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Abstract: This study aims to explore the spatial spillover effects of national climate legislation on
carbon emission reduction by using cross-country panel data from 2002 to 2021. The results show the
following: First, the estimation outcomes confirm the presence of spatial correlations between carbon
dioxide emissions and climate legislation across countries. Second, the study shows that the spillover
effect of climate legislation on CO2 emissions is significantly negative. Hence, the outcomes indicate
that being surrounded by nations with more climate laws positively impacts environmental quality.
Third, regarding direct impact and spillover effects, the carbon reduction impact of parliamentary
legislative acts is stronger than that of governmental executive orders. Finally, even with the spillover
effect, we uncover robust evidence supporting an inverted-U-shaped EKC linkage between carbon
emissions and GDP per capita, even under the spatial spillover effect.

Keywords: climate legislation; spatial spillover; policy diffusion; spatial Durbin model

1. Introduction

Combating climate change and mitigating carbon emissions have garnered a worldwide
consensus. According to the National Bureau of Economic Research, the worldwide average
temperature is expected to keep rising by 0.04 ◦C yearly without appropriate climate gover-
nance. By 2100, the real GDP per capita will decline by around 7.22%. And the economy of all
regions, whether poor or rich, cold or hot, will be greatly affected [1]. Therefore, determining
how to minimize the terrible impacts of climate change has remained the most important and
potent menace facing humanity in the 21st century [2]. The cost of inaction is high despite the
significant climate financing gap. The total cost of inaction is estimated to be $1266 trillion,
representing the difference in economic losses between the “business as usual” scenario and
the 1.5 ◦C temperature control scenario from 2025 to 2100 [3]. Against this backdrop, various
countries have begun to develop climate legislation to deal with more and more frequent
climate disasters and create a better living environment.

A growing number of nations are passing climate laws [4,5]. Since effective action
catering for climate change requires a legal foundation, climate legislation is crucial for
climate change regulation. Without legally enforceable targets and measures, emission
pledges lack credibility. Although the scope and ambition of climate laws and policies vary
widely (that is, at the intensive margin), their increasing number (the extensive margin) is
a key sign of a nation’s commitment to combating climate change. Almost all significant
greenhouse gas (GHG) emitters now have laws that regulate emissions, save energy, prevent
deforestation, or support more environmentally friendly methods of energy production.
Meanwhile, those nations most at risk from climate change are also taking action to deal
with climate effects. Nearly 2300 climate change laws are identified in the 200 countries
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that the Climate Change Laws of the World dataset includes (Climate Change Laws of the
World dataset. Available at: https://climate-laws.org/ (accessed on 20 January 2024).

Some researchers have focused on the effects of climate change legislation on green-
house gas emissions [6–8] and renewable energy [9]. However, the existing studies fail
to incorporate considerations for spatial dependence when exploring the relationship
between climate legislation and carbon emissions. Indeed, numerous topics concerning
economic and environmental matters exhibit inherent spatial correlation [10,11]. Accord-
ing to Kang et al. [12], spatial panel data models are becoming increasingly important in
empirical research because they consider both temporal dynamics and spatial dependence.
Such models can better capture interactions and spillover effects across regions and thus
avoid biased estimates. Therefore, this study aims to fill several critical gaps in the existing
literature on the relationship between climate legislation and carbon emissions. First, theo-
retical mechanisms of spatial interaction of climate legislation have not been adequately
addressed. Second, much of the research about the effectiveness of climate legislation has
relied on classical regression models, which cannot capture the spatial spillover effects
effectively. In addition, prior studies have not adequately addressed the differences in the
spatial spillover effects of different types of climate legislation. Third, most studies have
been limited to investigating the effects of environment and climate policies on specific
countries and regions, especially the OECD and European Union. By addressing these
gaps, our study advances theoretical and methodological knowledge and has practical
implications for global climate governance.

Considering that global climate change is a collective challenge requiring coordinated
efforts [13], analyzing the spatial interactions among nations is crucial. For instance, Euro-
pean countries with robust climate laws often influence their neighboring countries through
economic ties or climate regulations. This study focuses on 142 countries globally, making
it a highly relevant and comprehensive analysis of the global impact of climate legislation,
with particular attention to how these laws can affect carbon emissions domestically and in
surrounding regions.

The primary contributions of the paper are outlined below. First, drawing upon a
literature review, this paper clarifies the spatial interaction mechanisms of climate legisla-
tion and carbon emissions at the theoretical level. This shall furnish a robust theoretical
underpinning for the subsequent design of empirical models. Second, this study examines
the relationships between climate legislation and CO2 emissions using spatial econometric
methodology to enrich environmental research and offer guidance for crafting climate
governance policies. The models can help to identify both the direct and indirect impacts of
climate laws on carbon emissions. The spatial econometric model can effectively enhance
the accuracy of the measurement by considering cross-sectional dependence, which would
lead to distortions in the parameter estimates. Third, applying a global country sample
allows for a robust analysis of the relationship between climate legislation and carbon
emissions across diverse economic, political, and environmental contexts.

The subsequent content of the paper is organized in the following manner. Section 2
illuminates the relevant literature for this research. Section 3 outlines the theoretical
mechanisms and research hypotheses. Section 4 illustrates the spatial econometric models
and related data utilized in this paper. In Section 5, we present the empirical estimations.
Section 6 summarizes the conclusions and proposes some countermeasures.

2. Literature Review
2.1. Carbon Emissions and Climate Legislation

With the increasingly prominent situation of climate warming, more and more studies
have begun to focus on the influencing factors and their driving mechanisms on carbon
emissions [14–18]. The IPAT model [19] and the extended STIRPAT model [20–22] are
widely recognized regarding the research methodologies. They are models employed to
explore the effects of affiliation, population, and technology on environmental indicators.

https://climate-laws.org/
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In particular, as far as environmental regulation is concerned, many scholars have
discussed its effect on CO2. Many researchers believe that environmental regulation can
increase investment in technological innovation for carbon emission reduction and then
reduce carbon emissions [23–26]. However, according to the “green paradox hypothesis”,
studies have also demonstrated that suppliers’ response to environmental regulation will
make the supply path of energy suppliers move forward, accelerate energy consumption,
and result in a rise in carbon emissions [27–30]. However, the above literature tends to proxy
environmental regulation by employing relevant indicators of regulatory intensity (proxied
by pollution control investment as a share of GDP) [31–33] or paying attention to the impact
of specific environmental regulations, including market-based instruments (e.g., carbon
tax, emissions trading system) and command-and-control instruments (e.g., emission
standards) [34–36]. Little literature has focused on the effects of climate legislation directly
and comprehensively. Eskander and Fankhauser [7] analyzed the trend of global climate
legislation in detail and explored the impact of climate legislation on carbon intensity based
on panel data regression. It is estimated that the current global climate legislation system
has reduced 38 GTCO2 during 1999–2016. Omri and Boubaker [8] explored the impact of
environmental policies and legislation on carbon emissions. They indicated that the climate
change legislation is relatively weak in highly polluted countries. However, they failed to
consider the spatial effects of carbon emissions and climate legislation.

2.2. Spatial Spillover Effects of Carbon Emissions

Due to the intricate interplay of atmospheric motion, commercial interactions, and
other contributing factors, it is very important to consider the spatial autocorrelation of
carbon emissions. For example, Zhou et al. [37] analyzed the spillover effects of carbon
emissions between regions in China. They demonstrated a positive and significant spatial
correlation between regional carbon emissions. The spatial autocorrelation of carbon emis-
sions means that the haze control effect brought by climate legislation in the host country
will affect the carbon concentration in neighboring countries through the spatial spillover
of carbon emissions. For instance, an augmentation in investments directed toward air
pollution governance within the local country shall enhance local environmental quality,
thereby yielding an amelioration in the ecological quality of neighboring areas. Some schol-
ars began to pay attention to the spatial effect by introducing spatial econometrics into the
research field of carbon emission driving mechanisms [38–43]. For instance, Wei et al. [44]
assessed both the direct and indirect spatial spillover effects of multi-dimensional urban-
ization and FDI on carbon emissions utilizing panel data from Belt and Road countries
spanning from 2000 to 2018 and the spatial Durbin model.

