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Abstract: Agriculture is not only a significant source of greenhouse gas emissions but also a vast
carbon sink system. Achieving the “dual carbon” goals—carbon peaking and carbon neutrality—is a
major strategic objective for China in the near future. This study focuses on agricultural data from
2010 to 2022 in Shaanxi Province. It begins by analyzing the current economic and environmental
conditions of the province and its resource endowment. This study then quantitatively assesses
carbon absorption, carbon emissions, and the net carbon sink in agriculture over this period. Addi-
tionally, a vector autoregression (VAR) model is used to empirically analyze the relationship between
agricultural carbon emissions and their influencing factors in Shaanxi Province. Key findings include
the following: (1) From 2010 to 2022, the total carbon emissions from agriculture in Shaanxi Province
were controlled to around 3 million tons, showing an overall trend of “growth-slow decline” with
fluctuations. The carbon emissions from fertilizer application accounted for approximately 60%
of the total carbon emissions from agriculture in Shaanxi Province, with a total volume ranging
from 1.623 to 2.164 million tons. The total carbon absorption from agriculture in Shaanxi Province
showed an increasing trend with fluctuations year by year from 2010 to 2022, with an average annual
increase of 1.367%. (2) Fertilizers, pesticides, agricultural films, and agricultural diesel are the primary
contributors to agricultural carbon emissions. (3) Results from the Johansen cointegration test reveal
a long-term equilibrium relationship between agricultural carbon emissions in Shaanxi Province and
influencing factors such as fertilizers and pesticides in the short term. The contributions of fertilizers,
pesticides, agricultural films, and agricultural diesel to agricultural carbon emissions are 1.351%,
1.888%, 10.663%, and 0.258%, respectively. (4) The long-term contributions of fertilizers and pesticides
to agricultural carbon emissions initially increased before undergoing a gradual attenuation, with
average attenuation rates of 1.351% and 1.888%, respectively.

Keywords: Shaanxi Province; agricultural land resources; carbon emissions; spatio-temporal charac-
teristics; decoupling effects; sustainability; economic development

1. Introduction

Climate change is the most significant global environmental issue of this century.
Tackling the challenge of climate change is a complex systemic task, primarily focused on
reducing greenhouse gas emissions such as carbon dioxide and adapting to broader climate
trends [1,2]. Energy conservation and emission reduction have become shared global
responsibilities [3,4]. Transitioning to a low-carbon economy is an unavoidable step for the
global economy to move from the high-carbon era to the low-carbon era. This transition is
crucial for addressing global warming, ensuring energy security, and protecting resources
and the environment [5].

“Low-carbon agriculture”, as a subset of the “low-carbon economy” and a strategy
for combating climate change, is gaining increasing attention. According to the United

Sustainability 2024, 16, 8170. https://doi.org/10.3390/su16188170 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16188170
https://doi.org/10.3390/su16188170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16188170
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16188170?type=check_update&version=1


Sustainability 2024, 16, 8170 2 of 20

Nations Food and Agriculture Organization, agriculture contributes approximately 21%
of global greenhouse gas emissions. In the context of advancing a low-carbon economy,
developing low-carbon agriculture is a vital pathway for promoting sustainable agricultural
development. Agriculture is an industry that interacts bidirectionally with the natural
environment [6,7]. It is directly affected by global climate warming while simultaneously
contributing to climate change through the continuous emission of greenhouse gases. Agri-
culture is both a significant source of greenhouse gas emissions and a major carbon sink [8].
Achieving green and low-carbon development in agriculture is crucial for advancing the
goals of carbon peaking and carbon neutrality. Reducing agricultural emissions and en-
hancing carbon sequestration are vital strategies with substantial potential [9]. Therefore,
researching and developing low-carbon agriculture has significant theoretical and practical
importance. It is an essential choice for mitigating global climate warming, addressing the
energy crisis, and solving environmental issues associated with traditional agricultural
practices [10,11]. Developing low-carbon agriculture is also a requirement for achieving sus-
tainable agricultural development. It has been demonstrated that developing low-carbon
agriculture is the most effective strategy for addressing environmental pollution caused
by chemical-based farming, reducing energy consumption, and lowering greenhouse gas
emissions. In low-carbon agricultural practices, only biological organic fertilizers and plant
protectants are used, eliminating the need for chemical fertilizers and pesticides. These
practices alone can reduce current energy consumption by more than 80%. For instance, in
nitrogen fertilizer production alone, it is possible to save between 100 and 150 million tons
of standard coal and 100 billion kilowatt-hours of electricity. When including the savings
from phosphorus fertilizers, potassium fertilizers, and pesticides, the total conservation of
energy resources and electricity would be even greater.

Existing data show that greenhouse gas emissions in the agricultural production sector
have been reduced by 854 million tons of carbon dioxide equivalent, accounting for 23.4%
of China’s total emissions.

In summary, low-carbon agriculture represents a complex agricultural economic
model. It is a strategically designed system that requires a multi-faceted approach to
achieve effective results.

As a major agricultural country, China’s efforts in reducing agricultural emissions and
enhancing carbon sequestration will be crucial for achieving its carbon peaking and carbon
neutrality goals. The success of these efforts will significantly impact global greenhouse gas
reduction targets. China aims to peak its carbon emissions before 2030 and achieve carbon
neutrality by 2060. Building a socialist ecological civilization with carbon reduction as a
key component requires contributions from all industries. Agriculture, being a significant
source of greenhouse gas emissions [11,12], plays a critical role in these goals. Therefore,
emission reduction and carbon sequestration in the agricultural and rural sectors are
essential components of China’s carbon peak and carbon neutrality targets. This area is
also highly promising [13–15]. Many studies focus on specific regions or countries, such
as China, Europe, and the United States. Within China, research often targets provinces
like Shaanxi, Jiangsu, and regions with significant agricultural activity [16]. Methods
of quantitative analysis include the following: (1) Life Cycle Assessment (LCA), which
evaluates the environmental impacts of agricultural processes from production to disposal;
(2) Carbon Footprint Analysis, which measures the total greenhouse gas emissions caused
by agricultural activities; and (3) Input–Output Analysis, which assesses the relationship
between agricultural inputs (fertilizers, pesticides) and outputs (crop yield, emissions).

