, Q.; Zhang, J.; Li, V. Development and application of magnesium alloy parts for automotive OEMs: A review. J. Magnes. Alloys 2023, 11, 15–47. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Gao, P.; Mu, X.; Zhang, Z.; Kan, S.; Yan, F. Development of a W-shaped channel extrusion for fabricating magnesium alloy shells by combining high amplitude shear with a shorter process. J. Mater. Res. Technol. 2023, 25, 2383–2404. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; Makarava, I.; Kraslawski, A. Environmental assessment of global magnesium production. Miner. Process. Extr. Metall. Rev. 2023, 44, 389–406. [Google Scholar] [CrossRef]
- Debreuil, A.; Bush, L.; Das, S.; Tharamarajah, A.; Xianzheng, G. A comparative life cycle assessment of magnesium front end autoparts. SAE Int. 2010, 13–15, 26. [Google Scholar]
- Sharma, D.P.; McGoron, A. Biodegradable magnesium alloys: A review of material development and applications. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39. [Google Scholar] [CrossRef]
- Garcia Gutiérrez, I.; Elduque, D.; Pina, C.; Tobajas, R.; Javierre, C. Influence of the composition on the environmental impact of a casting magnesium alloy. Sustainability 2020, 12, 10494. [Google Scholar] [CrossRef]
- Calado, L.M.; Carmezim, M.J.; Montemor, M.F. Rare earth based magnesium alloys-a review on WE series. Front. Mater. 2022, 8, 804906. [Google Scholar] [CrossRef]
- Wang, J.; Pang, X.; Jahed, H. Surface protection of Mg alloys in automotive applications, a review. AIMS Mater. Sci. 2019, 6, 56760. [Google Scholar] [CrossRef]
- Johari, N.A.; Alias, J.; Zanurin, A.; Mohamed, N.S.; Alang, N.A.; Zain, M.Z.M. Anti-corrosive coatings of magnesium—A review. Mater. Today Proc. 2022, 48, 1842–1848. [Google Scholar] [CrossRef]
- An, K.; Tong, W.; Wang, Y.; Quing, Y.; Sui, Y.; Xu, Y.; Ni, C. Eco-friendly superhydrophobic coupling conversion coating with corrosion resistance on magnesium alloy. Langmuir 2023, 39, 6355–6365. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, X. Facile fabrication of robust superhydrophobic coating for enhanced corrosion protection on AZ91 magnesium alloy by electroless Ni-B/GO plating. Surf. Coat. Technol. 2023, 455, 129213. [Google Scholar] [CrossRef]
- Guan, X.; Pal, H.B.; Jiang, Y.; Su, S. Clean metals production by solid membrane electrolysis process. J. Sustain. Metall. 2016, 2, 152–166. [Google Scholar] [CrossRef]
- Ehrenberger, S. Carbon Footprint of Magnesium Production and It Use in Transport Applications. German Aerospace Centre, Institute of Vehicle Concepts. 2020. Available online: https://cdn.ymaws.com/www.intlmag.org/resource/resmgr/sustainability/LCA-update-summary-2020-Oct-.pdf (accessed on 10 July 2024).
- Xu, J.; Zhang, T.; Li, T. Research on the process, energy consumption and carbon emissions of different magnesium refining processes. Materials 2023, 16, 3340. [Google Scholar] [CrossRef] [PubMed]
- Brown, R. Environmental challenges for the magnesium industry. In Magnesium Technology 2011; Silleken, W.H., Agnew, S.R., Neelanmegghan, N.R., Mathaudhu, S.N., Eds.; Springer: Cham, Switzerland, 2011; pp. 7–11. [Google Scholar]
- Wu, L.; Han, F.; Liu, G. Comprehensive Utilization of Magnesium Slag by the Pidgeon Process; Springer Briefs in Materials; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Kwon, G.; Woo, S.H.; Lim, S. Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal. Resour. Conserv. Recycl. 2015, 104, 206–2012. [Google Scholar] [CrossRef]
- US Geological Survey Mineral Commodity Summaries: Magnesium Metal 2024. Available online: https://pubs.usgs.gov/periodicals (accessed on 15 July 2024).