In conclusion, previous studies mainly focus on the environmental regulation intensity
or specific environmental regulation tools. Though few studies have discussed the impact
of climate legislation on carbon emissions, they ignore the potential spatial dependence
between carbon emissions and climate legislation, both theoretically and empirically. Unlike
prior research, we used spatial econometric methodologies to examine the direct and
indirect spatial spillover effects of national climate legislation on carbon emissions based
on the theoretical analyses of spatial interaction mechanisms. Furthermore, most empirical
studies’ geographical coverage is limited to specific countries or regions. Unlike those
studies, our analysis utilizes a comprehensive global sample, thereby providing a broader
perspective on the spatial effectiveness of climate legislation globally.

3. Theoretical Analysis and Research Hypotheses

A multifaceted theoretical framework supports the hypothesis that climate legislation
leads to a reduction in carbon emissions. First, climate legislation often establishes a legal
framework that directly limits carbon emissions through specific regulations and standards
to internalize the cost of carbon emissions, thereby incentivizing a shift to low-carbon
production. Second, climate legislation catalyzes technological innovation through tax
incentives and subsidies, which is a critical factor in reducing carbon emissions. Third,
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climate legislation influences not only firms and markets but also consumer behavior
and societal norms, indirectly contributing to carbon emission reductions. Climate leg-
islation can enhance consumer awareness of the environmental impact of their choices,
steering them toward low-carbon products and services and reducing aggregate emissions.
Therefore, Hypothesis 1 is proposed as follows:

Hypothesis 1. Climate legislation leads to a reduction in carbon emissions.

The climate legislation of neighboring regions will affect the climate legislation of the
local region and then affect the carbon emissions within the local area. The spatial interaction
mechanisms of climate legislation include “race to the top” and “race to the bottom”.

Regarding “race to the top”, the climate legislation would exhibit spatial autocorre-
lation tendencies, as climate governance attitudes and practices can trigger a contagious
influence among neighboring countries or culturally, politically, and economically inter-
connected countries based on a peer effect [45–48]. Collaboration and knowledge sharing
among nations can have a pivotal impact on promoting global initiatives to address climate
change [49]. On the one hand, advanced countries propagate policies through knowledge
sharing and collaboration, aiming to promote similar climate laws in other countries to
maintain their competitive edge [50]. On the other hand, the countries tend to emulate
the policies of their political peers, which are usually close to each other geographically
to form a climate coalition. In times of policy choice uncertainty, governments will resort
to imitation to reduce uncertainty and transaction costs while enhancing policy effective-
ness [50–52]. According to Fankhauser et al. [53], international policy diffusion occurs in the
context that the policy decisions of a particular country are influenced by previous choices
made in other countries, resulting in a systematic impact on government policies. Some
literature has pinpointed several cases of reformatory environmental policy instruments
spreading from one nation to another. For example, eco-labels originated in Germany in
1978 and then expanded to Scandinavia, the United States, and Japan during the 1980s.
Eventually, they became prevalent across Europe, as well as in Australia and New Zealand.

On the contrary, the “race to the bottom” theory, which is a cornerstone of the en-
vironmental politics literature [54,55], offers a distinct analytical logic for understanding
spatial interactions in climate legislation. The existence of regulatory competition among
governments implies that their actions of regulation are interconnected and mutually influ-
enced [56]. From one aspect, climate action taken by other nations can foster a tendency
toward free-riding. When others tackle the challenge, there might be a reduced incentive
for individual countries to take action by themselves [47,57,58]. From another aspect, the
theory posits that when faced with economic competition, governments are driven to adopt
overly lenient environmental standards to attract capital investment. These incentives,
coupled with governments potentially acting strategically, may prompt countries to lower
the standards to obtain a competitive advantage over their counterparts. If all governments
reason similarly, this could lead to an ongoing reduction in standards, eventually reaching
the level of the country with the least stringent regulations and resulting in a suboptimal
equilibrium [56,59]. Finally, the differences in the enforcement intensity of climate gover-
nance in different regions may induce the motion of production factors in the region and
lead to the relocation of polluting enterprises that cannot adapt to strict climate governance,
affecting regional climate improvement.

According to the mechanism analysis above, the theoretical framework of spatial
interactions between climate legislation and carbon emissions is depicted in Figure 1.
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Figure 1. The spatial interactions between climate legislation and carbon emissions.

Hypothesis 2. Climate legislation has spatial spillover effects on carbon emissions.

Legislative acts tend to substantially impact carbon emissions more than executive
orders due to several key factors. First, legislation’s stability and binding nature ensure
these measures are more permanent and less susceptible to reversal, providing long-term
certainty for businesses, investors, and consumers. This stability encourages more direct
and spatial spillover effects on carbon emissions. Second, legislative acts are often accompa-
nied by enforcement mechanisms, ensuring more rigorous compliance and implementation
than executive orders. This transparency and predictability are more likely to have a
cross-regional demonstrative effect, prompting neighboring countries to adopt the same
legislative behavior.

Hypothesis 3. Legislative acts have a greater impact on carbon emissions than executive orders,
with more pronounced spillover effects between neighboring regions.

4. Methodology and Data
4.1. Extended STIRPAT Model

The extended STIRPAT model (stochastic impacts by regression on population, afflu-
ence, and technology) established by Dietz and Rosa [60] provides a flexible framework
for analyzing the impact of socio-economic and environmental factors on ecological out-
comes. It allows for incorporating various independent variables [61], making it ideal
for examining complex relationships in environmental studies across different regions
or periods. In addition, the STIRPAT model has been widely used in empirical studies,
providing confidence in its validity and reliability [62]. While alternative models have also
been used to explore the influencing factors of carbon emissions [63], such as the IPAT
model and factor decomposition approach, they lack the flexibility to incorporate additional
socio-economic variables. Therefore, the STIRPAT model’s strengths in accommodating
non-linear relationships, multiple variables, and empirical robustness make it the most
suitable choice for our empirical analysis.

The standard design of the STIRPAT model is as follows:

I = αPβ AγTλµ (1)

where I denotes environmental change, such as waste emission and energy consumption.
I (environmental change) is influenced by P (population factor), A (affluence factor), and
T (technique factor). α, β, γ, and λ are the model’s parameters for the variables of population,
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affluence, and technique, respectively. µ is the item of model error. Then, we use population
density (PD) and urbanization (URB) to reflect the demography impacts [64], per capita
GDP (PGDP) to reflect affluence [65], and industrial activity with respect to total production
(IS) and share of renewable energy consumption (REC) to proxy technology level [66]. The
squared term of PGDP is also integrated into the estimation process following the EKC
hypothesis. The expanded form of the STIRPAT model can be represented as below.

ln PC︸ ︷︷ ︸
Environment

= β0 + β1 ln PGDP + β2(ln PGDP)2︸ ︷︷ ︸
A f f luence

+ β3 ln PD + β4 ln URB︸ ︷︷ ︸
Population

+ β5 ln IS + β6 ln REC︸ ︷︷ ︸
Techno log y

+ εit (2)

In reality, in addition to demography, affluence, and technology, other factors also
can affect carbon emissions. According to York et al. [67], additional variables can be
incorporated into the STIRPAT model if they align conceptually with its multiplicative
structure. Based on the pollution paradise and pollution halo theories, the impact of foreign
direct investment (FDI) on carbon emissions is complex. The pollution paradise theory
suggests that FDI promotes introducing highly polluting industries, thereby increasing
carbon emissions. The pollution halo effect suggests that multinational corporations may
introduce higher environmental standards and technologies in host countries, thereby
improving local environmental conditions [68]. The rule of law can improve the efficiency
and fairness of government institutions and better regulate social behavior, which helps
organizations take action to reduce carbon emissions when facing regulatory pressure [69].
The effect of climate legislation on carbon emissions is the core of this research. Therefore,
based on the above analysis, we introduce climate legislation (CLAW), foreign direct
investment (FDI), and rule of law (RL) as supplementary variables in this study. With the
above analysis, the panel econometric model for the per capita carbon emissions can be written
as follows (it is necessary to point out that taking the natural logarithms of the indicators is
efficient in reducing the heteroscedasticity, but this method is not suitable in all cases. When
the absolute value of some variables is small or negative, logarithmic processing will create
large errors and be inapplicable to the estimation results. Hence, this study used logarithms of
the indicators except for LAW, FDI, and rule of law to weaken heteroscedasticity [69]):

ln(PCit) = αi + λt + β1 ln(PGDPit) + β2(ln PGDP)2 + β3 ln(PDit) + β4 ln(URBit)
+β5 ln(ISit) + β6 ln(RECit) + β7CLAWit + β8FDIit + β9RLit + εi,t