A review of the domestic literature reveals that current research by Chinese scholars
on agricultural carbon emissions primarily focuses on the national level and provinces
and cities in the eastern and southern regions. However, there is a notable scarcity of
studies on the western regions, particularly Shaanxi Province. Shaanxi Province is a key
agricultural region in China and is also ecologically fragile. The low-carbon development of
agriculture is a crucial strategic choice for Shaanxi to mitigate resource and environmental
constraints and achieve the nation’s “dual carbon” goals. Over the years, Shaanxi Province
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has prioritized food security as a fundamental task. To ensure food security, the province
has implemented various measures, including strengthening policy support, enhancing
disaster prevention and reduction, stabilizing arable land, and improving agricultural
technology [17]. It is crucial to promote the high-quality development of ecological protec-
tion and green, low-carbon agriculture in Shaanxi Province [18–22]. By advancing these
initiatives, Shaanxi Province can make significant contributions to ecological protection
and the development of green, low-carbon agriculture.

Therefore, accurately assessing the carbon emissions and carbon sequestration poten-
tial of agricultural land resources in Shaanxi Province is beneficial for research on carbon
neutrality and for regional ecological conservation and high-quality development [23]. This
study aims to empirically analyze the relationship between agricultural carbon emissions
and influencing factors in Shaanxi Province using the VAR model, based on scientific
calculations of carbon emissions from six types of carbon sources in Shaanxi Province from
2010 to 2022 [22]. This research could provide scientific basis and policy recommendations
for achieving agricultural carbon reduction goals in Shaanxi Province. It will support
the adjustment of agricultural development methods and industrial structure, ultimately
contributing to the realization of Shaanxi Province’s agricultural carbon reduction targets.

2. Materials and Data
2.1. Study Area

Shaanxi Province is located between latitudes 31◦42′ N and 39◦35′ N and longitudes
105◦29′ E and 111◦15′ E. It serves as a transitional zone between China’s warm southeastern
region and the arid northwestern region, characterized by a continental climate. The
province features a diverse terrain, with mountains and rivers crisscrossing the landscape.
In the south, there are the Daba Mountains; in the central region, the Qinling Mountains;
and in the north, the Baiyu, Liang, and Lao Mountains. The Qinling Mountains serve as
a natural boundary, with the area to the north belonging to the Yellow River Basin and
the area to the south belonging to the Yangtze River Basin. Due to the complex terrain,
there are significant climate differences and ecological conditions between the northern
and southern regions, resulting in the formation of distinct agricultural zones.

Shaanxi has a complex terrain and diverse land types. The Qinba mountainous region
is characterized by its numerous mountains and limited arable land, often described as
“eight parts mountain, one part water, and one part farmland”. The Han River valley
predominantly consists of low mountain hills and basins, making it a treasure trove of
subtropical resources for the entire province. The renowned Hanzhong Basin, an alluvial
plain of the Han River, has abundant water resources and is a prolific producer of rice,
earning it the nickname “Little Jiangnan”. The Guanzhong Plain is an alluvial plain formed
by river deposition and less accumulation. The Wei River runs through it, creating a
flat terrain with fertile soil, making it the primary base for grain and cotton production
in Shaanxi.

From 1978 to 2022, the grain-sown area in Shaanxi Province decreased from 4.488 mil-
lion hectares to 3000 hectares. Efforts have been focused on ensuring the planting areas for
the three main grains: wheat, corn, and rice. The province faces a shortage of reserve arable
land, with limited land available for cultivation. Additionally, the growing population and
the continuous reduction of arable land, coupled with frequent natural disasters such as
droughts, floods, hail, and windstorms, have become major constraints on agricultural
development.

2.2. Measurement Items and Methods
2.2.1. Agricultural Carbon Emission Indicators and Calculations

(1) Sources and Estimation Methods of Agricultural Carbon Emissions

The most common method for estimating carbon emissions is based on agricultural
land use. Agricultural carbon emissions primarily stem from six aspects of agricultural
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production [24,25]: (1) fertilizer application; (2) pesticide use; (3) agricultural film usage;
(4) agricultural machinery operations; (5) land tillage practices; and (6) irrigated agriculture.

The carbon emission estimation formula is as follows [22,23,26]:

E = ∑ Ei = ∑ Ti × δi

where E represents the total agricultural carbon emissions, Ei represents the carbon emis-
sions from various carbon sources, Ti represents the quantity of each carbon emission
source, and, as shown in Table 1 [22,23,27], δi represents the carbon emission coefficient of
each carbon emission source.

Table 1. Carbon emission coefficients of agricultural energy and reference sources.

Carbon Sources
Carbon

Emission
Coefficients

Unit Reference Sources

Fertilizer 0.896 kg/kg “West” and “Oak Ridge National Laboratory, United States”
Pesticides 4.934 kg/kg Oak Ridge National Laboratory, United States

Agricultural plastic film 5.183 kg/kg Institute of Resource, Ecosystem, and Environment of Nanjing
Agricultural University (IREEA)

Diesel 0.593 kg/kg Intergovernmental Panel on Climate Change (IPCC)

Tillage 3.126 kg/hm2 College of Biological Sciences and Biotechnology, China
Agricultural University

Agricultural irrigation 20.476 kg/hm2 Dubey

Note: The carbon emission factor for agricultural irrigation is 25 kg/hm². However, since only the fossil fuel
consumption from thermal power generation contributes to indirect carbon emissions, this factor should be
adjusted by the thermal power coefficient, which represents the proportion of thermal power in China’s total
electricity generation. Based on statistical data from the China Yearbook (2000–2018), the average thermal power
coefficient was calculated to be 0.819. As a result, the adjusted carbon emission factor for agricultural irrigation is
20.476 kg/hm².

The main data sources are from the “Shaanxi Statistical Yearbook” and the “China
Rural Statistical Yearbook” from 2010 to 2022.