- Li, H.; Zhang, W.; Li, Q.; Chen, B. Updated CO2 emission from Mg production by Pidgeon process: Implications for automotive applications life cycle. Resour. Conserv. Recycl. 2015, 100, 41–48. [Google Scholar] [CrossRef]
- Raugei, M.; Morrey, D.; Hutchinson, A.; Winfield, P. A coherent life cycle assessment of lightweighting strategies for compact vehicles. J. Clean. Prod. 2015, 108, 1168–1176. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, H.; Huang, J.; Mu, Y.; Jiang, Y.; Jie, Y. Protection of magnesium melt by hexafluoropropylene/air atmosphere. IOP Conf. Ser. Mater. Sci. Eng. 2020, 711, 012028. [Google Scholar] [CrossRef]
- Goncalves, M.; Monteiro, H.; Iten, M. Life cycle assessment studies on lightweight materials for automotive applications—An overview. Energy Rep. 2022, 8, 338–345. [Google Scholar] [CrossRef]
- Ehrenberger, S.; Dierenga, H.; Friedrich, H.E. Life Cycle Assessment of Magnesium Components in Vehicle Construction. German Aerospace Centre, Institute of Vehicle Concepts. 2013. Available online: https://cdn.ymaws.com/www.intlmag.org/resource/resmgr/docs/lca/2013IMA_LCAStudy_Summary.pdf (accessed on 7 July 2024).
- D’Errico, F.; Casari, D. Eco-sustainable lightweight automotive part manufacturing: GHGs-free die casting of brake leverage prototype made of AZ91D-1.5CaO magnesium alloy. Metall. Ital. 2022, 36–41. Available online: https://www.aimnet.it/ (accessed on 19 July 2024).
- Reijnders, L. Substitution, natural capital and sustainability. J. Integr. Environ. Sci. 2021, 18, 115–142. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Persson, L.; Almroth, B.M.C.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamon, M.L.; Frantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.R.; et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Steffen, W.; Lucht, W.; Berndtsen, J.; Cornell, S.E.; Donges, J.F.; Drücke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, 2438. [Google Scholar] [CrossRef]
- Li, Y.; Ha, N.; Li, T. Research on carbon emissions of electric vehicles throughout the life cycle assessment taking into account vehicle weight and grid mix composition. Energies 2019, 12, 3612. [Google Scholar] [CrossRef]
- Padgett, P.E.; Dobrowolski, W.M.; Arbaugh, M.J.; Eliason, S.A. Patterns of carbonate dust deposition: Implications for four federally endangered plant species. Madrono 2007, 54, 275–285. [Google Scholar] [CrossRef]
- Khayrulina, E. Aspects of environmental monitoring on the territory of the Verhnekamskoye potash deposit (Russia). In Proceedings of the IMWA 2016. Mining Meets Water-Conflicts and Solutions, Leipzig, Germany, 11–15 July 2016; Drebenstedt, C., Paul, M., Eds.; Technische Universität Bergakademie: Freiberg, Germany, 2016; pp. 383–387, ISBN 978-3-86012-533-5. [Google Scholar]
- Kiro, A.; Paliwal, H.B.; Mohapatra, A.W. Impact of mining activities on tree diversity at limestone and dolomite mining area-BSLC Mines, Biramitrapur, Odisha. J. Pharmacogn. Phytochem. 2017, 6, 1903–1905. Available online: www.phytojournal.com (accessed on 15 July 2024).