(3)

4.2. Spatial Econometric Model
4.2.1. Spatial Weight Matrix and Spatial Autocorrelation Tests

Before launching the spatial econometrics analysis, it is prerequisite to construct the
spatial weighting matrix. Following Zambrano-Monserrate et al. [70], this paper used the
binary matrix of 5 nearest neighbors. The weights adhere to the condition wij = 1 when
country j is among the five closest neighbors of country i. Conversely, wij = 0 if country j is
not within this proximity. Additionally, for robustness checks, this paper also considers
the inverse squared distance matrix (both k-5 nearest matrix and inverse squared matrix
are geographic matrices that become increasingly important [65]. We chose this kind of
criterion because a greater geographic distance between countries hampers trade and
impedes cultural interaction [71,72]). The specification of w can be constructed as follows:

W =

{
wij = 1/d2

ij, i ̸= j
wij = 0, i = j

.

dij = arcos
[(

sin ηi × sin ηj
)
+

(
cos ηi × cos ηj × cos(∆σ)

)]
× r, ηi, and ηj represent the

latitude and longitude of the capital cities of nations i and j, respectively. ∆σ indicates the
longitudinal difference between nations i and j. r signifies the radius of the Earth.

Once the spatial weights matrix is created, a diagnostic evaluation of spatial autocorre-
lation can be performed for each year employing Moran’s I test. Considering the mobility
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of factors between regions, Moran’s I was first employed to examine the global spatial
correlation of variables. Moran’s I is estimated by Equation (4) as follows:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
wij(xi − x)2

(4)

where wij is a weighting matrix symbolizing the spatial weight of points i and j; xi is the
sample value at point i; x is the mean value of the whole sample’s observing index; and n is
the number of observations. As a global spatial autocorrelation indicator, Moran’s I can
unveil the overall spatial dependence of variables, but it has not yet pointed out which local
areas have spatial agglomeration. Local Moran’s I is a test index to see whether there is a
similar or distinct aggregation of observations between local regions, which is calculated
by Equation (5) as follows:

Ii =
n(xi − x)

n
∑

i=1
(xi − x)2

n

∑
j=1

wij
(
xj − x

)
(5)

4.2.2. Spatial Panel Econometric Technique

If the spatial autocorrelation test indicates that the variables have spatial correlation, it
is necessary to build a spatial econometric model to analyze the spatial effect of variables.
Considering the spatial influence of factors, the spatial regression model is constructed
based on Equation (3) in Section 4.1. There are three primary spatial econometric models:
the spatial lag model (SLM), the spatial error model (SEM), and the spatial Durbin model
(SDM). Since the SDM is the general mode of the SLM and SEM, the following basic SDM
model is constructed:

Yt = θ1 IN + ρWYt + θ2Xt + θ3WXt + ε (6)

where Yt is the n × 1 column vector of the dependent variable; Xt is the n × k notion of
independent variables’ matrix; W is the matrix for spatial weight; IN represents an n × n
unit vector that is connected with the estimated parameter θ 1 in terms of the constant; ρ,
θ2, and θ3 are the parameters that need to be determined; ε is the random error; and ρWYt
is the spatial lag term of the dependent variable, indicating the spatial spillover impact
of local dependent variables on other regions’ dependent variables. Similarly, θ3WXt is
the independent variables’ spatial lag term; SLM and SEM are two special forms of SDM.
When the value of θ3 is zero, the SDM will be reducible to the SLM; when θ3 + ρθ2 = 0, the
SDM model will be simplified to the SEM.

Model (6) only provides the general equation of the SDM. Then, according to model (3),
the concrete form of SDM can be organized as follows:

ln(PCit) = ρ
N

∑
j=1

Wij ln(PCit) + β1CLAWit + Xcontrol
it β + γ1

N

∑
j=1

WijCLAWit+
N

∑
j=1

WijXcontrol
it γ+µi + φt + εit (7)

where Xcontrol
it includes population density (PD), urbanization (URB), per capita GDP (PGDP)

and the squared term, industrial activity with respect to total production (IS) and share
of renewables consumption (REC), foreign direct investment (FDI), and rule of law (RL).
µi denotes fixed effects of the spatial individual. φt represents fixed effects of the time.

Given that the model incorporates the spatial correlation, the estimates provided in
Equation (7) cannot be employed to show the marginal impact of independent variables. As
suggested by LeSage and Pace [71], it is more appropriate to examine the partial derivatives
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of the predicted value of Y concerning the independent variables. The overall structure is
observed to be as follows:

[
∂E(Y)
∂x1q

. . .
∂E(Y)
∂xnq

]
=


∂E(y1)

∂x1q
. . . ∂E(y1)

∂xNq
...
. . .

∂E(yN)
∂x1q

. . . ∂E(yN)
∂xNq

 = (I − ρW)−1[βq IN + rqW
]

(8)

where βq and rq are the qth elements of β and r, respectively. The partial derivative of
emissions for climate legislation (CLAW) is depicted as follows:

∂E(yt)

∂CLAWt
= (I − ρW)−1[IN β1]︸ ︷︷ ︸

direct e f f ects

+ (I − ρW)−1[Wγ1]︸ ︷︷ ︸
indirect e f f ects

(9)

Further, based on the above discussion, the impact of climate legislation on carbon emissions
may be impacted by the FDI. Then, the partial derivative of emissions is presented as follows:

∂E(yt)

∂CLAWt
= (I − ρW)−1[IN β1 + IN β2 × diag(FDIt)]︸ ︷︷ ︸

direct e f f ects

+ (I − ρW)−1[Wγ1 + Wγ2 × diag(FDIt)]︸ ︷︷ ︸
indirect e f f ects

(10)

4.3. Data

Due to data availability, this study collects data on 142 economies across the globe
for the period spanning from 2002 to 2021. The sample countries are listed in Table A1
(Appendix A) This paper uses per capita carbon emissions (PC) instead of absolute emis-
sions to reduce the effect of confounding factors such as population size. Since there is a
temporal hysteresis in the response of carbon emissions to climate legislation, the stock
of climate legislation (CLAW) was employed as a climate legislation indicator based on
Eskander and Fankhauser [7]. The specific calculation formula is as follows:

CLAWit = ∑t−1
k=1 Lik + Si0 (11)

where Lik is the number of climate legislation in the year k. Si0 is the stock of laws before
2002. This paper also incorporates other explanatory variables as control variables based
on the relevant literature and the above analysis.

As for the data sources, the data for Lik and Si0 can be obtained from the Climate
Change Laws of the World. The FDI, IS, PGDP, RL, and URB data come from the
World Bank. The data for REC are derived from the Energy Information Administration
(EIA) database. The data for PC and PD come from OUR DATA IN WORLD. The descriptive
statistics for the variables employed in this study are reported in Table 1.

Table 1. Descriptive statistics of variables.

Variables N Mean Standard
Deviation Min Max

CO2 emissions (PC, metric tons per capita) 2840 4.350 5.017 0.0160 33.30
Carbon emissions (CE, total, tonnes) 2840 211.7 895.3 0.103 11,472
Stock of climate legislation (CLAW) 2840 6.529 6.667 0 54
Stock of climate legislation (legislative act) 2840 2.881 3.456 0 22
Stock of climate legislation (executive order) 2840 3.649 4.649 0 43
Per capita gdp (PGDP, constant 2015 US$) 2840 12,365 16,618 255.1 88,967
Industry, value added (IS, % of GDP) 2840 26.95 11.13 2.759 74.16
Urban population (URB, % of total population) 2840 56.88 22.01 8.682 100
Population density (PD, people per sq. km of land area) 2840 186.9 625.7 1.602 8274
Share of renewables consumption (REC, %) 2840 0.185 0.191 −0.0786 0.878
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Table 1. Cont.

