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Received: 7 July 2024

Revised: 5 September 2024

Accepted: 12 September 2024

Published: 18 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Interdecadal Variations in Agricultural Drought Monitoring
Using Land Surface Temperature and Vegetation Indices: A Case
of the Amahlathi Local Municipality in South Africa
Phumelelani Mbuqwa 1,2 , Hezekiel Bheki Magagula 1, Ahmed Mukalazi Kalumba 1,2

and Gbenga Abayomi Afuye 1,2,*

1 Department of Geography and Environmental Science, University of Fort Hare, Private Bag X1314, Alice 5700,
Eastern Cape Province, South Africa; mbuqwap@gmail.com (P.M.); hmagagula@ufh.ac.za (H.B.M.);
akalumba@ufh.ac.za (A.M.K.)

2 Geospatial Application, Climate Change and Environmental Sustainability Lab–GACCES, University of Fort
Hare, Alice 5700, Eastern Cape Province, South Africa

* Correspondence: afuyeabayomi@gmail.com

Abstract: Agricultural droughts in South Africa, particularly in the Amahlathi Local Municipality
(ALM), significantly impact socioeconomic activities, sustainable livelihoods, and ecosystem services,
necessitating urgent attention to improved resilience and food security. The study assessed the
interdecadal drought severity and duration in Amahlathi’s agricultural potential zone from 1989 to
2019 using various vegetation indicators. Landsat time series data were used to analyse the land
surface temperature (LST), soil-adjusted vegetation index (SAVI), normalized difference vegetation
index (NDVI), and standardized precipitation index (SPI). The study utilised GIS-based weighted
overlay, multiple linear regression models, and Pearson’s correlation analysis to assess the correlations
between LST, NDVI, SAVI, and SPI in response to the agricultural drought extent. The results
reveal a consistent negative correlation between LST and NDVI in the ALM, with an increase in
vegetation (R2 = 0.9889) and surface temperature. LST accuracy in dry areas increased to 55.8%
in 2019, despite dense vegetation and a high average temperature of 40.12 ◦C, impacting water
availability, agricultural land, and local ecosystems. The regression analysis shows a consistent
negative correlation between LST and NDVI in the ALM from 1989 to 2019, with the correlation
between vegetation and surface temperature increasing since 2019. The SAVI indicates a slight
improvement in overall average vegetation health from 0.18 in 1989 to 0.25 in 2009, but a slight
decrease to 0.21 in 2019. The SPI at 12 and 24 months indicates that drought severely impacted
vegetation cover from 2014 to 2019, with notable recovery during improved wet periods in 1993, 2000,
2003, 2006, 2008, and 2013, possibly due to temporary drought relief. The findings can guide provincial
drought monitoring and early warning programs, enhancing drought resilience, productivity, and
sustainable livelihoods, especially in farming communities.

Keywords: agricultural drought monitoring; interdecadal variation; LST; NDVI; SAVI

1. Introduction

Climate change causes severe weather events like droughts and changes in precip-
itation patterns, significantly impacting agricultural production, economic sectors, and
vulnerable communities [1,2]. El Niño-Southern Oscillation (ENSO) phenomena primarily
trigger drought globally in most arid and semi-arid regions [3]. Climate change is predicted
to worsen drought, increasing the aerial extent of drought-affected areas, and potentially
causing adverse effects on agriculture [4,5]. Droughts are classified into meteorological, agri-
cultural, hydrological, and socioeconomic types, with their severity influenced by intensity,
duration, spatial coverage, and local socioeconomic level, and exacerbated by global warm-
ing [6]. Drought poses significant challenges to environmental components and sustainable
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human livelihoods due to its detrimental effects on agricultural activities [7]. Agricultural
drought, a severe natural disaster causing crop productivity to decrease due to irregular
rainfall and soil moisture, significantly impacts the economy, ecosystem, reservoirs, and
water dam levels [8,9]. The Food and Agricultural Organization (FAO) accentuates that
global drought has decreased food production and has increased food costs and malnutri-
tion among its inhabitants [10]. The drought has led to land degradation and soil erosion,
particularly severe in areas with the potential for agriculture. The growing global popula-
tion demand for food production has prompted a focus on monitoring drought effects on
agriculture to enhance ecosystem services and achieve sustainable development goals.

Agricultural drought monitoring uses various indices such as the normalized dif-
ference vegetation index (NDVI) [11], soil-adjusted vegetation index (SAVI) [12], and
standardized precipitation index (SPI) [13] to evaluate the duration and severity of drought
impacts [14]. The World Meteorological Organization (WMO) has confirmed the standard-
ized precipitation index (SPI), developed by McKee et al. [14], for monitoring agricultural
drought conditions using precipitation data across various timescales. Between 2012 and
2015, California experienced low precipitation and dry conditions, accelerating evapotran-
spiration and decreasing soil moisture, thereby worsening vegetation health [15]. The
Lower Mekong Basin in Asia has experienced consistent droughts for 45 years, primarily
during the dry season, causing water shortages for rice and upland crop production, with
the most recent drought occurring in 2003 [16]. Numerous studies in China have utilised
the NDVI to analyse agricultural drought, revealing its versatility on local, regional, and
global scales [16,17]. A complex correlation was found between vegetation condition and
precipitation, which has not been adequately studied using LST, SAVI, NDVI, and SPI,
affecting drought index strengths [16]. According to the SPI drought class, a study on
El Niño impacts in Southern Africa found that Zimbabwe experienced the most severe
drought-prone period between 1991 and 1992 [18]. Moreover, a study used MODIS and
NDVI data to analyse Zimbabwe’s agricultural drought, identifying it as a key indicator
for categorising the situation [19]. Another study utilised image differencing to generate
a radiant temperature change image using the normalization of LST, to understand the
impacts of land cover changes on climate trends [20]. Remote sensing technologies like un-
manned aerial vehicles (UAVs) are utilised to bridge the gap between spaceborne and field
observations, providing high-resolution remote sensing data for understanding drought
conditions [21,22]. For instance, UAVs are used in research to monitor turfgrass phenotyp-
ing, improve agricultural production through smart farming and precision agriculture, and
evaluate water-saving irrigation practices [23,24].