(2) Measurement of Carbon Emission Scale, Intensity, and Structure

Carbon sources in the agricultural system include CO2 emissions from energy con-
sumption, soil respiration, livestock breeding, and land use changes in agricultural produc-
tion. Energy consumption is the most significant source of CO2 emissions. Therefore, in
this paper, we use the total amount and scale of carbon emissions from agricultural energy
consumption to represent the greenhouse gas emissions in the development of low-carbon
agriculture in Shaanxi Province.

(3) Per Capita Agricultural Carbon Emissions

Per capita agricultural carbon emissions = Total agricultural carbon emissions/Total
rural population.

(4) Carbon Emission Intensity per Unit Arable Land Area

The carbon emission intensity per unit arable land area is calculated as the total
agricultural carbon emissions divided by the arable land area. Here, the arable land area
does not consider the actual production capacity of arable land resources.

(5) Agricultural Carbon Emission Intensity

Agricultural carbon emission intensity is an important indicator for measuring the
quality and efficiency of agricultural economic growth. Agricultural carbon emission
intensity = Agricultural carbon emissions/Agricultural Gross Domestic Product (GDP),
reflecting the amount of carbon emissions produced per unit of agricultural GDP output.
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2.2.2. Sources and Calculation Methods of Agricultural Carbon Absorption

Agricultural carbon sink refers to the process of absorbing carbon dioxide from the
atmosphere through agricultural planting, vegetation restoration, and other measures,
thereby reducing greenhouse gas concentrations [27]. Under the “dual carbon” goal, con-
tinuously increasing the net carbon sink capacity of agriculture will become an important
objective for agricultural development, thereby accelerating the transformation of tradi-
tional agriculture into green, low-carbon agriculture [28,29].

Carbon absorption in arable land is mainly based on crop yield data from cultivated
land, combined with the types of crops planted on arable land in China (grain crops,
cash crops, and fruits and vegetables), economic coefficients, and carbon absorption rates
determined in practice in China. For specific estimation methods, please refer to other
relevant literature [30].

2.2.3. Current Situation of Net Carbon Sink in Agriculture

The net carbon sink represents the difference between the total carbon sink and the total
carbon source, calculated as total carbon absorption minus total carbon emissions [31,32].
A higher positive value of the net carbon sink indicates a stronger ecological function of
agriculture, highlighting its role as a significant carbon sink system. Increasing the net
carbon sink in agriculture will be a key objective for agricultural development, driving the
transition from traditional practices to green, low-carbon agriculture [33].

3. Results
3.1. Agricultural Carbon Emissions
3.1.1. Total Agricultural Carbon Emissions

Based on the carbon emission formula and relevant data, this paper calculates the
total agricultural carbon emissions in Shaanxi Province from 2010 to 2022. The fluctuation
trends are described below.

Based on Table 2 and Figure 1, it can be observed that from 2010 to 2022, the total agri-
cultural carbon emissions in Shaanxi Province remained around 3 million tons, following a
fluctuating pattern of “growth followed by slow decline”. In 2010, carbon emissions totaled
2.738 million tons, rising to 3.369 million tons in 2013. Emissions then decreased slightly
to 3.286 million tons in 2015, increased again to 3.338 million tons in 2017, and ultimately
declined to 3.042 million tons in 2022.

Table 2. Total agricultural carbon emissions in Shaanxi Province from 2010 to 2022 (10,000 tons).

Year Fertilizer Pesticides Agricultural
Film

Agricultural
Diesel

Effective
Irrigated

Area
Tillage Total

2010 162.372 6.488 19.068 44.716 40.429 0.655 273.728
2011 176.254 6.123 19.638 47.398 40.166 0.644 290.224
2012 185.658 8.664 20.242 48.696 39.835 0.645 303.739
2013 214.765 6.413 21.159 53.954 39.925 0.632 336.848
2014 216.467 6.312 21.486 54.060 37.822 0.620 336.767
2015 206.167 6.460 22.309 54.718 38.340 0.618 328.613
2016 207.690 6.508 22.645 54.985 38.662 0.644 331.134
2017 208.764 6.580 22.768 55.969 39.119 0.618 333.818
2018 207.869 6.192 22.868 54.872 39.485 0.616 331.901
2019 181.359 6.039 23.196 55.595 40.174 0.614 306.978
2020 180.822 5.897 23.167 55.358 39.856 0.615 305.714
2021 180.822 5.897 23.167 55.358 40.086 0.659 305.989
2022 179.747 5.745 22.944 54.469 40.622 0.678 304.205



Sustainability 2024, 16, 8170 6 of 20

Sustainability 2024, 16, x FOR PEER REVIEW 6 of 20 
 

2020 180.822  5.897  23.167  55.358  39.856  0.615  305.714  
2021 180.822  5.897  23.167  55.358  40.086  0.659  305.989  
2022 179.747  5.745  22.944  54.469  40.622  0.678  304.205  

 
Figure 1. Total agricultural carbon emissions in Shaanxi Province from 2010 to 2022. 

Fertilizer application accounts for approximately 60% of total agricultural carbon 
emissions in Shaanxi Province, with emissions ranging from 1.623 to 2.164 million tons. 
The highest value was 2.165 million tons in 2014, while the lowest was 1.624 million tons 
in 2010. Following fertilizers, agricultural diesel and effective irrigated areas contributed 
around 500,000 tons and 400,000 tons of carbon emissions, respectively. 

3.1.2. Per Capita Agricultural Carbon Emissions  
As shown in Figure 2, the data indicate that the per capita agricultural carbon emis-

sions in Shaanxi Province have been increasing steadily, with a relatively low growth rate 
and increment. It increased from 0.135 tons per person in 2010 to 0.214 tons per person in 
2022. The primary reason for this increase is the sharp decline in the rural population of 
Shaanxi since 2010, with a particularly significant drop in 2016, marking the start of a 
rapid decline. In 2010, the rural population was 20.28 million, falling to under 17 million 
by 2016 and plummeting to 14.24 million by 2022. This steep decline in the rural popula-
tion has contributed to the rise in per capita agricultural carbon emissions in Shaanxi Prov-
ince. 