Variables N Mean Standard
Deviation Min Max

Foreign direct investment, net inflows (FDI, % of GDP) 2840 5.665 18.65 −117.4 449.1
Rule of law (RL) 2840 −0.0343 0.945 −1.850 2.125
Total population (POP, million) 2840 46.65 159.2 0.0683 1426

Table 1 displays the main descriptive statistics of the dependent and independent
variables of the model. The average carbon emissions per capita across the 142 analyzed
countries during this timeframe is 4.35 metric tons. However, the dataset reveals significant
variation, with some countries reporting remarkably low emissions, as low as 0.016 metric
tons per capita. In contrast, others demonstrate substantially higher figures, reaching up to
33.3 metric tons per capita. Then, the average stock of climate laws is 6.

5. Empirical Results
5.1. Temporal and Spatial Variations in Carbon Emissions and Climate Legislation

To provide a clearer temporal view of the evolution of carbon emissions and climate
laws worldwide, we computed the annual carbon emissions per capita and climate laws
from 2002 to 2021. The results are illustrated in Figure 2.
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Figure 2. Carbon emissions per capita and number of climate laws worldwide from 2002 to 2021. 
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Figure 2. Carbon emissions per capita and number of climate laws worldwide from 2002 to 2021.

World per capita carbon emissions increased continuously from 2000 to 2008. Global
economic growth, particularly industrialization in developing countries, led to increased
carbon emissions, and global per capita carbon emissions declined slightly in 2009. This
was due to a slowdown in economic activity as a result of the global financial crisis. Despite
continued global economic growth, the increase in per capita carbon emissions slowed
from 2010 to 2019. This was partly due to improvements in energy efficiency and the
development of renewable energy sources. Global per capita carbon emissions declined
due to a reduction in industrial activity, lower transportation, and lower energy demand in
the context of the COVID-19 pandemic in 2020. A sharp decline in global economic activity
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led to a significant drop in per capita carbon emissions. 2021 saw a gradual global economy
recovery and a per capita carbon emissions rebound.

Figure 2 also displays the yearly number of climate change laws. In the late 1990s,
steady growth started and accelerated national climate action after the Kyoto Protocol 1997.
A sharp growth after 2009 may be related to the much-hyped UNFCCC in December 2009
(COP15). The climate change laws and policies peaked in 2009–2017, when over 100 laws
were passed yearly. However, the number of climate laws declined more sharply after 2017.

To depict spatial discrepancies in carbon emissions and climate laws, we show the
spatial distribution of carbon emissions and climate laws in 2002 and 2021 by utilizing
ArcGIS 10.8. The variables data are divided into five distinct categories.

Based on Figure 3a,b, the temporal analysis from 2002 to 2021 reveals a noticeable
increase in per capita carbon emissions, particularly in regions like North America, Europe,
and parts of Asia, where emissions were already high in 2002 and further intensified by
2021. This trend is especially pronounced in developing regions, where industrial growth
has accelerated, leading to new high-emission areas, notably in parts of Asia such as
China and India. Spatially, North America, Europe, and Australia consistently exhibit high
per capita carbon emissions, reflecting their intensive energy consumption and industrial
activities. In contrast, Sub-Saharan Africa, South Asia, and parts of Southeast Asia remain
in the lower emission categories, likely due to lower levels of industrialization.

Figure 4a,b shows a clear increase in the number of climate laws globally from 2002
to 2021. The maps indicate that more countries adopted climate legislation over this
period, as reflected in the transition from lighter to darker shades of blue. In 2002, many
countries, particularly in Africa, South America, and parts of Asia, had few or no climate
laws. However, by 2021, these regions showed substantial progress. This reflects not
only a quantitative increase in climate legislation but also a broader global expansion.
By 2021, climate legislation had become more widespread, extending beyond developed
regions like Europe and North America to include numerous developing countries. Europe
remained a leader in climate legislation from 2002 to 2021, with countries such as the
United Kingdom, France, and Germany showing substantial increases, resulting in a more
robust legislative framework. This analysis provides a foundation for further investigation
into the effectiveness of these laws in mitigating the impacts of climate change.

5.2. Spatial Autocorrelation Test

Before studying the spillovers of climate legislation on carbon emissions, the spatial
autocorrelation of the dependent variable carbon emissions and the primary explanatory
variable climate legislation are examined to determine whether a country’s carbon emis-
sions and climate legislation are influenced by adjacent countries. We calculate the indicator
of global Moran for the carbon emissions and legislation in 142 countries from 2002 to 2021
based on the K-nearest neighbors (5) matrix shown in Table 2.

As shown in Table 2, the Moran index of carbon emissions is significantly positive
under the spatial weight matrix at the 1% level. Based on the calculation results of the Moran
index, carbon emission has the characteristics of spatial agglomeration at the geospatial
level. For climate legislation, the spatial correlation index shows an overall upward
trend and also presents more obvious spatial correlation characteristics. According to the
convergence mechanism of policies, climate legislation can easily form an imitation effect
based on geographical distance. Geographically close countries tend to connect closely,
with invisible knowledge disseminating and exchanging. Therefore, climate legislation has
produced a spatial spillover effect through geography and economic ties.

According to Anselin [72], Moran’s I scatter plot has proven to be an effective method
for examining the spatial correlation, which more intuitively represents the local auto-
correlation state. Subsequently, we proceeded to illustrate scatter plots of the Moran’s
I values for 2021. Based on Figure 2, both the carbon emissions and climate legislation of
142 countries are positively correlated in the first and third quadrants, which is featured by
“H-H” and “L-L” spatial agglomeration, respectively.
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Figure 3. (a) Spatial distribution of carbon emissions in natural logarithms in 2002. (b) Spatial
distribution of carbon emissions in natural logarithms in 2021.
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Figure 4. (a) Number of stock of climate laws in 2002. (b) Number of stock of climate laws in 2021.
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Table 2. Global Moran’s I of per capita carbon emissions and climate legislation.

Year Moran’s I
(PC)

Moran’s I
(CLAW) Year Moran’s I

(PC)
Moran’s I
(CLAW)

2002 0.663 *** 0.094 ** 2012 0.662 *** 0.141 ***
2003 0.671 *** 0.078 * 2013 0.668 *** 0.135 ***
2004 0.669 *** 0.029 2014 0.666 *** 0.161 ***
2005 0.667 *** 0.036 2015 0.669 *** 0.201 ***
2006 0.663 *** 0.047 2016 0.676 *** 0.196 ***
2007 0.658 *** 0.103 ** 2017 0.682 *** 0.211 ***
2008 0.664 *** 0.124 *** 2018 0.679 *** 0.230 ***
2009 0.666 *** 0.169 *** 2019 0.677 *** 0.243 ***
2010 0.663 *** 0.160 *** 2020 0.676 *** 0.245 ***
2011 0.663 *** 0.122 *** 2021 0.677 *** 0.247 ***

Note: Significance is denoted by ***, **, and * at 1%, 5%, and 10% levels, respectively.