In South Africa, a study discovered that South Africa’s high water reliance makes it
highly susceptible to drought, with the highest risk for irrigated crops in Limpopo and
Eastern Cape, and extreme droughts for rainfed croplands in Northern Cape, North West,
and Limpopo [25]. The Palmer drought severity index (PDSI) indicates moderate impacts
on precipitation, evapotranspiration, and soil moisture, with worsening drought conditions
in the Western Cape Province between 2015 and 2019 [26]. The soil moisture drought index
(SMDI) in Mediterranean South Africa revealed severe drought between 2015 and 2018,
primarily due to autumn shortfalls and drier summer conditions [27]. Between 2015 and
2018, Cape Town in the Western Cape experienced severe drought, causing drier autumn
conditions, crop reductions, and job losses in the agricultural sector due to a southward
shift in storm tracks [28]. Similarly, droughts in northeast KwaZulu-Natal, particularly
in the oldest proclaimed game reserve, Hluhluwe-iMfolozi Park, have caused frequent
damage to vegetation, water, and wildlife resources [29]. Few scholars have evaluated
the relationships between NDVI, SAVI, LST, and SPI in remote sensing drought-related
impacts in South Africa at different timescales [2,25–29]. Hence, a comprehensive empirical
analysis of each index becomes crucial for the current study.

South Africa’s agricultural potential areas, particularly the Amahlathi Local Municipal-
ity (ALM) in the Northern Amathole District, are underrepresented in drought assessments,
as drought significantly impacts food production and government grain reserves [30,31].
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The ALM’s warm temperatures and high annual rainfall of 495 mm, slightly above the
country’s average, increase vulnerability to drought, causing a significant decline in crop
and livestock productivity among small-scale farmers [32]. For instance, the ALM is facing
severe drought-related weather changes, causing severe temperature changes, and crop
and livestock destruction due to decreased precipitation, soil moisture, wildfire frequency,
altered wind patterns, and water depletion [33–35]. This study used a GIS-based weighted
overlay, Pearson’s correlation analysis, and multiple linear regression models to assess
the correlations between LST, NDVI, SAVI, and SPI in response to agricultural drought
from 1989 to 2019 [12,34,36]. Hence, comparing NDVI, LST, SAVI, and SPI is crucial for
understanding their similarities and discrepancies in characterising, agricultural drought
trends across the ALM. This study aims to employ remotely sensed LST, SAVI, NDVI, and
SPI to assess interdecadal drought severity and duration in Amahlathi’s agricultural poten-
tial zone from 1989 to 2019. The outcomes of this study can improve the understanding
of microclimate dynamics in agricultural potential areas, and the relationships between
drought indices and land cover distribution.

2. Materials and Methods
2.1. Study Area

The Amahlathi Local Municipality (ALM) is located in the Northern part of the
Amathole District Municipality in the Eastern Cape Province of South Africa (Figure 1a).
The ALM is located between longitude and latitude 32◦52′26′′ S and 27◦26′76′′ E with
an elevation of 1209 m (3967 ft). The total area covers an extent of 4820 km2, which is
dominated by a black population of 115,703 [36]. The region is bordered by the Chris
Hani District Municipality to the north and the Buffalo City Metropolitan Municipality
to the south, an administrative area and one of six municipalities, encompassing small
towns like Tsomo, Cathcart, Keiskammahoek, and Stutterheim [37]. The Keiskammahoek
area is renowned for its ecotourism and agricultural potential and faces challenges due
to inequitable land management practices and complex tenure arrangements [37]. The
ALM is characterised by warm average temperatures, typically ranging from 24 ◦C to
30◦ C and receiving 600 mm annual rainfall, heavily relying on the Sandile Dam as its
primary water source due to its semi-arid conditions [36,37]. Consequently, the agricultural
potential zones and land cover types have witnessed an increasing frequency, severity,
duration, and spatial extent of long-term agricultural droughts in the Eastern Cape [36,37],
requiring urgent attention for sustainability. Drought episodes impact processes in the
ALM, affecting four biomes: Albany Thicket, Grasslands, Savannah, and Forest, affecting
associated processes [37].

2.1.1. Satellite-Derived Datasets

The study utilised Landsat imagery to monitor interdecadal variations in agricultural
drought from 1989, 1999, 2009, and 2019 to estimate land surface temperatures and identify
vegetation patterns related to drought dynamics. The satellite imagery was obtained
from the United States Geological Survey (USGS) website (http//earthexplorer.usgs.gov/,
accessed on 7 July 2024). Surface reflectance images from December to February were
processed, mosaicked, and geometrically corrected to the World Geodetic System (WGS84)
coordinate systems [38]. The study utilised Landsat bands in an arrangement of band 2,
band 3, band 4, and band 5 based on their characteristics. Consequently, the Landsat
TM and ETM+ images were interpreted using band combinations 4/3/2, while Landsat
OL/TIRS images were interpreted using band combinations 5/4/3, as per Afuye et al. [39].
Landsat images were chosen for their superior temporal coverage, spatial and spectral
resolution, and 30 m spatial resolution [38,39]. The selection of satellite imagery with
minimal cloud coverage was made to minimise the impact of cloud coverage and emphasise
the significance of seasonality in remote sensing [39,40].

http//earthexplorer.usgs.gov/
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Figure 1. (a) Map of the Amahlathi Local Municipality and (b) the distribution of land cover in
agricultural potential zones in the Eastern Cape Province, South Africa.