- Blanar, D.; Gottová, A.; Mihál, T.; Plasek, V.; Hauer, T.; Pelice, Z.; Ujházi, K. Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Karpathians. Biologia 2019, 74, 1591–1611. [Google Scholar] [CrossRef]
- Quintela-Sabaris, C.; Masfaraud, J.; Séré, G.; Sumail, S.; van der Ent, A.; Repin, R.; Sugau, J.; Nilus, R.; Echevarria, G.; Leguédois, S. Effects of reclamation effort on the recovery of ecosystem functions of a tropical degraded serpentine dumpsite. J. Geochem. Explor. 2019, 200, 139–151. [Google Scholar] [CrossRef]
- Ruan, S.; Liu, L.; Xie, L.; Shao, C.; Sun, W.; Hou, D.; He, J. Mechanical properties and leaching behavior of modified magnesium slag cemented aeolian sand paste backfill materials. Constr. Build. Mater. 2023, 387, 131641. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinman, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Viera, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Crenna, E.; Secchi, M.; Benini, L.; Sala, S. Global environmental impacts: Databases and methodical choices for calculating normalization factors for LCA. Int. J. Life Cycle Assess. 2019, 24, 851–1857. [Google Scholar] [CrossRef]
- Ruiz, F.; Salanelli, J.L.; Perlatti, F.; Cherubin, M.R.; Dematte, J.A.M.; Cerri, C.E.P.; Otero, X.L.; Rumpel, C.; Ferreira, T.D. Constructing soils for climate-smart mining. Commun. Earth Environ. 2023, 4, 219. [Google Scholar] [CrossRef]
- Fazekas, J.; Fazekasova, D.; Hronec, O.; Benkova, E.; Boltiziar, M. Contamination of soil and vegetation at magnesite mining area in Jelsava-Lubenik (Slovakia). Ekologia 2018, 37, 101–111. [Google Scholar] [CrossRef]
- Deutscher, R.L.; Cathro, K.J. Organochlorine formation in magnesium electrowinning cells. Chemosphere 2001, 43, 147–155. [Google Scholar] [CrossRef]
- Ishaq, R.; Persson, N.J.; Zebühr, Y.; Broman, D.; Naes, K. PCNs, PCDD/F and non-orthoPCBs in water and bottom sediments from the industrialized Norwegian Grenlands fjords. Environ. Sci. Technol. 2009, 43, 3442–3447. [Google Scholar] [CrossRef]
- Nie, Z.; Zheng, M.; Liu, W.; Zhang, B.; Liu, G.; Su, G.; Pu, L.; Xiao, K. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz, PeCBz emissions from magnesium metallurgy facilities in China. Chemosphere 2011, 85, 1707–1716. [Google Scholar] [CrossRef]
- Wang, L.; Bie, P.; Zhang, J. Estimates of unintentional production and emission of hexachlorobutadiene from 1992 to 2016 in China. Environ. Pollut. 2018, 238, 204–212. [Google Scholar] [CrossRef]
- Nie, Z.; Yang, Y.; Tang, Z.; Liu, F.; Wang, Q.; Huang, Q. Estimation and characterization of polycyclic aromatic hydrocarbons in magnesium metallurgy facilities in China. Environ. Sci. Pollut. Res. 2014, 21, 12629–12637. [Google Scholar] [CrossRef]
- Khayrulina, E.; Maksimovich, N. Influence of drainage with high levels of water soluble-salts on the environment in the Verhnekamskoye potash deposit Russia. Mine Water Environ. 2018, 37, 595–603. [Google Scholar] [CrossRef]
- Kandasamy, G.; Singh, Y.R.; Narayanan, M. Impacts of heavy metal enriched tailings of magnesite mine on surrounding water reservoirs. J. Environ. Treat. Tech. 2021, 9, 521–527. [Google Scholar]
- Reznik, I.J.; Gavrieri, I. Massive scale dissolution, conveyance and disposal of Dead Sea potash industry halite waste. Environ. Sci. Technol. 2023, 57, 8385–8395. [Google Scholar] [CrossRef] [PubMed]
- Diamond, R.; van Staden, C.; Dippenaar, M. Tracing mining water flows in dolomite quarry South Africa, using hydrochemistry and stable isotopes. Mine Water Environ. 2024, 43, 278–293. [Google Scholar] [CrossRef]
- Kong, R.; Xue, F.; Wang, J.; Zhai, H.; Zhao, L. Research on mineral resources and environment in salt lakes in Quinghai province based on system dynamics theory. Resour. Policy 2017, 52, 17–28. [Google Scholar] [CrossRef]