Further, combined with Figure 5, high–high carbon emission clusters are in North Amer-
ica, Asia, and Europe. In contrast “low–low” carbon emission clusters emerge in African
countries and South America (see Figure 3b). In terms of climate legislation, European
and American countries are almost high–high clusters. African and Asian countries are
low–low clusters (see Figure 4b). Therefore, a distinct spatial clustering characteristic was
present. Consequently, spatial econometrics becomes essential for examining the factors
affecting CO2 emissions and studying climate legislation’s spillover effects.
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5.3. Econometric Regression Results

Before proceeding with regression analysis, confirming the optimized regression
model with the relevant test is important. According to Elhorst [73], this study first
estimates the models excluding the influence of spatial interactions and then carries out the
requisite robust LM lag and LM error examinations for each spatial econometric estimation
method. Table 3 displays the outcomes of the estimations for non-spatial panel methods,
including pooled OLS, spatial fixed effects, and time fixed effects, as well as combined both
spatial fixed effects and time fixed effects. The LM test results and robustness analysis are at
the bottom of Table 3. The LM test results showed that the original hypothesis of no spatially
lagged dependent variable could be strongly rejected across all model specifications at
the 1% significance level. The original hypothesis of no spatially autocorrelated error
factor is strongly refuted at the 1% significance level except for the two-way fixed effects
model. Regarding the robustness test outcomes, across all model specifications, the original
hypothesis of no spatially lagged dependent variable and the original hypothesis of no
spatially autocorrelated error factor are firmly refuted at a 1% significance level. These
results indicate the presence of spatial dependence among the data, consistent with the
findings of the Moran’s I index. The above spatial autocorrelation analysis confirms
the significant spatial correlation between carbon emissions and climate legislation. By
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establishing a spatial econometric model, this study enables a more precise measurement of
climate legislation’s specific role and magnitude in influencing carbon emissions. Moreover,
the model provides robust evidence supporting the diffusion of climate policies.

Table 3. Estimation results excluding spatial interaction impacts.

Polled OLS Spatial Fixed
Effects

Time Period
Fixed Effects

Spatial and Time
Period Fixed Effects

claw −0.0094 *** −0.0086 *** −0.0103 *** −0.0049 ***
(−5.3551) (−9.6014) (−4.436) (−4.5873)

lnpgdp 3.4203 *** 3.0741 *** 3.4158 *** 2.9343 ***
(33.5751) (19.3003) (33.4981) (18.3836)

lnpgdp2 −0.1490 *** −0.151 *** −0.1487 *** −0.1341 ***
(−24.4217) (−15.9543) (−24.3699) (−13.8546)

lnpd 0.014577 * 0.2341 *** 0.0149 ** 0.4664 ***
(1.7407) (5.4656) (1.7753) (8.9362)

lnurb 0.28083 *** 0.8392 *** 0.2794 *** 0.9194 ***
(7.5813) (9.9177) (7.5465) (10.9245)

lnis 0.44407 *** 0.0461 * 0.4474 *** −0.0027
(14.5876) (1.9516) (14.5956) (−0.1097)

lnrec 0.008565 ** −0.0023 0.0093 ** −0.0059 ***
(2.01785) (−1.0909) (2.0773) (−2.7374)

fdi 0.0004 0.0008 *** 0.0004 0.0009 ***
(0.6141) (3.8312) (0.7495) (4.2265)

rl −0.0405 0.0503 −0.0432 0.0047
(−0.4234) (0.6301) (−0.4488) (0.0593)

Intercept −19.8861 ***
(−49.3705)

N 2840 2840 2840 2840
R2 0.8603 0.4410 0.8602 0.3770

FE R2 0.9877 0.8605 0.9881
Log L −2463.4000 991.4462 −2641.0000 1032.7000

LM spatial lag 350.8466 *** 88.1969 *** 343.6846 *** 55.1181 ***
LM spatial error 1001.853 *** 39.2104 *** 989.0667 *** 1.8355

Robust LM spatial lag 27.9276 *** 57.7828 *** 28.1506 *** 115.4630 ***
Robust LM spatial

error 678.934 *** 8.7963 *** 673.5328 *** 62.1804 ***

Note: The values inside the () indicate the t-statistic, while ***, **, * signify significance levels of 1%,
5%, and 10%, respectively.

For choosing the most suitable spatial model for optimal fitting, we initially assessed
the spatial Durbin model (SDM). The Wald and LR tests were conducted to explore the
possibility of simplifying the SDM into either the spatial lag model (SLM) or the spatial
error model (SEM). The test results, as shown in Table 4, rejected the original hypothesis at
the 1% level of significance, indicating that the SDM outperformed both the SAR and SEM.
Therefore, our analysis of the spatial impact of climate legislation on carbon emissions is
conducted based on the SDM. Simultaneously, employing Hausman statistics, we confirmed
that the two-way fixed effect is more appropriate for our study. Consequently, the SDM
processing two-way fixed effects was ultimately selected for empirical analysis.

Table 4. Estimation results including spatial interaction impacts.

(1) (2) (3) (4)
SAR Model SEM Model SDM_FE Model SDM_RE Model

Coefficient t Values Coefficient t Values Coefficient t Values Coefficient t Values

claw −0.0048 *** −4.4999 −0.0044 *** −4.1839 −0.0047 *** −4.4341 −0.0050 *** −4.9093
lnpgdp 2.8875 *** 18.1933 2.8287 *** 17.6537 2.9300 *** 18.4072 3.1029 *** 20.4483
lnpgdp2 −0.1308 *** −13.5795 −0.1273 *** −13.0792 −0.1330 *** −13.7829 −0.1452 *** −16.3219
lnis 0.0014 0.0563 0.0025 0.1024 0.0025 0.1046 0.0231 0.9632
lnurb 0.9460 *** 11.3012 0.9159 *** 10.9196 0.9207 *** 10.7836 1.0531 *** 14.5102
lnpd 0.4894 *** 9.4095 0.4916 *** 9.5066 0.4940 *** 9.3833 0.2120 *** 6.0865
lnrec −0.0060 *** −2.8156 −0.0055 *** −2.5974 −0.0045 ** −2.1071 −0.0053 ** −2.5088
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Table 4. Cont.

(1) (2) (3) (4)
SAR Model SEM Model SDM_FE Model SDM_RE Model

Coefficient t Values Coefficient t Values Coefficient t Values Coefficient t Values

fdi 0.0009 *** 4.467 0.0009 *** 4.5577 0.0008 *** 4.1441 0.0008 *** 3.839
rl 0.0148 0.1873 −0.0102 −0.1295 0.0402 0.5068 0.0357 0.4487
W * claw −0.0120 *** −4.8848 −0.0076 *** −3.9578
W * lnpgdp 1.5067 *** 3.796 1.2340 *** 3.3114
W * lnpgdp2 −0.1048 *** −4.4088 −0.0839 *** −3.8444
W * lnis −0.0566 −0.9692 −0.0620 −1.1414
W * lnurb −0.1063 −0.5144 −0.2260 −1.3473
W * lnpd −0.3859 *** −3.0259 −0.1049 −1.5299
W * lnrec −0.0035 −0.7585 −0.0038 −0.8812
W * fdi −0.0020 *** −3.8365 −0.0020 *** −3.8604
W * rl 0.7681 *** 3.9245 0.7581 *** 4.1305
ρ 0.1433 *** 4.9914 0.1197 *** 3.6948 0.1204 *** 3.7456
LR test 76.76 *** 80.1 ***
Wald test
spatial lag 77.72 ***

Wald test
spatial error 81.25 ***

Hausman test 130.60 ***
Observations 2840 2840 2840 2840
R-squared 0.666 0.661 0.641 0.793

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

According to the results in column (3) of Table 4, it is important to highlight that the
statistical significance of the spatial autocorrelation parameter ρ is observed at the 1% level.
This signifies the presence of spatial dependence within the dataset. The outcomes imply
that an escalation in carbon emissions among neighboring nations contributes to rising
CO2 emissions within the host country. The CLAW coefficient demonstrated a statistically
significant negative effect, suggesting that climate change legislation implemented in a
specific country reduces its carbon emissions. This finding verifies hypothesis 1. The
coefficients of lnPGDP are positive and strongly significant at the 1% level. The estimated
coefficients of its squared term (lnPGDP2) are negative at the 1% level of significance,
denoting that there is clear evidence for the EKC hypothesis, i.e., there is a reversed U
relationship between GDP per capita and carbon emissions [74]. At the 1% significance
level, the coefficients of lnURB are significantly positive. Due to industrialization and
high carbonization in the early stage of urbanization, it is generally believed that the more
developed a country’s urbanization is, the higher the per capita CO2 will be. Therefore, the
urbanization process will undoubtedly promote an increase in carbon emissions. However,
the coefficient of industrialization was positive and insignificant. As demonstrated in
numerous empirical studies by scholars, industrialization is a significant factor contributing
to the increase in carbon emissions. However, some researchers have also found that due to
industrial optimization and upgrading, there are inhibiting factors that impede the rise in
carbon emissions [75,76]. Under such dual effects, the positive impact of industrialization
on carbon emissions may no longer be statistically significant. The estimated population
density coefficient implies that higher population density levels led to an increase in CO2
emissions throughout the research timeframe. It can be understood as a result of the
larger population contributing to greater energy consumption, consequently fostering the
production of carbon dioxide emissions. The coefficient of renewables consumption share
was significantly negative at the 1% significance level, showing that renewable energy
consumption can reduce carbon emissions. Regarding FDI, the estimated coefficient was
significantly positive at the 1% level, which supports the “pollution heaven hypothesis”.
The estimated coefficient of the rule of law was positive but statistically insignificant.