2.1.2. South African National Land Cover Classification Map

Land cover data for the Amahlathi Local Municipality (ALM) were obtained from the
South African National Land Cover (https://egis.environment.gov.za/data_egis/data_
download/current, accessed on 7 July 2024) from 1990 to 2020. The South African National
Land Cover (SANLC) shows different biodiversity zones, including Albany thicket (light
brown), forests (dark green), grassland (light green), and Savannah (pale orange), with
each zone dominating different areas (Figure 1b). Albany thicket covers the northeastern
and southern areas, while forests are scattered throughout the central and southern parts.
Grassland is widespread across the municipality, while savanna is also found in patches in
the northeastern and southeastern regions. The SANLC data were reclassified to evaluate
vegetation stress and land cover distribution in agricultural potential zones, and its impact
on agricultural areas [41,42]. The ALM vegetation classifications were reclassified based on
land cover types like Albany thicket, forests, grassland, and savannah, and their distribution
in agricultural potential zones (Figure 1b). Consequently, the study area was identified by
importing a vector file from the municipal demarcation board into ArcGIS 10.7 software and
clipping the larger Landsat scene to the ALM boundary. The reclassification of land cover
types in the localized region’s biodiversity was conducted to redress species of different
vegetation classifications and detect changes [37,41]. Table 1a categorises agricultural
drought severity based on images with less than 10% cloud cover. The larger imageries
were reduced by clipping or sub-setting, which involves separating the preferred study area
from the larger image into a smaller file for faster processing [42]. The dryness threshold, as
described by McKee et al.’s [14] SPI values, indicates wetter conditions with values greater
than 0 and dry conditions with negative values, as shown in Table 1b.

https://egis.environment.gov.za/data_egis/data_download/current
https://egis.environment.gov.za/data_egis/data_download/current
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Table 1. (a,b) Drought severity classification of SPI values.

(a)

SPI Value Category

2.00 and above Extremely wet
1.50–1.99 Very wet
1.00–1.49 Moderately wet

0.99 to −0.99 Near-normal
−1.00 to −1.49 Moderately dry
−1.50 to 1.99 Severely dry
−2.00 and less Extremely dry

(b)

Vegetation Category NDVI and SAVI Range Drought Severity

No vegetation <0.1 Extremely dry
Low 0.11–0.20 Dry

Normal 0.21–0.40 Moderate
High 0.41–0.60 Wet

Very high ≥0.61–1.00 Extremely wet

2.2. Study Methods

The study employs multi-source remote sensing imagery and comparative analysis
to evaluate the agricultural drought response to vegetation indices and land surface tem-
perature (LST) at different time intervals in the study area. Landsat data were used to
monitor interdecadal variations in agricultural drought from 1989, 1999, 2009, and 2019, es-
timating LST and detecting vegetation patterns. Vegetation indices estimate above-ground
vegetation cover from remotely sensed products based on 10-year grouping were used to
determine the changes between vegetation classes over time [2,39]. The normalized differ-
ence vegetation index (NDVI) is a broadly used index for identifying agricultural drought
areas, with values ranging from −1 to +1 [40,42]. The NDVI was created for the years 1989,
1999, 2009, and 2019 from the band reflectance data, as computed in Equation (1).

NDVI =
(NIR − RED)

(NIR + RED)
(1)

where, NIR represents the near-infrared reflected by vegetation and RED is the red band
absorbed by the chlorophyll found in vegetation [39]. The NDVI measures vegetation
health by analysing the reflectance/radiation in the red and near-infrared bands. Moreover,
the soil-adjusted vegetation index (SAVI) was used for its superior ability to differentiate
between vegetation and soil in low-vegetation areas, making it suitable for both arid and
semi-arid environments [43,44]. The multi-temporal analysis of SAVI was assessed by
taking into account temporal variations in vegetation density over the years to derive the
index using Equation (2).

SAVI =
(NIR − Red)

(NIR + Red + L)
× (1 + L) (2)

where, the Red and NIR are the spectral reflectance of vegetation in the red and the near-
infrared bands, respectively, and L is the soil brightness correction factor. Consequently,
the extraction of the land surface temperature (LST) was carried out in the following
phases: The digital number (DN) of the Landsat TM thermal infrared band was converted
into spectral radiance using specific gain and bias values for each scene, resulting in the
extraction of LST. Radiometric calibration was performed to extract brightness temperatures
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and remove sensor errors [39], transforming DN values data into a meaningful radiometric
scale using Equation (3).

Lλ =
(Lmaxλ − Lminλ)

(QCalmax − QCalmin)
(Qcal − Qcalmin)+Lminλ (3)

where, Lλ is the spectral radiance at the sensor’s aperture [W/(m2sr µm)], Qcal is the
quantized calibrated pixel value [DN], QCalmin is the minimum quantized calibrated pixel
value corresponding to Lminλ [DN] = 1, Qcalmax is the maximum quantized calibrated
pixel value corresponding to Lmaxλ [DN] = 255, Lminλ is spectral at sensor radiance that is
scaled to Qcalmin [W/(m2sr µm)], Lmaxλ is spectral at sensor radiance that is scaled QCalmax
[W/(m2sr µm)], Grescale is the band-specific rescaling gain factor [(W/(m2sr µm))/DN],
and Brescale is the band-specific rescaling bias factor [W/(m2sr µm)]. Conversion from
radiance to surface/brightness temperature [39]: the retrieved spectral radiance values
were converted to a brightness temperature value by applying the inverse of Planck’s
function [45] using Equation (4).

TB =
K2

ln (K1
Lλ

+1)
(4)

where, TB is the effective at-sensor surface/brightness temperature [K], K2 is the calibration
constant 2 [K], K1 is the calibration constant 1 [W/(m2sr µm)], Lλ is the spectral radiance
at the sensor’s aperture [W/(m2sr µm)], and ln is the natural logarithm. Finally, the
temperatures were converted from Kelvin to degrees Celsius by subtracting 273.15 from
the Kelvin to Celsius conversion rate.

2.2.1. Weighted Overlay, Multiple Linear Regression Model and Correlation Analysis

The study used a 10-year grouping to analyse spatial variability in agricultural drought
trends and severity classifications, utilising multiple linear regression (MLR) models from
the ordinary least squares tool [36]. The GIS-based weighted overlay technique calculated
the mean NDVI, SAVI, and LST, categorising drought themes into five classes: severe,
heavy, moderate, mild, and no drought [39]. The annual drought classification map
employs an equally weighted sum overlay analysis to categorise vegetation response
to agricultural drought, reclassifying vegetation indices and LST changes over multiple
years [34,35,42]. The method provides a global, non-spatial, and quantitative analysis of
the linear relationship between LST as a dependent variable and NDVI, SAVI, and SPI
as independent variables [34,44]. The model consists of LST as the independent variable
and NDVI, SAVI, and SPI as the dependent variables, with the strength of the correlation
and relationship between the variables determined by the R2 value from the regression
analysis [43]. The R2 value ranges from 0.0 to 1.0, with a value of 1.0 indicating a strong
correlation at all points. Conversely, an R2 value of 0.0 means no correlation or linear
relationship between X and Y [44]. The MLR modes were used to assess the impact of
vegetation indices on land surface temperature at various time intervals, using Equation (5).