 

Figure 1. Total agricultural carbon emissions in Shaanxi Province from 2010 to 2022.

Fertilizer application accounts for approximately 60% of total agricultural carbon
emissions in Shaanxi Province, with emissions ranging from 1.623 to 2.164 million tons.
The highest value was 2.165 million tons in 2014, while the lowest was 1.624 million tons
in 2010. Following fertilizers, agricultural diesel and effective irrigated areas contributed
around 500,000 tons and 400,000 tons of carbon emissions, respectively.

3.1.2. Per Capita Agricultural Carbon Emissions

As shown in Figure 2, the data indicate that the per capita agricultural carbon emissions
in Shaanxi Province have been increasing steadily, with a relatively low growth rate and
increment. It increased from 0.135 tons per person in 2010 to 0.214 tons per person in
2022. The primary reason for this increase is the sharp decline in the rural population of
Shaanxi since 2010, with a particularly significant drop in 2016, marking the start of a rapid
decline. In 2010, the rural population was 20.28 million, falling to under 17 million by 2016
and plummeting to 14.24 million by 2022. This steep decline in the rural population has
contributed to the rise in per capita agricultural carbon emissions in Shaanxi Province.
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3.1.3. Carbon Emission Intensity Per Unit Arable Land Area

The data show that from 2010 to 2022, the carbon emission intensity per unit arable
land area in Shaanxi Province remained generally stable, with a slow upward trend. It
increased from 0.957 tons per hectare in 2010 to 1.037 tons per hectare in 2022.

3.1.4. Agricultural Carbon Emission Structure

According to data from Table 3, from 2010 to 2022, fertilizer remained the largest con-
tributor to agricultural carbon emissions in Shaanxi Province, accounting for an average of
61.250% of total emissions. However, its overall proportion has been declining, decreasing
to 59.087% in 2022.

Table 3. Agricultural carbon emission structure (%) in Shaanxi Province from 2010 to 2022.

Year Fertilizer Pesticides Agricultural
Film

Agricultural
Diesel

Effective
Irrigated

Area
Tillage

2010 59.319 2.370 6.966 16.336 14.770 0.239
2011 60.730 2.110 6.767 16.332 13.840 0.222
2012 61.124 2.853 6.664 16.032 13.115 0.212
2013 63.757 1.904 6.281 16.017 11.853 0.188
2014 64.278 1.874 6.380 16.053 11.231 0.184
2015 62.739 1.966 6.789 16.651 11.667 0.188
2016 62.721 1.965 6.839 16.605 11.676 0.194
2017 62.538 1.971 6.821 16.766 11.719 0.185
2018 62.630 1.866 6.890 16.533 11.896 0.185
2019 59.079 1.967 7.556 18.111 13.087 0.200
2020 59.147 1.929 7.578 18.108 13.037 0.201
2021 59.094 1.927 7.571 18.092 13.100 0.215
2022 59.087 1.888 7.542 17.905 13.353 0.223
mean 61.250 2.045 6.973 16.888 12.642 0.203

As shown in Figure 3, the next highest proportions are agricultural diesel and effec-
tive irrigated area, with average proportions of 16.888% and 12.642%, respectively. The
proportion of agricultural diesel shows a trend of fluctuating growth, mainly due to the
continuous advancement of agricultural mechanization and the increasing consumption of
diesel fuel as a result of the increasing power demand for agricultural machinery.
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3.1.5. Agricultural Carbon Emission Intensity

In 2010, total agricultural carbon emissions in Shaanxi Province were 2.737 million
tons, with agricultural GDP at CNY 110.071 billion, resulting in an agricultural carbon emis-
sion intensity of 0.25 tons per CNY 10,000. By 2022, total agricultural carbon emissions had
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risen to 3.042 million tons, while agricultural GDP had increased to CNY 331.0428 billion,
reducing the carbon emission intensity to 0.09 tons per CNY 10,000. From 2010 to 2022, agri-
cultural carbon emission intensity in Shaanxi Province decreased annually, from 0.25 tons
per CNY 10,000 in 2010 to 0.09 tons per CNY 10,000 in 2022. This trend indicates continuous
improvements in the quality and efficiency of agricultural economic growth in Shaanxi
Province, with a steady reduction in carbon emissions per unit of output.

3.2. Agricultural Carbon Absorption
3.2.1. Scale of Agricultural Carbon Absorption

Based on the yield data of some grain crops, cash crops, and fruits and vegetables in
Shaanxi Province from 2010 to 2022, we can determine the total carbon absorption and
carbon absorption of different crops used in cultivated land in Shaanxi Province during
this period (Table 4).

Table 4. Total agricultural carbon sink in Shaanxi Province during 2010–2022 (10,000 tons).

Year Rice Wheat Corn Soybeans Cotton Rapeseed Peanut Tobacco Vegetables Fruits Total

2010 86.409 477.471 666.489 59.366 23.670 63.738 9.952 4.721 61.318 307.302 1760.436
2011 88.940 477.719 689.657 57.562 21.330 65.412 10.570 5.146 63.602 327.730 1807.669
2012 90.724 505.465 709.945 56.644 19.980 66.798 11.323 5.883 66.906 350.426 1884.094
2013 94.527 441.332 726.269 40.869 15.975 65.754 11.124 5.277 70.371 359.303 1830.801
2014 90.022 467.757 667.894 30.582 10.935 67.626 12.140 4.296 73.713 371.747 1796.710
2015 90.416 513.294 668.465 20.893 9.315 70.236 11.857 4.140 76.427 386.944 1851.987
2016 90.528 489.152 749.138 32.179 7.605 67.482 12.862 3.698 78.960 403.104 1934.708
2017 90.641 493.077 648.979 31.646 5.400 68.994 13.040 3.126 82.136 427.062 1864.100
2018 90.776 486.926 688.202 31.672 4.455 66.618 13.186 2.749 85.663 402.690 1872.936
2019 90.416 463.510 717.781 30.957 3.420 67.068 12.872 4.320 89.876 445.723 1925.943
2020 90.586 501.374 730.240 31.286 0.315 67.518 12.966 4.328 92.731 464.922 1996.266
2021 81.956 515.146 708.490 33.221 0.135 70.146 11.815 4.165 95.344 487.662 2008.080
2022 82.496 521.431 726.294 40.421 0.090 64.656 12.234 4.394 98.628 512.607 2063.249