Numerous preceding studies concluded at this juncture have assessed spatial spillover’s
presence via point estimates. However, according to LeSage and Pace [71], the estimated
coefficients in the SDM are incapable of inherently portraying the marginal impacts of
the associated explanatory factors on the dependent variable. Hence, this study subse-
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quently conducted estimations to ascertain the independent variables’ direct, indirect, and
cumulative effects, detailed in Table 5.

Table 5. Direct, indirect, and total effects.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

claw −0.0049 *** −4.4642 −0.0139 *** −5.0973 −0.0188 *** −6.1845
lnpgdp 2.9579 *** 19.3114 2.0647 *** 5.0425 5.0226 *** 11.3646
lnpgdp2 −0.1346 *** −14.4754 −0.1338 *** −5.2429 −0.2684 *** −9.811
lnis 0.0007 0.0288 −0.0682 −1.0561 −0.0675 −0.9076
lnurb 0.9211 *** 11.4996 0.0193 0.0823 0.9404 *** 3.7502
lnpd 0.4930 *** 9.1734 −0.3631 ** −2.5561 0.1299 0.7918
lnrec −0.0046 ** −2.1244 −0.0047 −0.9015 −0.0093 −1.5978
fdi 0.0008 *** 4.1453 −0.0021 *** −3.3624 −0.0012 * −1.8641
rl 0.0602 0.7586 0.8518 *** 3.7026 0.9119 *** 3.5239

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

Table 5 displays the direct, indirect, and total effects. Direct effects indicate how alter-
ations in explanatory variables impact carbon emissions within a specific country. Indirect
effects can be interpreted as the impact of changes in explaining variables of adjacent nations
on the carbon emissions of the host nation or as the impact of changes in explaining variables
within the host nation on the carbon emissions of adjacent nations. Then, the sum of the direct
and indirect impacts is the total effects. In terms of the magnitudes and significance level,
the direct impacts are comparable to the coefficients estimated in Table 4. The magnitude
discrepancies between them could be due to the feedback effects. These feedback effects are
partly caused by the coefficient of the spatially lagged dependent variable and partly by the
coefficient of the explanatory variable’s own spatially lagged value.

The empirical results shown in Table 5 indicate that, for climate legislation, the total
effect coefficient of climate legislation is −0.0188 and statistically significant. It illustrates
that a newly passed climate law on its own contributes to a reduction in all countries’ CO2
emissions per capita by around 1.88%. Further, the direct effect (−0.0049) was significantly
negative, indicating that one newly passed climate change law reduced carbon emissions
by 0.49% in the domestic country. Climate change legislation plays an important role in reg-
ulating and controlling carbon emissions. On the other hand, the spillover effect (−0.0139)
was also significantly negative, indicating that CO2 emissions per capita decreased by
1.39% in local countries for every unit increase in the stock of climate legislation in the
neighboring countries. This finding supports Hypothesis 2. That is to say, more climate
legislation in surrounding countries will reduce carbon emissions in the local area. The
possible reason why a country’s climate legislation has a significant spatial spillover effect
is that the dissemination of implicit knowledge is subject to geographic distance [77]. Under
the influence of knowledge dissemination and policy diffusion, the local country gradually
imitates and learns the advanced management experience of climate governance to cope
with the pressure of international carbon emission reduction.

More importantly, it is evident that the spillover effects surpass the direct effects in
terms of magnitude. This outcome implies that the positive impact of a country’s climate
legislation on its environmental quality is modest when contrasted with the positive impact
of climate legislation in neighboring nations on the local environmental quality. This makes
sense since the direct effects focus only on the host nation, whereas the indirect spillover
effects consider all the other neighboring nations. And that is why the total effects align
with the significance level of the indirect effects. The result also highlights the importance
of estimating the impact of climate legislation on CO2 emissions by considering spatial
dependence. Based on the spatial dependence between climate legislation and carbon
emissions, it can be inferred that the diffusion of climate laws, with the spillover effect,
mitigates carbon dioxide emissions.
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For the control variables, we first emphasized the relationship between economic
development and CO2 emissions. Regarding GDP per capita, the total effect equals 5.0226
and is statistically significant. It shows that a 1% rise in GDP per capita in a country
triggers an increase in all countries’ CO2 emissions per capita by approximately 5.0226%.
The direct effect of GDP per capita amounts to 2.9579 and is statically significant at a 1%
significant level, indicating that a 1% increase in GDP per capita within a country can
lead to an approximately 2.9579% rise in its own per capita CO2 emissions. The spatial
spillover impact equates to 2.0647 and is significant at the 1% level. This result indicates
that when economic development increases by 1% in the local country, it leads to a 2.0647%
rise in CO2 emissions within the neighborhoods of the local country. The total effect, direct
effect, and indirect effect coefficients of its squared term are −0.2684, −0.1346, and −0.1338,
respectively. They are statistically negative and significant at a 1% level. These results
imply that the spatial spillover effect also substantiates the EKC hypothesis theory. For
the industrial structure, all the effects display statistical insignificance. The direct effect of
urbanization is 0.9211 and significant at the 1% level, while its indirect effect is insignificant.
The results show that a 1% growth in urbanization in a country triggers an increase in its
CO2 emissions per capita by approximately 0.9211%. Population density’s direct effects is
0.4930, and its indirect effect is −0.3631, which are significant at the 1% level. The positive
direct effect suggests that a 1% increase in population density within a country directly
contributes to a 0.493% increase in carbon emissions per capita. Conversely, the negative
indirect effect implies that a 1% increase in population density in neighboring countries
dampens the local carbon emissions per capita by 0.3631%. The estimated coefficient for
the direct effect of renewables is −0.0046, which is statistically significant at the 5% level. It
suggests that a 1% growth in the utilization of renewables can reduce the carbon emissions
per capita by 0.0046% within the country. However, its indirect spatial spillover effect is
not statistically significant, indicating that the influence of renewables does not extend
meaningfully to neighboring countries. The total effect of FDI is estimated at −0.0012,
which is statistically significant at the 10% level. This result indicates that an increase of
one unit in FDI is associated with an approximate 0.12% reduction in per capita carbon
emissions across all countries. The direct effect of FDI is estimated at 0.0008, while the
indirect effect is −0.0021, with both effects being statistically significant at the 1% level.
This finding implies that a one-unit increase in domestic FDI leads to a 0.08% increase in per
capita carbon emissions within the host country. In contrast, the indirect effect of FDI results
in a 0.21% reduction in per capita carbon emissions in neighboring countries. For the rule
of law, the direct effect is not significant. However, the spillover effect is significant, with
a positive value of 0.8518, which implies that an improved legal environment in the local
country results in increased emissions for its surrounding countries. One possible reason
is that as domestic regulations gain stronger enforcement, highly polluting companies
might choose to invest in neighboring countries, aiming to circumvent stringent legal
constraints. As a result, this behavior can contribute to an increased carbon emission level
in the surrounding nations.

To test Hypothesis 3, we distinguish climate legislation into legislative acts (passed by
parliament) and executive orders (issued by governments). The results are presented in Table 6.