yi= β0 + β1x1i + β2x2i + β3x3i+ . . . . + βkxki + εi (5)

where, yi is the dependent variable, which is a function of the linear combination of
the independent variables xki, β0 is the intercept, βk is the regression coefficient for the
independent variable, and εi is a normally distributed independent random error with
constant variance. The pixel-wise Pearson’s correlation analysis was used to determine
the long-term trends and extent of agricultural drought in response to vegetation indices
and land surface temperature at various time intervals [34,36,39,46]. The study used
Pearson’s correlation analysis to assess the relationship between LST, NDVI, SAVI, and
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SPI in response to the agricultural drought extent from 1989 to 2019. Pearson’s correlation
coefficient analysis (rxy) is computed using Equation (6).

rxy=
∑i(xi − x)(yi − y)√

∑i (xi − x)2 − ∑ (yi − y)2
(6)

where, xi and yi are independent and dependent variables, respectively, and x and y are
mean values of the samples ranging from −1 to 1.

2.2.2. Drought Characterization Based on Standardized Precipitation Index

The SPI was utilised to monitor agricultural drought in the ALM from 1989 to 2019
based on annual average precipitation data from the Application for Extracting and Explor-
ing Analysis Ready Samples (AppEEARS) and retrieved from the National Aeronautics
and Space Administration (NASA): Prediction of Worldwide Energy Resource Database
(https://power.larc.nasa.gov/data-access-viewer/, accessed on 7 July 2024). Therefore,
the data were used to calculate and quantify precipitation deficit at various timescales. The
SPI computation uses precipitation as the sole hydrological input, with negative values
indicating drought and positive values indicating wet conditions [47,48]. The study used
McKee et al.’s [14] procedural approach to calculate the SPI time series for the ALM at 12-
month accumulation periods using the Drought Indices Calculator (DrinC v1.7.97) software
for data manipulation. Therefore, the DrinC (v1.7.97) software was utilised for evaluat-
ing drought indices based on meteorological, hydrological, and agricultural monitoring,
enabling easy interpretation and strategic planning in various applications [49–51]. The
SPI was calculated by dividing the difference between significant rainfall (xi) and average
rainfall (xm) by the standard deviation (σ) of the selected period using the XLSTAT engine
in Microsoft Excel v.4.2. The formula for calculating SPI is given by Equation (7).

SPI =
Xi − Xm

σ
(7)

where, xi is the recorded rainfall by the weather station, xm is the average rainfall, and σ is
the standard deviation.

3. Results and Discussion
3.1. Spatiotemporal Dynamics of Interdecadal NDVI Trend

Figure 2 shows the spatial distribution of NDVI values between 1989 and 2019, with
the lowest values observed in the northwestern areas of the ALM. In 1999, the quality
of green vegetation decreased in the northwestern and northeastern parts of the munic-
ipality. The development may be linked to the adverse effects of the El Niño-Southern
Oscillation experienced across South Africa between 1989 and 1999 [3,39,52]. A previous
study accentuated that the intensity and degree of extreme drought events may be di-
rectly linked to El Niño events [3]. In 2009, the northeastern and southeastern parts of
the municipality experienced an increase in green vegetation distribution, with patches of
stressed vegetation present. A previous study revealed that different vegetation patches are
influenced by environmental factors like forest fires, high temperatures, rainfall deficiency,
and human disturbances [35,48]. Likewise, the study area’s vegetation status could have
been influenced by related factors. In 2019, vegetation cover distribution and greening
trend increased, with the maximum NDVI increasing in a trend from 0.82 to 0.94, indicating
a 0.12% increase from 2009 (Figure 2). The variation in rainfall and rising temperature may
have impacted vegetation growth and development in this area [4,53]. The minimum NDVI
values consistently show −1 for 1989, 1999, and 2019, indicating areas with poor vegetation
or exposed soil, with the 2009 value slightly higher at −0.46, as shown in Table 2. The
highest NDVI values were consistently at the upper limit of 1 for 1989 and 1999, indicating
areas with very high vegetation health. In 2009, the maximum NDVI value was slightly
lower at 0.82, indicating less vegetation health. The mean NDVI values indicate the average

https://power.larc.nasa.gov/data-access-viewer/
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vegetation health, which decreased from 0.37 in 1989 to 0.32 in 1999, then increased to
0.42 in 2009, slightly decreasing to 0.39 in 2019. The standard deviation in NDVI values
showed a significant increase from 0.12 in 1989 to 0.14 in 1999, indicating more variation
in vegetation health. It remained consistent at 0.12 in 2009 and increased to 0.16 in 2019,
indicating greater heterogeneity in vegetation health (Table 2). The NDVI values, with a
mean of 0.39, suggest a high prevalence of drought conditions, consistent with previous
studies indicating persistent droughts [39,41,54,55]. The results reveal the variability and
improvement or decline in vegetation health across the region, providing a comprehensive
understanding of vegetation changes in the study area.
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Table 2. Normalized difference vegetation index (NDVI) from 1989 to 2019.

Statistics NDVI (1989) NDVI (1999) NDVI (2009) NDVI (2019)

Min −1 −1 −0.46 −1
Max 1 1 0.82 1
Mean 0.37 0.32 0.42 0.39
Standard Deviation 0.12 0.14 0.12 0.16