- Arvidsson, R.; Söderman, M.L.; Sandén, B.A.; Nordelöf, A.; André, H.; Tillman, A. A crustal scarcity indicator for long term global elemental resource assessment in LCA. Int. J. Life Cycle Assess. 2020, 25, 1805–1817. [Google Scholar] [CrossRef]
- Ehrenberger, S.; Friedrich, H.E. Life-cycle assessment of the recycling of magnesium vehicle components. JOM 2013, 68, 1303–1309. [Google Scholar] [CrossRef]
- Duwe, S. Herausforderung Magnesium Recycling: Pyrometallurgische Entfernung kritischer Verunreinigungen (Challenge magnesium recycling: Pyrometallurgical removal of critical pollutants). In Recycling Und Rohstoffe Band 8 (Recycling and Raw Materials Volume 8); Thomé-Kozmiensky, K., Goldman, D., Eds.; TK Verlag: Neuruppin, Germany, 2015; pp. 421–428. ISBN 978-3-944310-20.6. [Google Scholar]
- Liu, J.; Daigo, I.; Panasiuk, D.; Dunuwila, P.; Hamada, K.; Hoshino, T. Impact of recycling effect in comparative life cycle assessment for materials selection-a case study of light-weighting vehicles. J. Clean. Prod. 2022, 349, 131317. [Google Scholar] [CrossRef]
- Graedel, T.E.; Miatto, A. Alloy profusions, spice metals and resource loss by design. Sustainability 2022, 14, 7535. [Google Scholar] [CrossRef]
- Guo, T.; Geng, Y.; Song, X.; Rui, Y.; Ge, Z. Tracing magnesium flows in China. Resour. Policy 2023, 3, 103627. [Google Scholar] [CrossRef]
- Dudek, P.; Piwowonska, J.; Polczyk, T. Microstructure of castings made of magnesium alloys based on recycling of circulating scrap. J. Mater. Res. Technol. 2021, 14, 2357–2364. [Google Scholar] [CrossRef]
- Luo, A.A. Applications: Aerospace, automotive and other structural applications of magnesium. In Fundamentals of Magnesium Alloy Metallurgy; Pekguleryuz, M.O., Kainer, K.U., Kaya, A.A., Eds.; Woodhead: Oxford, UK, 2013; pp. 266–316. [Google Scholar]
- Kulkarni, S.; Edwards, D.J.; Parn, E.A.; Chapman, C.; Aigbavboa, C.O.; Cornish, R. Evaluation of vehicle lightweighting to reduce greenhouse gas emissions with focus on magnesium substitution. J. Eng. Des. Technol. 2018, 16, 869–888. [Google Scholar] [CrossRef]
- Sun, X.; Liu, J.; Lu, B.; Zhang, P.; Zhao, M. Life cycle assessment-based selection of a sustainable lightweight automotive engine hood design. Int. J. Life Cycle Assess. 2017, 22, 1373–1383. [Google Scholar] [CrossRef]
- An, M.; Prinn, D.G.; Western, L.M.; Zhao, X.; Yao, B.; Hu, J.; Ganesan, A.L.; Mühle, J.; Weiss, R.F.; Krummel, P.B.; et al. Sustained growth of sulfur hexafluoride emissions in China inferred from atmospheric observations. Nat. Commun. 2024, 15, 1997. [Google Scholar] [CrossRef] [PubMed]
- Nuss, P.; Eckelman, M.J. Life cycle assessment of metals: A scientific synthesis. PLoS ONE 2014, 9, e101298. [Google Scholar] [CrossRef]
- Bittner, D.; Narany, T.S.; Kahl, B.; Disse, M.; Chiogna, G. Modeling the hydrological impact of land use change in a dolomite-dominated karst system. J. Hydrol. 2018, 567, 267–279. [Google Scholar] [CrossRef]
- Viktorov, S.D.; Kochanov, A.N. Experimental regularities in formation of submicron particles under rock failure. J. Min. Sci. 2016, 52, 899–905. [Google Scholar] [CrossRef]
- Vargas, J.E.V.; Falco, D.G.; da Silva Walter, A.C.; Cavaliero, C.K.N.; Seabra, J.E.A. Life cycle assessment of electric vehicles in Brazil: Effects of local manufacturing, mass reduction, and energy consumption evolution. Int. J. Life Cycle Assess. 2019, 24, 1878–1897. [Google Scholar] [CrossRef]
- Gao, F.; Nie, Z.; Wang, Z.; Gong, X.; Zuo, T. Life cycle assessment of primary magnesium production using the Pidgeon Process.in China. Int. J. Life Cycle Assess. 2009, 14, 480–489. [Google Scholar] [CrossRef]
- Wu, L.; Han, F.; Yang, Q.; Guo, S. Fluoride emissions from Pidgeon process for magnesium production. In Proceedings of the International Conference on Solid Waste Technology and Management, Philadelphia, PA, USA, 11–14 March 2012; Available online: https://www.diva-portal.org/smash/get/diva2:1013546/FULLTEXT01.pdf (accessed on 10 July 2024).