Table 6. Direct, indirect, and total effects of different types of climate laws.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

Legislative acts passed by parliament
claw_leg −0.0175 *** −6.942 −0.0579 *** −8.2387 −0.0755 *** −9.5947
lnpgdp 2.8476 *** 18.7017 1.5796 *** 3.932 4.4272 *** 10.2296
lnpgdp2 −0.1284 *** −13.9062 −0.1063 *** −4.2509 −0.2347 *** −8.7666

lnis 0.0045 0.1915 −0.0779 −1.2375 −0.0734 −1.0166
lnurb 0.8561 *** 10.6899 −0.1233 −0.5449 0.7328 *** 3.0148
lnpd 0.4643 *** 8.6361 −0.3822 *** −2.7603 0.0821 0.5148
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Table 6. Cont.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

lnrec −0.0032 −1.4731 0.0008 0.1584 −0.0024 −0.4169
fdi 0.0008 *** 3.9514 −0.0020 *** −3.364 −0.0012 * −1.9083
rl 0.0160 0.2045 0.5645 ** 2.5295 0.5806 ** 2.3147

Executive orders passed by the government
claw_exe −0.0032 ** −2.3105 −0.0092 *** −2.6432 −0.0124 *** −3.1795
lnpgdp 2.9471 *** 19.1206 2.2577 *** 5.426 5.2048 *** 11.5789
lnpgdp2 −0.1342 *** −14.3584 −0.1457 *** −5.6239 −0.2800 *** −10.0722

lnis −0.0047 −0.201 −0.0781 −1.1918 −0.0828 −1.0962
lnurb 0.9337 *** 11.5488 −0.0451 −0.1886 0.8886 *** 3.4674
lnpd 0.5071 *** 9.4563 −0.3377 ** −2.3507 0.1694 1.0177
lnrec −0.0059 *** −2.6992 −0.0086 −1.6443 −0.0144 ** −2.4685
fdi 0.0008 *** 4.1598 −0.0020 *** −3.2994 −0.0012 * −1.8114
rl 0.0740 0.9274 0.9198 *** 3.9164 0.9938 *** 3.7586

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

As shown in Table 6, the total effect of legislative acts is estimated at −0.0755, which
is statistically significant at the 1% level. This result indicates that each new legislative
act leads to an approximate 7.55% reduction in per capita carbon emissions across all
countries. The direct effect is −0.0175, also significant, suggesting that each new legislative
act results in a 1.75% decrease in per capita carbon emissions within the implementing
country itself. In addition, the indirect effect is −0.0579, which is also significant, implying
that adopting new legislative acts in one country contributes to a 5.79% reduction in per
capita carbon emissions in neighboring countries. In terms of executive orders, the total
effect is estimated at −0.0124 and is statistically significant at the 1% level. This result
suggests that each new executive order results in an approximate 1.24% reduction in per
capita carbon emissions across the overall sample of countries. The direct effect is −0.0032,
indicating that each new executive order leads to a 0.32% decrease in per capita carbon
emissions within the implementing country. Meanwhile, the indirect effect is −0.0092,
also statistically significant, reflecting a 0.92% reduction in per capita carbon emissions
in neighboring countries as a result of the newly passed executive order. As indicated in
Table 6, despite the greater number of executive orders compared to legislative acts (refer
to Figure 2), both the direct and spillover carbon reduction impacts remain inferior to those
of legislative acts. Hypothesis 3 was verified. This conclusion aligns with the findings
of Eskander and Fankhauser [7], who argue that legislative acts have a higher capacity
to decrease emissions due to a substantial portion of them being primarily focused on
aspirational objectives.

5.4. Robustness Check

Several robustness tests were used in this study to ensure that the estimated results
were stable. First, this paper used the different spatial weight matrices (geographical
inverse squared distance matrix) and eight-nearest neighbors matrix to confirm the results’
sensitivity. As shown in Table 7, employing other spatial weight matrices did not alter our
key conclusions.

Table 7. Direct, indirect, and total effects using different weight matrices.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

Spatial inverse squared distance matrix
claw −0.0050 *** −4.598 −0.0124 *** −3.768 −0.0174 *** −4.9827

lnpgdp 2.9688 *** 19.2884 1.3222 *** 2.6841 4.2910 *** 8.2719
lnpgdp2 −0.1343 *** −14.338 −0.0901 *** −3.0564 −0.2244 *** −7.2396

lnis −0.0181 −0.7666 −0.1490** −2.4396 −0.1671 ** −2.3609
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Table 7. Cont.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

lnurb 0.9628 *** 11.8663 0.9378 *** 3.3945 1.9006 *** 6.4327
lnpd 0.5238 *** 9.7498 0.0122 0.0729 0.5360 *** 2.9053
lnrec −0.0058 *** −2.6962 −0.0094 * −1.7559 −0.0152 *** −2.6246
fdi 0.0008 *** 4.2061 −0.0016 * −1.689 −0.0008 −0.7833
rl 0.0708 0.9076 −0.1176 −0.4704 −0.0468 −0.1772

Eight-nearest neighbors spatial weight matrix
claw −0.0055 *** −5.0142 −0.0134 *** −3.9022 −0.0189 *** −5.1972

lnpgdp 3.0101 *** 19.646 2.2737 *** 4.6319 5.2839 *** 10.2436
lnpgdp2 −0.1371 *** −14.7596 −0.1425 *** −4.6732 −0.2796 *** −8.8032

lnis −0.0091 −0.39 −0.1796** −2.2316 −0.1887** −2.1367
lnurb 0.9698 *** 12.3037 1.0439 *** 3.4025 2.0137 *** 6.2591
lnpd 0.4938 *** 9.0983 0.0492 0.2612 0.5430 *** 2.5929
lnrec −0.0052 ** −2.4119 −0.0005 −0.0683 −0.0057 −0.7782
fdi 0.0008 *** 3.9092 −0.0025 *** −3.1421 −0.0017 ** −2.0732
rl 0.0621 0.7888 0.2724 0.9629 0.3344 1.1017

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

Second, we changed the dependent variable to total carbon emission. Accordingly, the
independent variable of population density was changed to total population to ascertain
the stability of the effects of climate legislation. As seen from Table 8, climate legislation
exerts a significant negative influence on total carbon emissions both directly and indirectly,
indicating that our findings are robust.

Table 8. Direct, indirect, and total effects when changing dependent variable.

Direct Effects Indirect Effects Total Effects
Coefficient t Values Coefficient t Values Coefficient t Values

claw −0.0048 *** −4.4634 −0.0139 *** −5.0901 −0.0188 *** −6.1776
lnpgdp 2.9616 *** 19.3446 2.0682 *** 5.0349 5.0299 *** 11.3399
lnpgdp2 −0.1348 *** −14.5004 −0.1339 *** −5.2349 −0.2687 *** −9.7922

lnis 0.0007 0.0287 −0.0690 −1.0691 −0.0683 −0.919
lnurb 0.9190 *** 11.4792 0.0165 0.0706 0.9355 *** 3.7259
lnpop 1.4932 *** 27.8159 −0.3625 ** −2.5459 1.1307 *** 6.8973
lnrec −0.0046 ** −2.1314 −0.0048 −0.9215 −0.0094 −1.6167
fdi 0.0008 *** 4.1538 −0.0020 *** −3.3575 −0.0012 * −1.859
rl 0.0594 0.7479 0.8553 *** 3.713 0.9147 *** 3.5272

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

The last definitional change concerns the climate laws in EU and OECD countries
because the countries in the EU and OECD always have a shared agreement on economic,
environmental, and political aspects. As a robustness check, we investigate what would
happen if we excluded EU and OECD countries. Table 9 shows that the spatial spillover
effect is negative and significant at a 1% level. The results indicate that excluding EU and
OECD countries does not change the primary findings, and the spillover effects of climate
legislation on carbon emission reduction remain.