3.2. Spatiotemporal Dynamics of Interdecadal SAVI

Figure 3 shows the spatial distribution of SAVI values from 1989 to 2019, with the
lowest values observed in the northwestern area of the ALM due to vegetation decline
in 1999. However, the northeast and northwestern regions were found to have low or
unhealthy vegetation. The results indicate that northern regions are experiencing increased
stress on vegetation due to irregular rainfall distribution and previous dry spells, making
them vulnerable to dearth conditions. This may have influenced vegetation biomass
recovery due to low rainfall and evapotranspiration rates, but the recorded low indicates
browning trends, indicating a low SAVI value [39,44,55]. In 2019, the SAVI index showed a
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slight recovery in vegetation conditions, possibly due to the strength and distribution of the
greening trend in certain areas. Consequently, the minimum values have shown significant
variation over time, with the lowest minimum in 1989 (−0.83) and the highest minimum
in 2009 (−0.17), as shown in Figure 3. This suggests that some areas had poor vegetation
health or soil exposure, particularly in 1989. The maximum values indicate the highest
observed vegetation health. The highest maximum SAVI value was in 1989 (0.96), followed
by 2019 (0.77). There was a noticeable decrease in maximum SAVI value in 1999 and 2009,
indicating a reduction in the highest levels of vegetation health compared to 1989. The
mean SAVI values indicate the overall average vegetation health, which increased from 0.18
in 1989 to 0.25 in 2009, indicating an improvement, but slightly decreased to 0.21 in 2019.
The variability increased from 0.05 in 1989 to 0.07 in 2009 and 2019 (Table 3) This increase in
standard deviation suggests that vegetation health became more heterogeneous over time,
with a wider range of conditions observed across the region. By comparison, NDVI and
SAVI variables show varying drought severity levels, with SAVI indicating drier conditions
than NDVI, possibly due to the nature of the components in computing SAVI values [39].
A study indicates that the soil moisture factor, which considers plant and soil reflections,
results in lower SAVI values compared to NDVI values [43]. Hence, the results highlight
the dynamic nature of vegetation health and the importance of continuous monitoring for
sustainable land management and environmental conservation. The region’s vegetation
health fluctuated with an improvement from 1989 to 1999, mixed results from 1999 to 2009,
and a decline from 2009 to 2019, indicating potential environmental stressors or land use
changes affecting the region.
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Table 3. Soil-adjusted vegetation index (SAVI) from 1989 to 2019.

Statistics SAVI (1989) SAVI (1999) SAVI (2009) SAVI (2019)

Min –0.83 –0.50 –0.17 –0.43
Max 0.96 0.69 0.66 0.77
Mean 0.18 0.16 0.25 0.21
Standard Deviation 0.05 0.06 0.07 0.07

3.3. Spatiotemporal Dynamics of Interdecadal LST

Figure 4 shows the spatiotemporal analysis of land surface temperature (LST) from
1989 to 2019 in the ALM. The municipality experienced a relatively even distribution of
low temperatures in 1989, while in 1999, there was a sharp increase in the distribution
of low standard temperatures along the northeastern part. Between 2009 and 2019, the
study area experienced a significant rise in high LST values in the northeastern and western
areas, including the southeastern regions. The LST measures vegetation stress due to
the effect of varying high temperatures, estimating the conditions [43,56], thus revealing
different vegetation drought responses to temperature in the area. High-temperature
values suggest moisture stress on soil and vegetation, suggesting that high surface thermal
characteristics positively impact moisture stress on vegetation [56,57]. Unprecedented
drought conditions in the ALM continue to threaten large areas due to negative soil and
vegetation disturbances, causing devastating effects on agricultural production. Land
surface temperature impacts soil moisture, which leads to an increased evaporative rate
in semi-arid regions and vegetation cover, as per previous studies [27,35,41,43,58]. The
minimum LST values show a general increase in baseline surface temperatures from 4.78 ◦C
in 1989 to 16.01 ◦C in 1999 and 16.55 ◦C in 2009, with a slight decrease to 6.31 ◦C in 2019,
indicating some cooler areas (Figure 4 and Table 4). The maximum LST values increased
from 37.82 ◦C in 1989 to 40.03 ◦C in 1999, slightly decreasing to 38.89 ◦C in 2009, and then
again to 40.12 ◦C in 2019, indicating generally higher peak temperatures. High temperatures
have caused soil and vegetation to dry out, reducing nutrient levels and resulting in less
productive soil for agricultural activities. The mean LST values significantly increased from
16.40 ◦C in 1989 to 33.55 ◦C in 1999, 34.67 ◦C in 2009, and slightly decreased to 29.91 ◦C
in 2019, possibly due to land use, urbanisation, or climate patterns [59]. The standard
deviation in surface temperatures increased from 2.32 ◦C in 1989 to 3.44 ◦C in 1999, 3.93 ◦C
in 2009, and slightly decreased to 3.80 ◦C in 2019 (Table 4). This suggests a rise in surface
temperature variability over time, indicating a greater diversity of temperature conditions
across the landscape. Consequently, the increase in mean temperatures and variability
highlights the impact of factors such as urbanisation, deforestation, and climate change on
surface temperatures. The results of this study confirm previous findings that high LST
values indicate severe drought susceptibility, while low LST values indicate minimal or no
drought occurrence [60–62]. The Amahlathi Local Municipality’s reduced vegetation may
be due to climate change, affecting groundwater recharge due to excessive evaporation and
land surface temperature changes [44,60,63].

Table 4. Land surface temperature (LST) statistics from 1989 to 2019.

Statistics LST ◦C (1989) LST ◦C (1999) LST ◦C (2009) LST ◦C (2019)

Min 4.78 16.01 16.55 6.31
Max 37.82 40.03 38.89 40.12
Mean 16.40 33.55 34.67 29.91
Standard Deviation 2.32 3.44 3.93 3.80
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3.4. Spatial Distribution of Interdecadal Variability of Drought in the ALM between 1989 and 2019