- Wang, X.; Yan, X.; Li, X. Environmental risks for applications of magnesium slag to soils in China. J. Integr. Agric. 2020, 19, 1671–1679. [Google Scholar] [CrossRef]
- Mapelli, C.; Dall’Osto, G.; Mombelli, D.; Barella, S.; Gruttadauria, A. Future scenario’s for reducing emissions and consumption in the Italian steel industry. Steel Res. Int. 2022, 93, 2100631. [Google Scholar] [CrossRef]
- Kotlovsky, V. Product Carbon Footprint Verification Statement; Filkin & Co: Manchester, UK, 2022. [Google Scholar]
- Du, J.; Han, W.; Peng, Y. Life cycle greenhouse gases, energy and cost assessment of automobiles assuming magnesium from the Chinese Pidgeon process. J. Clean. Prod. 2010, 18, 112–118. [Google Scholar] [CrossRef]
- Na, H.; Qiu, Z.; Sun, J.; Yuan, Y.; Zhang, L.; Du, T. Revealing cradle-to-gate emissions from steel product producing by different technological pathways based on material flow analysis. Resour. Conserv. Recycl. 2024, 203, 107416. [Google Scholar] [CrossRef]
- Magontec Limited. 2024 Annual General Meeting, Executive Chairman’s Address, 15 May 2024. Available online: https://company-announcements.afr.com/ (accessed on 16 July 2024).
- Geller, M.T.B.; Bailao, J.L.; Tostes, M.E.L.; Meneses, A.A.M. Indirect GHG emissions in hydropower plants: A review focussed on uncertainty factors in LCA studies. Desinvolvimento Meio Ambiente 2020, 54, 500–517. [Google Scholar] [CrossRef]
- International Magnesium Association 2019. Available online: www.intimag.org/page/2019_awards_ima (accessed on 10 July 2024).
- Dong, M.; Cheng, W.; Li, Z.; Demopoulos, G.P. Solubility and stability of nesquehonite in NaCl, KCl, MgCl2 and NH4Cl solutions. J. Chem. Eng. Data 2008, 53, 2586–2596. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Wu, C. Preparation of magnesium oxide and potassium magnesium phosphate cement from lithium-extracting magnesium slag. Ceram. Silikáty 2023, 67, 109–119. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J.; Sullivan, J.L.; Keoleian, G.A. Life cycle assessment of vehicle lightweighting: Novel mathematical methods to estimate the use-phase fuel consumption. Environ. Sci. Technol. 2015, 49, 10209–10216. [Google Scholar] [CrossRef]
- Rohde-Brandenburger, K.; Koffler, C. Reply to Kim et al. (2019). Commentary on corrections to “On the calculation of fuel savings through lightweight design in automotive life cycle assessments” by Koffler and Rohde-Brandenburger. Int. J. Life Cycle Assess. 2019, 24, 400–403. [Google Scholar] [CrossRef]
- Kawajiri, K.; Kobayashi, M.; Sakamoto, F. Lightweight materials equal lightweight greenhouse gas emissions?: A historical analysis of greenhouse gases from vehicle material substitution. J. Clean. Prod. 2020, 253, 119805. [Google Scholar] [CrossRef]
- Danilecki, K.; Mrozik, H.; Smurawski, D. Changes in the environmental profile of a popular passenger car over the last 30 years-results of a simplified LCA study. J. Clean. Prod. 2017, 241, 208–218. [Google Scholar] [CrossRef]
- Blawert, C.; Hort, N.; Rainer, K.W. Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 2004, 57, 307–403. Available online: https://www.researchgate.net/profile/Mustafa-Kulekci/publication/227330217_Magnesium_and_Its_Alloys_Applications_in_Automotive_Industry/links/00b495270d610658ee000000/Magnesium-and-Its-Alloys-Applications-in-Automotive-Industry.pdf (accessed on 13 July 2024).
- International Energy Agency 2022a. Cars and Vans. 2022. Available online: https://www.iea.org/reports/cars-and-vans (accessed on 17 July 2024).
- Kim, H.C.; Wallington, T.J. Life cycle assessment of vehicle lightweighting: A physics-based model to estimate use-phase fuel consumption of electrical vehicles. Environ. Sci. Technol. 2016, 50, 11226–11233. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. World Energy Outlook 2022. Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 17 July 2024).