Based on Table 4 and Figure 4, from 2010 to 2022, the total carbon absorption in
agriculture in Shaanxi Province showed an increasing trend with fluctuations, with an
average annual increase of 1.367%. The peak of total agricultural carbon absorption in
Shaanxi Province occurred in 2022, reaching 20.632 million tons. This increase is largely
attributed to Shaanxi Province’s steadfast implementation of General Secretary Xi Jinping’s
directives on farmland protection and food security. The province has enforced stringent
farmland protection measures, effectively curbing the “non-agriculturalization” of farmland
and preventing its conversion to non-grain uses. The government has issued various
documents, including the “Implementation Plan for the Comprehensive Establishment of
the Farmland Protection System in Shaanxi Province,” which emphasizes prioritizing the
protection of cultivated land and permanent basic farmland and upholding the red line
for farmland protection and food security. These efforts have reinforced the significance of
food security and farmland protection and fostered a supportive social environment for
widespread participation in these initiatives.

3.2.2. Structure of Carbon Absorption in Arable Land

The proportion of agricultural carbon absorption structure in Shaanxi Province from
2010 to 2022 is detailed in Table 5 and illustrated in Figure 5. In terms of the structure of
carbon absorption in arable land, corn and wheat in grain crops as well as rapeseed and
fruits in cash crops are the primary contributors to carbon absorption in Shaanxi Province.
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Year Rice Wheat Corn Soybeans Cotton Rapeseed Peanut Tobacco Vegetables Fruits

2010 4.908 27.122 37.859 3.372 1.345 3.621 0.565 0.268 3.483 17.456
2011 4.920 26.427 38.152 3.184 1.180 3.619 0.585 0.285 3.518 18.130
2012 4.815 26.828 37.681 3.006 1.060 3.545 0.601 0.312 3.551 18.599
2013 5.163 24.106 39.669 2.232 0.873 3.592 0.608 0.288 3.844 19.625
2014 5.010 26.034 37.173 1.702 0.609 3.764 0.676 0.239 4.103 20.690
2015 4.882 27.716 36.094 1.128 0.503 3.792 0.640 0.224 4.127 20.893
2016 4.679 25.283 38.721 1.663 0.393 3.488 0.665 0.191 4.081 20.835
2017 4.862 26.451 34.815 1.698 0.290 3.701 0.700 0.168 4.406 22.910
2018 4.847 25.998 36.745 1.691 0.238 3.557 0.704 0.147 4.574 21.500
2019 4.695 24.067 37.269 1.607 0.178 3.482 0.668 0.224 4.667 23.143
2020 4.538 25.116 36.580 1.567 0.016 3.382 0.650 0.217 4.645 23.290
2021 4.081 25.654 35.282 1.654 0.007 3.493 0.588 0.207 4.748 24.285
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1. In grain crops, although maize, wheat, and rice account for a large proportion of
carbon absorption, their share of total carbon absorption is decreasing. The proportion
of carbon absorption for maize, wheat, and rice decreased from 37.859%, 27.122%, and
4.908% in 2010 to 35.201%, 25.272%, and 3.998%, respectively. This decline is primarily
due to reductions in the sown areas of these crops. Two main factors contribute to
this decrease: First, sustained low prices in the grain market have led to relatively
lower comparative benefits of growing grain crops compared to economic crops like
vegetables and cotton, resulting in diminished enthusiasm among farmers for grain
cultivation. Second, there is a trend toward transforming the planting structure to
focus on high-quality and high-efficiency crops, with the sown area of economic crops
increasing annually.

2. Among cash crops, cotton has experienced the most significant decrease in its propor-
tion of carbon absorption, while the proportions for rapeseed, peanuts, and tobacco
have remained relatively stable.

3. The proportion of carbon absorption contributed by fruits and vegetables is increas-
ing, with a more pronounced growth trend. The proportion of fruits increased from
17.456% in 2010 to 24.845% in 2022. The proportion of vegetables increased from
3.483% in 2010 to 4.780% in 2022. Since the implementation of the “Vegetable Basket
Project” in the 1980s, the demand for vegetables has continued to increase. At the
same time, vegetable production yields high economic returns. With the continu-
ous expansion of vegetable planting areas in China, vegetables have become the
second-largest category of crops in agriculture, following only grains. The vegetable
industry has become a pillar industry driving the development of agriculture and
rural economy in China.

3.3. Agricultural Net Carbon Sinks
3.3.1. Overall Situation of Net Carbon Sink

As shown in Figure 6, total agricultural carbon emissions in Shaanxi Province increased
from 14.867 million tons in 2010 to 17.590 million tons by 2022. China has set ambitious
targets to peak carbon emissions before 2030 and achieve carbon neutrality by 2060. To
meet these goals, China plans to implement comprehensive measures to reduce carbon
emissions, establish clear peak targets, develop road maps and action plans for key regions
and industries, and enhance supervision and assessment. This approach aims to funda-
mentally transform the economic, industrial, and energy structures at their core, ensuring
the achievement of peak carbon emissions before 2030. Accelerating the development of
low-carbon agriculture will be crucial to achieving these “dual carbon” objectives.
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The overall net carbon sink in agriculture in Shaanxi Province reflects the balance
between carbon absorption and carbon emissions across various agricultural activities. This
analysis provides insights into the ecological performance of agriculture in the region and
its contribution to mitigating climate change [31,33].

To conduct this analysis, data on carbon absorption and carbon emissions from key
agricultural activities—including crop cultivation, livestock rearing, and land manage-
ment practices—are collected and quantified. The net carbon sink value is determined by
subtracting the total carbon emissions from the total carbon absorbed.

Understanding the overall net carbon sink in agriculture in Shaanxi Province is crucial
for evaluating the environmental sustainability of agricultural practices and informing
policy decisions aimed at promoting carbon-neutral or carbon-negative farming methods.