Figure 5 shows the drought classification for the Amahlathi Local Municipality in
South Africa from 1989 to 2019. The classifications of drought severity are based on a colour-
coded legend, indicating levels of severe, heavy, moderate, mild, and no drought. The
1989 map shows moderate to heavy drought in a significant portion of the area, with some
regions showing mild drought and limited areas showing no drought. The 1999 map shows
moderate to heavy drought in the area, with an increase in mild drought cases compared
to 1989, and few areas are drought-free. The 2009 map shows a slight improvement in
drought areas, with more mild drought areas, moderate to heavy drought areas reduced,
and no drought regions remaining limited. The 2019 map reveals a significant rise in severe
drought areas, extensive heavy drought areas, and limited drought-free areas, indicating
a worsening drought situation (Figure 5). From 1989 to 2019, drought severity increased
significantly, with severe drought areas expanding significantly from their minimal levels
in earlier years. Drought classifications have fluctuated over time, but the overall trend
suggests an increase in drought conditions, consistent with negative SPI data in recent
years, indicating prolonged dry conditions. For instance, prolonged droughts might have
disrupted the biodiversity balance, leading to forest recession and expansion of savanna
or grasslands into water-rich areas, affecting agricultural landscapes (Figure 1b). Studies
show that drought effects vary spatially and over time, influenced by factors such as
rainfall, climate, soil, topography, and vegetation type [46,62,63]. These factors affect
water availability, agricultural productivity, and ecosystem health, resulting in varying
vulnerability and resilience among regions and communities [64].
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The ALM experienced moderate to extreme drought in most areas, with a rising trend
in dry spells, particularly in the northern part of the municipality, while the southern parts
experienced mild to no drought conditions. The variation in these factors might have
resulted in contrasting effects or heterogeneity of dryness in the municipality’s northern
and southern parts [39,60]. This highlights the need for region-specific strategies to man-
age water resources and agricultural practices and mitigate drought impacts effectively.
Climate change has led to worsening drought conditions, affecting rainfall patterns and
increasing temperatures, as evidenced by higher LST values. The increasing severity of
droughts necessitates urgent adaptation measures to manage water resources effectively
and promote sustainable agricultural practices. The results reveal a consistent increase
in drought severity in the Amahlathi Local Municipality from 1989 to 2019. This trend
emphasises the need for proactive measures to mitigate climate change’s effects on water
availability and agricultural productivity. The land cover map reveals grassland dominat-
ing the southwestern and central areas towards the east, while the savannah is found in
the northeastern and southern parts of the municipality (Figure 1b). This connotes that
the agricultural potential zones in the ALM exhibit a patchy pattern due to soil types,
vegetation, and water access, which are impacted by drought conditions, making some
areas less viable for agriculture. The Albany thicket was primarily found in the central and
southeastern regions, with the forests appearing least in the southern areas. The results
indicate that drought impacts agricultural areas by reducing soil moisture, hindering plant
growth, leading to crop failures, and affecting plant physiological processes and yield. As a
result, drought-induced reductions in water levels near reservoirs or major rivers might
have potentially affected irrigation and crop yields.

Table 5 shows data on drought classification from 1989 to 2019, revealing affected
areas (4380 km2) under different drought conditions in the ALM. The study categorised
drought classes by spatial distribution, with severe drought covering 9 to 38 km2 of the
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area, with an average coverage of 18.2 km2 for the study period (Tables 1a and 5). In 2019,
the severe drought area experienced a significant increase of 0.9% compared to previous
years (0.2–0.3%) as shown in Table 5. Extreme drought in the area is increasing, with
a significant spike in 2019 (55.8%), indicating worsening conditions over time, with the
lowest percentage in 2009 (31.6%). However, the extreme drought condition increased
from 35.4% in 1989 to 40.0% in 2009, then decreased to 31% in 2009 and significantly
increased in 2019 to 55.8%, equivalent to 2446 km2 in area extent. The region, covering
approximately 40% of the area, is dominated by moderate to extreme drought classes, which
are prevalent during the study period, covering 1.698 km2. The moderate drought areas
decreased from 43.0% in 1989 to 29.6% in 2019, suggesting that previously moderate drought
regions may have transitioned to more severe drought categories. The area experienced
a significant increase in mild drought in 2009 (24.1%), but a significant decrease in 2019
(9.9%). The percentage of drought-affected areas has consistently decreased, reaching
its lowest percentage in 2019 at 3.8%, indicating an increasing extent of drought-affected
areas (Table 5). For instance, studies discovered that moderate to extreme droughts in
Kwazulu-Natal were witnessed between 2008 and 2018, causing significant developmental
setbacks due to irregular rainfall distribution [40,57]. Consequently, the variations in rainfall
distribution may have exacerbated climate change-exacerbated droughts in the ALM,
potentially impacting food security, water availability, and vegetation distribution. The
development may be linked to the area’s microclimate dynamics, potentially causing severe
low dams and river levels and potentially affecting agricultural production [2,25]. This
connotes that large areas experience more complex and changeable climate characteristics
due to significant variations in microscale climates and their impact on vegetation [8,39,60].
Overall, the results reveal that low and variable rainfall patterns significantly contribute
to the persistence of dry spells in a municipality, with an average of 15.4% experiencing
mild drought and 6.7% having no drought (Table 5). The 30-year drought severity trend
has significantly increased, with extreme drought areas more than doubling from 1989 to
2019, indicating a worsening drought scenario. The NDVI and LST analyses reveal that
the worsening drought conditions are attributed to various factors such as climate change,
land use changes, and reduced vegetation cover [65]. The observations underscore the
need for improved drought management strategies and adaptation measures to mitigate
the negative impacts of severe and extreme drought conditions.

Table 5. Summary statistics results of the area covered by drought classes in the ALM.

1989 1999 2009 2019

Drought Classification Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Severe drought 9 0.2 13 0.3 12 0.3 38 0.9
Extreme drought 1552 35.4 1753 40.0 1382 31.6 2446 55.8
Moderate drought 1884 43.0 1747 39.8 1522 34.7 1296 29.6
Mild drought 608 13.9 592 13.5 1057 24.1 435 9.9
No drought 327 7.5 275 6.3 408 9.3 165 3.8

Figure 6 shows the correlation between LST and NDVI from 1989 to 2019 across the
ALM. The results revealed a significant negative correlation between higher temperatures
and lower NDVI values in areas with higher temperatures. Higher LST areas showed lower
NDVI values, with a strong negative relationship and correlation coefficients of R2 = 0.8758,
0.8879, 0.9639, and 0.9889, respectively. High temperatures can negatively impact vegetation
health, affecting NDVI values and local temperatures in vegetated areas [39]. Consequently,
vegetation stress can decrease transpiration and evapotranspiration, leading to higher tem-
peratures and a feedback loop that further affects vegetation health [61,64]. The relationship
between LST and NDVI (R2 = 0.8758) is strongly negative, with a higher NDVI indicating
increased vegetation density, leading to a decrease in LST in 1989 (Figure 6). The strong
negative correlation (R2 = 0.8879) in 1999 suggests that higher vegetation density is linked
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to lower temperatures. In 2009, the negative correlation between high vegetation density
and lower surface temperatures was stronger than in previous years, indicating a strong
relationship. In 2019, NDVI and LST showed a consistent negative correlation (R2 = 0.9889),
with areas with higher vegetation density being significantly cooler. The negative corre-
lation suggests an increase in vegetation density with a decrease in LST, aligning with
similar findings in agricultural drought assessment [11,66–68]. The negative relationship
across different years suggests a stable pattern where vegetation plays a crucial role in
regulating land surface temperatures. The correlation between vegetation and surface
temperature has become more pronounced or better detected over time, as evidenced by
the increase in values since 2019. Overall, the results reveal a strong negative correlation
between LST and NDVI, suggesting that areas with a higher vegetation density tend to
have lower surface temperatures. The increasing relationship between vegetation cover
and temperature may be influenced by climate change, as temperature variations pose
significant ecological and economic risks [39,69]. The study emphasises the significance of
efficient water management and cooling strategies in agriculture to mitigate the impact of
high temperatures on crop health and ecosystem sustainability. Moreover, the impact of
temperature on vegetation health underscores the need for effective management strategies
in response to changing climatic conditions.
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Figure 6. Correlation analysis between LST and NDVI from 1989 to 2019 in the ALM.