- Pauliuk, S.; Heeren, N.; Berrill, P.; Fishman, T.; Tu, Q.; Wolfram, P.; Hertwich, E.G. Global scenarios of resource and emission savings from increased material efficiency in residential buildings and cars. Nat. Commun. 2021, 12, 5097. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Quaslati, W.; Sintek, C. The rebound effect in road transport: A meta-analysis of empirical studies. Energy Econ. 2018, 75, 163–179. [Google Scholar] [CrossRef]
- Brockway, P.E.; Sorrell, S.; Semieniuk, G.; Heun, M.K.; Court, V. Energy efficiency and economy wide rebound effects: A review of the evidence and its implications. Renew. Sustain. Energy Rev. 2021, 141, 110781. [Google Scholar] [CrossRef]
- Gillingham, K.T. The rebound effect of the proposed roll back of US fuel economy standard. Rev. Environ. Econ. Policy 2020, 14, 136–147. [Google Scholar] [CrossRef]
- Steren, A.; Rubin, O.D.; Rosenzweig, S. Energy efficiency policies targeting consumers may not save energy in the long run: A rebound effect that can not be ignored. Energy Res. Soc. Sci. 2022, 90, 102600. [Google Scholar] [CrossRef]
- Sorrell, S.; Gatersleben, B.; Druckman, A. The limits of energy sufficiency: A review of evidence for rebound effects and negative spillovers from behavioural change. Energy Res. Soc. Sci. 2020, 64, 101439. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L. Life cycle environmental assessment of wind energy technologies: A review of simplified models and harmonization of the results. Renew. Sustain. Energy Rev. 2019, 111, 462–480. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Misteretta, M.; Parisi, M.L. Review on life cycle assessment of solar photovoltaic modules. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Zulhan, Z.; Augustina, N. A novel utilization of ferronickel slag as a source of magnesium metal and ferroalloy production. J. Clean. Prod. 2020, 292, 125307. [Google Scholar] [CrossRef]
- Fournier, J. A new hydrometallurgical process combined with electrolytic process for magnesium primary production from serpentine. In Magnesium 2021; Luo, A., Ed.; Springer: Cham, Switzerland, 2021; pp. 3–11. [Google Scholar]
- Jeoung, H.; Lee, T.; Kim, Y.; Lee, J.; Kim, Y.M.; Okabe, T.H.; Yi, K.; Kang, J. Use of various MgO resources for high purity Mg metal production through molten salt electrolysis and vacuum distillation. J. Magnes. Alloys 2023, 11, 562–579. [Google Scholar] [CrossRef]
- Fu, D.; Wang, Y.; Zhen, F.; Feng, N. Review of the silicothermic process for primary magnesium reduction. Metall. Mater. Trans. B 2023, 54, 1–21. [Google Scholar] [CrossRef]
- Wada, Y.; Fujii, S.; Suzuki, I.; Maitani, M.M.; Tsubaki, S.; Chonan, S.; Fukui, M.; Inazu, N. Smelting magnesium metal using a microwave Pidgeon method. Sci. Rep. 2017, 7, 462512. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, Z.; Yang, B.; Dai, Y.; Xu, B.; Hang, F.; Xiong, N. Comparative evaluation of energy and resource consumption for vacuum carbothermal reduction and Pidgeon process used in Mg production. J. Magnes. Alloys 2022, 10, 697–706. [Google Scholar] [CrossRef]
- Halman, M.; Frei, A.; Steinfeld, A. Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses. Ind. Eng. Chem. Res. 2008, 47, 2146–2154. [Google Scholar] [CrossRef]
- Chuayboon, S.; Abanades, S. Clean magnesium production using concentrated solar heat in high-temperature cavity-type thermochemical reactor. J. Clean. Prod. 2019, 232, 784–795. [Google Scholar] [CrossRef]
- Najafabadi, H.A.; Ozalp, N.; Epstein, M.; Davis, R. Solar carbothermic reduction of dolomite: Direct method for the production of magnesium and calcium. Ind. Eng. Chem. Res. 2020, 59, 14717–14728. [Google Scholar] [CrossRef]