3.3.2. Analysis of Factors Affecting the Scale of Agricultural Net Carbon Sink

Factors influencing the net agricultural carbon sink in Shaanxi Province include carbon
emissions and carbon absorption. Key contributors to carbon emissions from agricultural
land resources are fertilizers, agricultural diesel, and the extent of effective irrigation areas.
Conversely, the main factors affecting carbon absorption are the cultivated areas and yields
of grain crops, economic crops, and fruits and vegetables. Additionally, the intensity of
the agricultural net carbon sink and the scale of the rural population play a crucial role in
shaping the net carbon sink. To enhance the agricultural net carbon sink, it is essential to
adopt farming practices such as no-till, ridge tillage, reduced tillage, mulching, and straw
return to the field, in addition to reducing carbon sources.

4. VAR Analysis

Currently, there are three common methods for studying the influencing factors of
agricultural carbon emissions: the IPAT equation (Impact, Population, Affluence, and Tech-
nology), the Kaya identity, and the Logarithmic Mean Divisia Index (LMDI) method [28,29].
Other approaches include the Driving-force, Pressure, Status, Impact, and Risk (DPSIR)
model and resource utilization regression models. This paper employs the weighted least
squares method and vector autoregressive (VAR) analysis to develop an empirical model
examining the relationship between agricultural carbon emissions and influencing factors
in Shaanxi Province. Additionally, pulse response functions and variance decomposi-
tion techniques are used to analyze the magnitude and temporal variation patterns of
the coefficients.

4.1. Model Construction

Y1 = f (X1, X2, X3, X4 . . . X10)Y1 = f (X1, X2, X3, X4 . . . X10) (1)

To effectively address heteroscedasticity, we employ the double-logarithmic form of
the Cobb–Douglas (C-D) function model. The model is established as follows [30]:

ln Y1 = C + β1 ln X1 + β2 ln X2 + β3 ln X3 + β4 ln X4 + β5 ln X5 + β6 ln X6
+β7 ln X7 + β8 ln X8 + β9 ln X9 + β10 ln X10 + µ

(2)

In Equation (2), u represents the random error term, Y1 denotes agricultural carbon
emissions, and X1X2 . . . X10 represent the quantities of fertilizer application, compound
fertilizer application, nitrogen fertilizer application, phosphate fertilizer application, potas-
sium fertilizer application, pesticide usage, agricultural plastic film usage, agricultural
diesel usage, effective irrigation area, and plowing area, respectively. (Unit: ten thousand
tons/thousand hectares.)
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4.2. Results Analysis
4.2.1. Analysis of Weighted Least Squares (WLS) Regression

The regression analysis yields the following regression equation:

ln Y1 = 1.3358 + 0.7166 ln X1 + 0.0907 ln X6 + 0.0985 ln X7 + 0.1458 ln X8
ln Y1 = 1.3358 + 0.7166 ln X1 + 0.0907 ln X6 + 0.0985 ln X7 + 0.1458 ln X8

(0.138) (0.060) (0.005) (0.005) (0.005)
t = (9.664) (12.033) (16.606) (20.743) (28.119)

ln X2, ln X3, ln X4, ln X5, ln X9, ln X10 do not pass the 5% significance level test,
indicating that the influence of these factors on the dependent variable is relatively small.
Therefore, these variables are excluded. ln X1, ln X6, ln X7, ln X8 passed the 5% significance
level test, indicating that the impact of fertilizer application, pesticide use, agricultural
plastic film usage, and diesel use on agricultural carbon emissions is the most significant.

The statistical results from the model indicate that, holding other variables constant, an
increase of 10,000 tons in fertilizer application would result in an increase of 0.717 million
tons in agricultural carbon emissions. Similarly, for every additional 10,000 tons of pesticide
use, agricultural carbon emissions would rise by 0.0907 million tons, assuming other
variables remain constant. Additionally, an increase of 10,000 tons in agricultural plastic
film usage would lead to a 0.098-million-ton increase in agricultural carbon emissions, with
other variables held constant.

4.2.2. Vector Autoregression (VAR) Estimation

Based on five selection criteria, the optimal lag order was determined to be one.
To perform a cointegration test on the relevant variables, the optimal lag order for the
cointegration testing was established by first determining the optimal lag order of a VAR
model. According to the computational results and considering five information criteria—
Likelihood Ratio (LR), Final Prediction Error (FPE), Akaike Information Criterion (AIC),
Schwarz Information Criterion (SC), and Hannan–Quinn Criterion (HQ)—the optimal lag
order for the VAR model is found to be two. Therefore, a lag order of one should be selected
for the cointegration testing.

The Granger causality joint test produced p values below 5%, indicating that agri-
cultural carbon emissions, along with the four influencing factors—fertilizer, pesticide,
agricultural plastic film, and diesel fuel—are all endogenous variables. The results of the
final VAR model are presented in Table 6. As shown in Table 6, the coefficient of determina-
tion (R-squared) for each equation exceeds 95%, demonstrating a strong fit of the equations
to the explained variables.

Table 6. Results of vector autoregressive estimation of agricultural carbon emissions.

LNY1 LNX1 LNX6 LNX7 LNX8

LNY1(−1)
−5.529 −6.478 −21.340 7.691 −3.678
−11.763 −8.096 −12.732 −27.629 −33.094
[−0.470] [−0.800] [−1.676] [0.278] [−0.111]

LNY1(−2)
6.298 10.502 12.834 −16.176 −3.743
−8.166 −5.620 −8.839 −19.181 −22.975
[0.771] [1.869] [1.452] [−0.843] [−0.163]

LNX1(−1)
4.699 5.277 15.789 −3.594 3.144
−7.815 −5.379 −8.459 −18.356 −21.987
[0.601] [0.981] [1.867] [−0.196] [0.143]

LNX1(−2)
−4.444 −7.370 −7.989 9.297 3.167
−5.356 −3.686 −5.796 −12.579 −15.067

[−0.830] [−1.999] [−1.378] [0.739] [0.210]
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Table 6. Cont.