Figure 7 shows the correlation between LST and SAVI-derived vegetation fractions
across the ALM. The correlation analysis revealed that surface temperature changes (LST)
and vegetation health (SAVI) have an inverse relationship. The results show a significant
negative correlation (R2 = 0.8744) between LST and SAVI for 1989. The 1999 correlation
(R2 = 0.9643) strongly suggests that as SAVI increases, LST significantly decreases. In 2009,
the correlation between the LST and SAVI was strong and negative, with a slightly weaker
value (R2 = 0.8527) compared to 1989 and 1999. The 2019 negative correlation (R2 = 0.9643)
is strong, with a high coefficient of determination, indicating a strong negative correlation
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(Figure 7). The consistently high R2 values for SAVI suggest strong negative correlations
between SAVI and LST across all years. Due to its soil adjustment feature, SAVI consistently
exhibits strong negative correlations across all years with LST, particularly in semi-arid
environments. Previous studies have shown an inverse relationship between temperature
and vegetation density, with increased temperature leading to decreased vegetation den-
sity [58,67,68,70]. The study indicates a moderately strong correlation between land surface
temperature and vegetation health, with R2 values ranging from 0.8527 to 0.9643. This
suggests that the decline in vegetation density in the ALM may have been exacerbated
by decreased soil moisture and rainfall patterns over time. The development may have
disrupted crop development, causing insufficient water supply during crucial stages of
planting and harvesting due to disrupted season timings [57,71]. The region’s persistent
dry spell, influenced by high temperatures and rainfall variability, could significantly affect
vegetation cover, agricultural production, and the economy [39,44]. Consequently, drought-
induced climate change in the ALM can significantly affect agricultural resources, food
and water shortages, ecosystem functioning, and community resilience. Overall, the study
shows a negative correlation between SAVI and LST, indicating that SAVI is more effective
in assessing agricultural drought conditions in semi-arid environments with significant
soil exposure. Provisional drought strategies are crucial for managing agricultural risks in
the study area and ensuring food and water security in a changing climate.
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3.5. Standardized Precipitation Index Classification

Figure 8 shows 12- and 24-month standardized precipitation index (SPI) drought
patterns in the Amahlathi Local Municipality (ALM) from 1989 to 2019. The 12- and
24-month SPI scales are used to calculate agricultural drought by analysing long-term
precipitation patterns using monthly average time series data, quantifying precipitation
deficits and surpluses. The blue bars represent the 12-month SPI, indicating short-term
drought or wet periods over a 1-year timescale while the orange bars represent the 24-month
SPI, indicating longer-term drought or wet periods over a 2-year timescale. Consequently,
the wet years show higher positive SPI values while the frequent drought years have
lower negative SPI values. Although the SPI 12 and SPI 24 show similar trends, the SPI
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12 magnitude may differ significantly, suggesting that shorter-term conditions may not
always align with longer-term trends. The results revealed that certain years in the study
area experienced a higher level of drought impact. The results of the 12- and 24-month SPI
values for dry episodes range from −0.50 to −2.10, while wet episodes range from 1.00
to 2.00, causing significant impacts on vegetated ecosystems. The most drought-affected
years were 1991–1992, 1993–1994, 1995–1996, and 1997–1999, with extended negative values
observed between 2014 and 2019 (Figure 8 and Table 1a). During periods with reduced
precipitation, the overall health of the ecosystem was affected, leading to a decrease in
vegetation. Extreme agricultural droughts in the ALM occurred between 2016 and 2017,
with consecutive negative SPI values from 2014 to 2019 indicating a prolonged drought
period (Table 1a,b). According to the SPI classification results, the ALM experienced
severe to extreme drought episodes from 2014 to 2019, primarily due to South Africa’s
strongest El Niño observed period [50,72]. By implication, the phenomenon led to a
significant decrease in crop and livestock productivity among small-scale farmers in the
local municipality [32,33]. The Eastern Cape province, particularly the study area, is
experiencing extremely dry conditions, as confirmed by previous studies [39,50,60,72].
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Droughts are predicted to increase in frequency and severity between 2030 and
2050, as evidenced by studies showing similar severity categories in remotely sensed
products [50–52]. On the other hand, the study shows above-normal rainfall periods with
positive SPI values in 1989–1991, 1992–1993, 1994–1995, 1996–1997, and 1999–2013, with
notable positive SPI values in 1993, 2000, 2003, 2006, 2008, and 2013, respectively. These
periods indicate wetter-than-normal conditions, which may have temporarily alleviated
drought conditions. Over 30 years, a cyclical pattern of alternating wet and dry conditions
has been observed, with severe droughts significantly impacting agriculture and livestock
health [37,60,69]. Therefore, prolonged drought conditions between 2014 and 2019 have
significantly impacted water availability, agricultural land, and the local ecosystem, with a
concerning trend of predominantly negative SPI values, indicating an increasing frequency
and severity of droughts. Overall, the SPI results reveal significant precipitation variability,
with notable drought and wet periods which have implications for the ALM. The severity of
droughts poses a significant threat to agricultural zones in the ALM, especially those with
limited water resources or less drought-resistant vegetation [39,60]. The stress could lead
to reduced crop yields, agricultural potential zone shifts, ecological impacts, and altered
farming activities, posing negative implications for water resources management, climate
adaptation, and environmental monitoring. The observed drought patterns in the ALM
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highlight the need for proactive climate adaptation, involving improved water storage and
distribution infrastructure, community drought-resistant practices, and effective integrated
water resources management.