- Liu, X.; Shen, H.; Nie, X. Study on the filtration performance of the baghouse filters for ultra-low emissions as a function of filter pore size and fiber diameter. J. Environ. Res. Public Health 2019, 16, 247. [Google Scholar] [CrossRef]
- Tumanov, I.N.; Tochilin, S.B.; Khandrin, G.P.; Dudov, N.V. Combined plasma, electromagnetic, and laser techniques for creating waste-free industries of a new technological structure. Russ. J. Gen. Chem. 2019, 89, 1253–1270. [Google Scholar] [CrossRef]
- Xie, G.; Liu, L.; Suo, Y.; Zhu, M.; Yang, F.; Sun, W. High-value utilization of modified magnesium slag waste and its application as low-carbon cement. J. Environ. Manag. 2024, 342, 119551. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Nancharajah, Y.V. Biotechnology in the management and resources recovery from metal bearing solid wastes: Recent advances. J. Environ. Manag. 2018, 211, 138–153. [Google Scholar] [CrossRef]
- Reijnders, L. Is zero-waste production of copper and its companion elements possible? Miner. Process. Extr. Metall. Rev. 2022, 43, 1021–1048. [Google Scholar] [CrossRef]
- Motkuri, R.-K.; Vemuri, R.S.; Barpaga, D.; Schaef, H.; Loring, J.S.; Marin, P.F.; Lao, D.B.; Nune, S.K.; McGrail, B.P. An efficient solvent-free process for synthesizing anhydrous MgCl2. ACS Sustain. Chem. Eng. 2018, 6, 1048–1054. [Google Scholar] [CrossRef]
- Telgerafchi, A.E.; Rutherford, M.; Espinosa, G.; McArthur, D.; Masse, N.; Perrin, B.; Tang, Z.; Powell, A.C. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation. Front. Chem. 2023, 11, 1192202. [Google Scholar] [CrossRef]
- Kim, J.; Thompson, R.; Park, H.; Bogle, S.; Mühle, J.; Park, M.; Kim, Y.; Harth, C.M.; Salahmeh, P.K.; Schmidt, R.; et al. Emissions of tetrafluoromethane (CF4) and hexafluoroethane (C2F6) from East Asia 2008–2019. IGR Atmosph. 2021, 126, e202113D034888. [Google Scholar] [CrossRef]
- D’Errico, F.; Plaza, G.G.; Giger, F.; Kim, S.K. Final assessment of preindustrial solid-state route for high-performance Mg-system alloys production: Concluding the EU Green Metallurgy Project. JOM 2013, 65, 1293–1302. [Google Scholar] [CrossRef]
- Cashion, S.; Ricketts, N. The use of SO2 as a cover gas for molten magnesium. In Essential readings in Magnesium Technology; Mathaudhu, S.N., Luo, A.A., Neelameggham., N.R., Nyberg, E.A., Sillekens, W.H., Eds.; Springer: Cham, Switzerland, 2016; pp. 135–139. [Google Scholar] [CrossRef]
- Rafiei, S.; Habibolahzadeh, A.; Wiese, B. Environment-COnscious magnesium (ECO-Mg) a review. Clean. Mater. 2024, 11, 100230. [Google Scholar] [CrossRef]
- Paraskevas, D.; Dadbakhsh, S.; Vleugels, J.; Vanmeensel, K.; Dewulf, W.; Duflou, J.R. Solid state recycling of pure Mg and AZ31 machining chips via spark plasma sintering. Mater. Des. 2016, 109, 520–529. [Google Scholar] [CrossRef]
- Zuo, D.; Guo, H.; Tang, G.; Jin, W.; Liu, C.; Su, C. Research on the disassembly design of the used cars. Key Eng. Mater. 2010, 426–427, 303–307. [Google Scholar] [CrossRef]
- Staniszewska, E.; Klimecka-Tata, D.; Obrecht, M. Ecodesign processes in the automotive sector. Prod. Eng. Arch. 2020, 26, 131–137. [Google Scholar] [CrossRef]
- Margarido, F.; Santos, R.N.; Durao, I.; Guimaraes, C.; Nogeira, P.C.; Oliveira, F.; Pedrosa, P.; Goncalves, A.M. Separation of non-ferrous fractions of shredded end-of-life vehicles for valorising its alloys. In Proceedings of the MMME’14-International Conference on Mining, Material and Metallurgical Engineering, Prague, Czech Republic, 11–12 August 2014; pp. 77.1–77.4. Available online: https://avestia.com/MMME2014_Proceedings/papers/77.pdf (accessed on 10 July 2024).