LNY1 LNX1 LNX6 LNX7 LNX8

LNX6(−1)
0.581 0.795 2.047 −0.575 −0.243
−1.073 −0.738 −1.161 −2.520 −3.019
[0.542] [1.077] [1.762] [−0.228] [−0.080]

LNX6(−2)
−0.733 −1.024 −1.734 1.503 −0.166
−0.773 −0.532 −0.837 −1.816 −2.175

[−0.949] [−1.924] [−2.073] [0.828] [−0.076]

LNX7(−1)
0.695 0.763 1.786 −0.512 0.877
−1.153 −0.793 −1.248 −2.707 −3.243
[0.603] [0.962] [1.431] [−0.189] [0.271]

LNX7(−2)
−0.559 −1.015 −1.431 2.188 0.376
−0.816 −0.562 −0.883 −1.916 −2.295

[−0.685] [−1.808] [−1.621] [1.142] [0.164]

LNX8(−1)
0.768 0.854 3.020 −1.206 0.763
−1.628 −1.120 −1.761 −3.823 −4.579
[0.472] [0.762] [1.714] [−0.316] [0.167]

LNX8(−2)
−0.823 −1.437 −1.508 2.364 0.545
−1.102 −0.758 −1.192 −2.587 −3.099

[−0.747] [−1.895] [−1.264] [0.914] [0.176]

C
0.378 −2.673 −0.278 10.217 5.673
−8.757 −6.027 −9.478 −20.568 −24.636
[0.043] [−0.443] [−0.029] [0.497] [0.230]

Therefore, see Table 7 for details, since all these points lie within the unit circle, it
indicates that the estimated VAR model is stable.

Table 7. Test data of each equation of VAR model.

Indicators LNY1 LNX1 LNX6 LNX7 LNX8

The coefficients of determination 0.996 0.998 0.996 0.993 0.985
Adjusted coefficients of determination 0.991 0.994 0.990 0.983 0.963

Residual sum of squares 0.002 0.001 0.003 0.013 0.018
Standard deviation 0.018 0.012 0.020 0.042 0.051

F-statistic 193.388 286.198 168.734 98.146 45.002
Maximum likelihood estimation 55.215 61.941 53.791 39.845 36.597

Information criteria −4.913 −5.660 −4.755 −3.205 −2.844
Schwarz criterion −4.369 −5.116 −4.210 −2.661 −2.300

Mean of dependent variable 8.749 8.373 4.881 4.949 7.301
Standard deviation of dependent variable 0.193 0.161 0.195 0.323 0.263

4.3. Basic Tests
4.3.1. Augmented Dickey–Fuller (ADF) Unit Root Test

From the test results, the ADF test statistic is −4.027, which is below the corresponding
critical value. Therefore, we reject the null hypothesis, indicating that the difference series
of agricultural carbon emissions (LNY1) does not have a unit root and is stationary. In
other words, LNY1 is first-order integrated, denoted as LNY1~I (1).

Using the same method, we can obtain the following test results: LNX1~I (1), LNX6~I
(1), LNX7~I (1), and LNX8~I (1).

4.3.2. Johansen Cointegration Test

According to the Johansen cointegration test results in Table 8, the trace statistics are all
greater than the 5% critical value level, indicating the presence of a long-term equilibrium
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relationship between agricultural carbon emissions in Shaanxi Province and the influencing
factors such as fertilizers and pesticides.

Table 8. Non-standardized cointegration coefficients.

LNY1 LNX1 LNX6 LNX7 LNX8

280.258 −298.173 43.264 −7.005 −44.478
584.443 −423.526 −40.390 −51.258 −76.490
−851.055 577.962 65.872 58.335 154.446
381.772 −245.239 −19.464 −70.981 −33.537

−1091.464 665.445 101.926 129.220 160.812

Table 9 provides the estimates of non-standardized cointegration coefficients, while
Table 10 presents the estimates of standardized cointegration coefficients, including the
coefficients for the three cointegration relationships. The first cointegration relationship is
expressed as the cointegration vector:

β = (1 −1.064 0.154 −0.025 −0.159)

Table 9. Standardized cointegration coefficients.

Cointegration Equation Maximum Likelihood Estimation

LNY1 LNX1 LNX6
1.000 −1.064 0.154

(0.024) (0.013)

D(LNY1)
−0.946
−1.035

D(LNX1)
0.074
−0.928

D(LNX6)
−6.179
−1.218

D(LNX7)
0.705
−2.917

D(LNX8)
−3.932
−3.335

Table 10. Granger causality test.

The Null Hypothesis F-Value p Value

LNX1 does not Granger cause LNY1 1.147 0.048
LNX6 does not Granger cause LNY1 0.766 0.085
LNX7 does not Granger cause LNY1 0.215 0.009
LNX8 does not Granger cause LNY1 0.949 0.012

4.3.3. Granger Causality Test

Next, we perform the Granger causality test. At a significance level of 10%, the
results indicate that X Granger causes variations in LNY1. In other words, fertilizers,
pesticides, agricultural films, and agricultural diesel are Granger causes of agricultural
carbon emissions.

4.4. Impulse Response Functions and Variance Decomposition

Figure 7, based on the VAR model using the orthogonalization method and the
Cholesky decomposition technique, displays the impulse response paths to shocks of
variables. The horizontal axis represents the lag periods of the impulse effect (in months),
while the vertical axis represents the degree of response of the dependent variable to the
explanatory variable. The “----” line represents the 95% confidence interval of the trajectory
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of the response variable to shock changes. In this model, the lag of the impulse effect is set
to 10 periods.
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From Figure 7, it is evident that a positive shock to rice (LNX1) during this period
positively impacts agricultural carbon emissions (LNY1) for the first 10 periods. The posi-
tive effect peaks in the second period at 0.02059 standard deviations. After reaching this
peak, the impact gradually declines and turns negative between the fifth and ninth periods.
The negative impact reaches its minimum in the sixth and seventh periods, then gradually
approaches zero around the tenth period before stabilizing. This suggests that fertilizer
use significantly affects agricultural carbon emissions. This finding supports the “Imple-
mentation Plan for Agricultural and Rural Emissions Reduction and Carbon Sequestration”
jointly issued by the Ministry of Agriculture and Rural Affairs and the National Develop-
ment and Reform Commission in June 2022. The plan advocates for reducing fertilizer use,
enhancing efficiency, and improving carbon sequestration in farmland. Similar principles
apply when a one-standard-deviation positive shock is given to LNX6 and LNX8.