4. Intervention Strategies for Provincial Drought Monitoring and Policy Decision
Support for Early Warning Systems

Despite significant advances in agricultural drought monitoring technologies and
methods, several challenges remain. Innovative intervention strategies, such as the creation
of provincial drought monitoring and early warning programs, are critical in mitigating
the impacts of drought on agriculture and water resources. Consequently, these programs
leverage advanced technologies like remote sensing, geographic information systems (GIS),
and climate modelling to provide accurate and timely data on drought conditions [54,62,70].
By integrating LST and multimodal vegetation indices, these systems can detect early signs
of water stress in crops and natural vegetation. Early warning systems can significantly
mitigate the negative impacts of agricultural drought and other hazards by integrating sci-
entific data into policy decision-making processes. Early warning programs inform farmers,
policymakers, and communities about potential issues, enabling proactive measures like
water conservation, crop rotation, and resource allocation. Policymakers should utilise ana-
lytical tools and timely data to predict, prepare for, and mitigate hazards like agricultural
drought, providing actionable information to reduce risk and enhance resilience.

In regions like the Amahlathi’s agricultural potential zone, South Africa, the impact
on agriculture is profound, threatening the region’s food security and economic stability.
Prolonged droughts in the region reduce soil moisture, hindering crop growth and yields,
particularly affecting staple crops like maize and wheat, crucial for local consumption and
market supply. Water scarcity has exacerbated land degradation and soil erosion, reduced
land productivity, and negatively impacted livestock farming, affecting pasture availability,
animal health, and productivity, leading to reduced agricultural practices [30,33,37]. Conse-
quently, socio-economic factors in Amahlathi exacerbate challenges faced by farmers, who
rely on agriculture for their livelihoods, making them susceptible to the adverse effects
of drought. The agricultural sector’s cumulative impact leads to economic disruption,
increased food prices, and increased food insecurity risk for the population [56,69,72]. To
address these issues, comprehensive strategies involving improved data quality, robust
policy frameworks, advanced water resource efficiency, long-term sustainability support of
agricultural management systems, and capacity building are required. Amahlathi should
strategically launch a large-scale food agricultural project, investing in infrastructure, land
use management, and infrastructural support to boost the local economy. Innovative
intervention strategies can enhance drought resilience, productivity, and sustainable liveli-
hoods for farming communities in Amahlathi’s agricultural potential zone. Integrating
these innovative strategies can accurately predict the onset, cessation, duration, frequency,
severity, and spatial extent of long-term agricultural droughts in any region. Therefore,
innovative strategies improve resilience by enhancing preparedness, reducing vulnerability,
and ensuring sustainable water resource management amidst changing climatic conditions.

Limitations and Future Perspectives

The study utilised LST, NDVI, SAVI, and SPI to evaluate the extent and severity
of agricultural drought conditions. Drought accuracy is influenced by changes in input
datasets, uncertainties from data gaps, and temporal inconsistencies, which can impact
drought assessments. The multiple linear regression model effectively identifies spatial
variability in agricultural drought trends and severity classification, but its subjective
continuous outcome variable may lead to biased estimates. Further research is needed to
evaluate the effects of water-stressed vegetation on agricultural drought and predict the
ENSO drought onset using the reservoir drought index (RDI) and climate change scenarios.
This can assist in predicting long-term agricultural droughts at both local and regional
scales. The study recommends a higher spatial resolution dataset for assessing agricultural
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drought severity and a larger sample size for a stronger correlation between LST, hydro-
meteorological factors, and vegetation indices. Consequently, a larger dataset or field-based
observations are needed to improve the correlation between hydrological, meteorological,
and agricultural drought under climate change scenarios. The study suggests further
research on advanced statistical methods and machine learning algorithms for the fusion
of UAV-based multi-sensor data to assess the impact of vegetation feedback on drought
characteristics at different scales.

5. Conclusions

The study utilised remotely sensed LST, SAVI, NDVI and SPI to assess the interdecadal
drought severity and duration in Amahlathi’s agricultural potential zone from 1989 to 2019.
The study reveals that the dryness in the northern and southern parts of the municipality
is primarily influenced by factors such as decreasing precipitation. The study found that
moderate to high agricultural drought conditions negatively impact vegetation change,
with land surface temperature having the greatest influence on growth and distribution.
The study reveals that LST accuracy in dry areas increased to 55.8% in 2019, despite
dense vegetation and a high average temperature of 40.12 ◦C, impacting water availability,
agricultural land, and local ecosystems. The regression analysis shows a consistent negative
correlation between LST and NDVI in the ALM from 1989 to 2019, with the correlation
between vegetation and surface temperature increasing since 2019. The study indicates a
negative correlation between LST and NDVI, suggesting that increased vegetation density
leads to lower surface temperatures, possibly due to atmospheric variation in vegetation
changes. In addition, the study reveals a significant negative correlation between SAVI
and LST, suggesting that SAVI is a more effective indicator for assessing agricultural
drought conditions in semi-arid regions. The SPI indicates that drought severely impacted
vegetation cover from 2014 to 2019, with notable recovery during improved wet periods in
1993, 2000, 2003, 2006, 2008, and 2013, possibly due to temporary drought relief.

Prolonged droughts in the ALM cause vegetation changes, biodiversity disruption,
forest recession, and agricultural landscape expansion revealing patchy patterns in potential
zones. The ALM drought dynamics case demonstrates that land cover distribution in
agricultural potential zones is influenced by physical and climate-related factors. The
findings provide valuable insights into the 12- and 24-month SPI-drought class between
1991 and 1999, revealing less frequent and longer-lasting episodes, particularly between
2015 and 2019. The study identifies high-risk areas for improvement in agricultural areas,
providing data on drought incidences in rain-dependent agricultural areas, and enabling
the precise creation of a drought prediction system and risk assessment program. The study
suggests the need for enhanced monitoring, planning, awareness raising, and developing
innovative strategies to mitigate the potential impacts of future agricultural droughts.
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