- Wang, T.; Upadhyay, P.; Whalen, S. Review of technologies for welding magnesium alloys to steels. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 1027–1042. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, C.; Liu, W.; Chen, S.; Gao, C.; Jia, S.; Yu, X.; Zhou, W.; Luo, B.; Zhang, Q. Research of Fe removal, regeneration process and technical properties of Mg alloy AM50A. Crystals 2024, 14, 407. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Yang, B.; Liang, D.; Wang, F.; Tian, Y. Magnesium alloy scrap vacuum gasification-directional condensation to purify magnesium. Metals 2023, 13, 675. [Google Scholar] [CrossRef]
- Wang, L.; Liang, D.; Tian, Y.; Chai, J.; Li, R.; Wu, S.; Yang, B.; Xu, R.; Deng, Y. Thermodynamic and experimental evaluation of the sustainable recycling of magnesium alloy scrap by vacuum distillation based on vapor-liquid equilibrium. J. Magnes. Alloys 2024. [Google Scholar] [CrossRef]
- Czerwinski, F. Current trends in automotive lightweighting strategies and materials. Materials 2021, 14, 6631. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, Z.; Yang, W.; Yang, H. Fe-Mn-C-Al low density steel for structural materials: A review of alloying, heat treatment, microstructure, and mechanical properties. Steel Res. Int. 2022, 93, 2200191. [Google Scholar] [CrossRef]
- Bhaskar, A.; Assadi, M.; Somehsaraei, H.N. Decarbonisation of the iron and steel industry with direct reduction of iron ore with green hydrogen. Energies 2020, 13, 758. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Nie, J.; Dewil, R.; Bayens, J.; Deng, Y. The direct reduction of iron ore with hydrogen. Sustainability 2021, 13, 8866. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Brooks, G.; Rhamdani, M.A. Decarbonisation and hydrogen integration of steel industries: Recent development, challenges and technoeconomic analysis. J. Clean. Prod. 2023, 395, 136391. [Google Scholar] [CrossRef]
- Merker, E.E.; Chermenev, E.A. Energy-efficient smelting of reduced iron-ore pellets in and arc furnace. Steel Transl. 2015, 45, 54–67. [Google Scholar] [CrossRef]
- Suer, J.; Traverso, M.; Jäger, N. Review of life cycle assessment for steel and environmental analyses of future steel production scenarios. Sustainability 2022, 14, 14131. [Google Scholar] [CrossRef]
- Reijnders, L. Conserving the functionality of relatively rare metals associated with steel life cycles: A review. J. Clean. Prod. 2016, 131, 76–96. [Google Scholar] [CrossRef]
Environmental Matter for Which a Planetary Boundary Has Been Proposed | Current Relation between Proposed Planetary Environmental Burden and Boundary |
---|---|
Flows impacting phosphorus (P) and nitrogen (N) cycles. | Flows for P and N compounds transgress the planetary boundary. |
Biosphere integrity. | Human appropriation and reduction in net primary production (of biomass) transgress the planetary boundary. |
Climate change by greenhouse gasses. | Radiative forcing at top-of-atmosphere exceeds the planetary boundary. |
Fresh water consumption. | The planetary boundary is currently above actual consumption. |
Land system change: amount of forested land remaining. | Current land system change transgresses the planetary boundary. |
Novel entities: percentage of hazardous man-made chemicals, released without adequate safety testing. | The percentage of hazardous man-made chemicals without adequate safety testing presumably transgresses the planetary boundary. |
Ocean acidification. | Current ocean acidification is below the planetary boundary. |
Ozone layer depletion. | Current ozone layer depletion is less than the planetary boundary. |
Interventions Linked to Magnesium Alloy Life Cycles That Contribute to the Transgression of Planetary Boundaries | Interventions Linked to Magnesium Alloy Life Cycles That Negatively Affect Natural Capital for Transfer to Future Generations |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reijnders, L. Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review. Sustainability 2024, 16, 7799. https://doi.org/10.3390/su16177799
Reijnders L. Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review. Sustainability. 2024; 16(17):7799. https://doi.org/10.3390/su16177799
Chicago/Turabian StyleReijnders, Lucas. 2024. "Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review" Sustainability 16, no. 17: 7799. https://doi.org/10.3390/su16177799
APA StyleReijnders, L. (2024). Are Magnesium Alloys Applied in Cars Sustainable and Environmentally Friendly? A Critical Review. Sustainability, 16(17), 7799. https://doi.org/10.3390/su16177799