Table 9. Direct, indirect, and total effects when excluding EU&OECD countries.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

claw 0.0016 1.0107 −0.0079 *** −2.932 −0.0063 ** −2.5302
lnpgdp 2.4388 *** 13.102 −1.6333 *** −4.3776 0.8056 ** 2.034
lnpgdp2 −0.1100 *** −9.495 0.1122 *** 4.6981 0.0022 0.0873

lnis 0.0228 0.8885 −0.0035 −0.0694 0.0193 0.3634
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Table 9. Cont.

Direct Effects Indirect Effects Total Effects
Variables Coefficient t Values Coefficient t Values Coefficient t Values

lnurb 0.7876 *** 9.0427 1.0200 *** 6.0193 1.8076 *** 10.4927
lnpd 0.3009 *** 4.6113 −0.2486 ** −1.9791 0.0524 0.3892
lnrec −0.0023 −0.9507 0.0200 *** 3.745 0.0177 *** 3.1702
fdi 0.0032 *** 4.598 0.0028 * 1.8194 0.0060 *** 3.8112
rl −0.0055 −0.0618 1.5149 *** 7.2331 1.5094 *** 6.8644

Note: Significance is denoted by ***, **, and * at the 1%, 5%, and 10% levels, respectively.

5.5. Discussion

We compared the previous studies from two aspects: the spatial spillover characteris-
tics of pollution and climate legislation. First, despite the large differences in study areas
and times, there is a near consensus on the positive spatial spillover effects of carbon emis-
sions. Elevated levels of carbon emissions in neighboring areas result in a subsequent rise
in carbon emissions at the local level [42,78]. The results in this paper are similar to those
of past studies, which revealed the spatial dependence of air pollution. Second, studies
investigating the spatial spillover effect of environmental regulation and policy diffusion
can support the positive spatial spillover effects of climate legislation. Khurshid et al. [79]
and Wang et al. [80] showed that the spatial spillover effect of environmental regulation
on green innovation is substantially positive, illustrating the learning response of regional
environmental regulation. Zeng et al. [81] also hold that if a country enacts successful
legislation for the environment, adjacent governments follow suit. On the contrary to the
findings in this paper, some studies indicate that environmental policies may be ineffective
in achieving global emissions reduction due to “carbon transfer” and “free-riding” [82].
Implementing environmental policies may lead firms to move pollution-intensive produc-
tion to neighboring regions with less stringent policies, thus triggering negative spatial
spillovers [83]. The divergence in conclusions may be attributed to the focus on different
environmental policy instruments and varying geographical regions. This paper demon-
strates that carbon emissions across global countries exhibit positive spatial spillover effects.
Stricter climate legislation in neighboring countries reduces domestic carbon emissions and
can mitigate air pollution worldwide. This study challenges the notion that environmental
policies result in negative spatial spillover effects on environmental pollution. It provides
a new perspective on how climate legislation transmits effects across regions. This study
offers new perspectives to further understand the spatial interaction mechanisms between
climate legislation and carbon emissions.

6. Conclusions and Policy Implications

Although several studies have revealed the issue of policy diffusion, a spatial econo-
metric model has rarely been employed to investigate the impact of climate legislation on
carbon emissions. Hence, the present study examined the effect of climate legislation on
CO2 emissions employing a spatial econometric panel model to avert the deviation of the
coefficient estimation and provide new evidence for the diffusion of climate legislation. The
empirical finding confirmed the presence of a spatial correlation between CO2 emissions
and climate legislation among countries. More prominently, national carbon emissions
are influenced not just by a country’s climate legislation but also by its neighboring na-
tions. Moreover, legislative acts have a greater significant impact compared to the role of
executive orders. The significant negative spatial spillover effect of climate legislation on
carbon emissions offers significant empirical evidence of climate governance. In addition,
our findings support the EKC hypothesis even under the spillover effect. Ultimately, the
findings withstood various robustness tests, including utilizing alternate dependent and
excluding samples.

Based on the empirical findings in this research, the following policy implications for
global countries and groups are proposed and analyzed.
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First, the main findings show that a country’s climate legislation has a significant
positive direct and spatial spillover effect on carbon emission reduction. At the international
level, the international community should actively promote the process and optimization of
climate legislation and improve the synergy mechanism of transnational climate governance
to strengthen the collaborative linkage of regional climate legislation. Climate governance
has never been a matter for a single country; it needs to be taken part in by all countries
worldwide. The cooperation and exchange among regions can strengthen the spatial
spillover effect of climate legislation and build a global community of interests. At the
national level, governments should not only concentrate on the benefits of the host country
but also consider the influence of bordering countries when proceeding with climate
governance. They must particularly focus on the spatial implications of a policy with for rest
of the world. By fostering proactive collaboration, sharing information, and coordinating
policies, climate legislation can be formulated that is beneficial for domestic development
and conducive to regional cooperation. This encourages nations to collectively strive within
their cooperative efforts to achieve the global climate goal outlined in the Paris Agreement.

Second, concerning the form of climate legislation, it is imperative to prioritize the
adoption of climate laws endowed with legal enforceability, ensuring the credibility and
efficiency of climate governance. This amplifies the effectiveness of domestic climate
governance and expedites the diffusion of climate policies, consequently upholding one’s
global reputation and competitive position.

Third, a spatial EKC relationship was observed in our study. In this regard, once
a nation’s economy crosses a certain threshold, it can exert a restraining effect on its
and neighboring countries’ carbon emissions. Economically advanced nations typically
possess greater technological expertise, resources, and capital, enabling them to engage
in technology transfer and collaboration in environmental protection. They can share
advanced environmental technologies with neighboring countries, lowering their and
neighbors’ carbon emissions. Economically less developed countries should strike a balance
between trade and environmental concerns. They should accelerate the advancement of
climate legislation, learn from the climate legislative experiences of developed nations, and
thereby better fulfill the entry requirements of developed markets while addressing their
own developmental needs.

While the paper provides some novel insights into the relationship between climate
legislation and carbon emission, it does come with certain limitations. It might be that the
effects of climate legislation on carbon emissions vary across different regions, income levels,
and legal origins. In the future, performing empirical research to test the effects of climate
legislation on CO2 emissions from a heterogeneous perspective would be noteworthy.
Additionally, it is essential to consider the diverse set of potential alternative intermediary
channels that underlie cross-country interactions in climate legislation and emissions, e.g.,
the green investment channel. This matter requires further investigation in the future.
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Appendix A

Table A1. Country sample incorporated in this study.

Country Country Country Country Country Country

Angola
Democratic

Republic of the
Congo

Grenada Lesotho Poland Uruguay

Albania Republic of
Congo Guatemala Lithuania Portugal United

States
United Arab

Emirates Colombia Guyana Latvia Paraguay Uzbekistan

Argentina Comoros Honduras Morocco Romania Vietnam
Antigua and

Barbuda Costa Rica Croatia Moldova Russia Samoa

Australia Cyprus Haiti Mexico Rwanda South
Africa

Austria Germany Hungary Macedonia Saudi
Arabia Zambia

Azerbaijan Dominica Indonesia Mali Sudan
Burundi Denmark India Malta Senegal

Belgium Dominican
Republic Ireland Mongolia Singapore

Benin Algeria Iran Mozambique Sierra
Leone

Burkina Faso Ecuador Iraq Mauritania El Salvador
Bangladesh Egypt Iceland Mauritius Suriname

Bulgaria Spain Israel Malawi Slovakia
Bahamas Estonia Italy Malaysia Slovenia

Bosnia and
Herzegovina Ethiopia Jamaica Namibia Sweden

Belarus Finland Jordan Niger Swaziland
Belize Fiji Japan Nigeria Seychelles
Bolivia France Kazakhstan Nicaragua Chad
Brazil Gabon Kenya Netherlands Togo

Barbados United Kingdom Kyrgyzstan Norway Thailand
Brunei Georgia Cambodia Nepal Tajikistan

Botswana Ghana South
Korea Oman Trinidad

and Tobago
Switzerland Guinea Laos Pakistan Tunisia

Chile Gambia Lebanon Panama Tanzania
China Guinea-Bissau Liberia Peru Uganda

Cameroon Greece Sri Lanka Philippines Ukraine
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