To more effectively assess the importance of different factor shocks, we further utilize
variance decomposition to analyze the contribution of each structural shock of carbon
emission factors to the changes in agricultural carbon emissions in Shaanxi Province. The
results are presented in Table 11.

Table 11. Variance decomposition results of influencing factors of agricultural carbon emissions.

Forecast
Period

Standard
Deviation LNY1 LNX1 LNX6 LNX7 LNX8

1 0.018 100.000 0.000 0.000 0.000 0.000
2 0.027 92.178 1.870 0.124 5.398 0.430
3 0.035 88.940 2.652 0.518 7.543 0.347
4 0.041 87.710 2.608 1.319 8.107 0.255
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Table 11. Cont.

Forecast
Period

Standard
Deviation LNY1 LNX1 LNX6 LNX7 LNX8

5 0.046 87.602 2.328 1.806 8.059 0.205
6 0.050 88.310 2.005 1.816 7.682 0.187
7 0.053 88.636 1.758 1.832 7.577 0.197
8 0.056 88.346 1.606 2.021 7.795 0.232
9 0.059 87.653 1.505 2.270 8.326 0.245

10 0.061 86.921 1.427 2.439 8.976 0.237
11 0.064 86.257 1.355 2.469 9.697 0.221
12 0.066 85.585 1.282 2.441 10.482 0.210
13 0.068 84.885 1.209 2.401 11.295 0.210
14 0.070 84.195 1.144 2.362 12.080 0.220
15 0.072 83.599 1.090 2.317 12.757 0.237
16 0.073 83.118 1.046 2.265 13.311 0.260
17 0.075 82.741 1.012 2.215 13.752 0.280
18 0.076 82.441 0.984 2.173 14.105 0.297
19 0.077 82.201 0.961 2.140 14.388 0.309
20 0.078 82.013 0.942 2.115 14.611 0.318
21 0.079 81.868 0.926 2.095 14.788 0.324
22 0.079 81.752 0.911 2.078 14.932 0.328
23 0.080 81.655 0.898 2.064 15.053 0.330
24 0.080 81.570 0.887 2.054 15.158 0.332

mean 0.062 85.842 1.351 1.888 10.663 0.258

Table 11 includes seven columns. The first column denotes the forecast period, and the
second column represents the standard deviation of the predicted values of variable LNY1
for each period. The following five columns are percentages, representing the contributions
of equations with LNY1, LNX1, LNX6, LNX7, and LNX8 as dependent variables to the
standard deviation of predicted values of LNY1 for each period. The sum of each row
equals 100%. Taking t = 3 as an example, the predicted standard deviation of LNY1 is
0.034753. Out of this, 88.94046% is attributed to its own residual shock, 2.652% to the
residual shock of LNX1, 0.518% to the residual shock of LNX2, 7.543% to the residual shock
of LNX7, and 0.347% to the residual shock of LNX8.

When calculating the mean within the forecast period of 24 periods, the contribution of
LNY1’s own residual shock to the standard deviation of predicted values reaches 85.842%,
while the contributions of other variables are relatively small. Specifically, 1.351% is
attributed to the residual shock of LNX1, 1.888% to the residual shock of LNX2, 10.663% to
the residual shock of LNX7, and 0.258% to the residual shock of LNX8.

It can be observed that the long-term contributions of fertilizers and pesticides to
agricultural carbon emissions exhibit a trend of initially increasing and then decreasing,
experiencing a gradual attenuation process, with mean attenuation levels of 1.35083% and
1.8883%, respectively.

The long-term contribution of agricultural diesel to agricultural carbon emissions
remains relatively stable. Meanwhile, the long-term contribution of agricultural film to
agricultural carbon emissions shows a continuous increasing trend, rising from 5.398% in
the second period to 15.158% in the twenty-fourth period.

4.5. Cointegration Test Results

The cointegration tests indicate the presence of a long-term stable equilibrium re-
lationship between fertilizers, pesticides, agricultural film, and agricultural diesel with
agricultural carbon emissions. Variance decomposition analysis further reveals that over a
forecast period of 24 periods, the majority of the variability in the standard deviation of
predicted values for agricultural carbon emissions (LNY1) is attributed to its own shock,
accounting for 85.84167%. Conversely, the contributions from other variables are relatively
minor. Specifically, fertilizers (LNX1) contribute 1.351%, pesticides (LNX6) contribute
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1.888%, agricultural film (LNX7) contributes 10.663%, and agricultural diesel (LNX8) con-
tributes 0.258%.

5. Discussion, Limitations, and Future Research Directions
5.1. Discussion

In the context of the “dual carbon” target, advancing green and low-carbon agricultural
development is both an immediate necessity and a crucial pathway for future sustainable
development. The empirical analysis of agricultural carbon emissions in Shaanxi Province
offers valuable insights into the factors driving these emissions and highlights potential
strategies for achieving low-carbon agricultural practices.

Given the context of Shaanxi Province and China, the development of low-carbon
agriculture should adhere to three key prerequisites: it must integrate reasonable technical
measures from traditional agriculture, it should not compromise economic development
and food security, and it should not entirely eliminate the use of agricultural production
materials. While pursuing environmental goals, it is crucial to also achieve yield and
income targets.

Firstly, the development of low-carbon agriculture is inherently linked to the imple-
mentation of reasonable technical measures from traditional agriculture. The technologies
used in low-carbon agriculture cannot be divorced from both traditional and modern
agricultural practices; they must be grounded in the principles of both. Low-carbon agri-
culture has emerged as a significant trend and direction in global agricultural development.
It largely integrates the core elements of existing conventional and modern agricultural
models, thus demonstrating considerable vitality and promising prospects.

Secondly, the development of low-carbon agriculture should not compromise eco-
nomic development or food security. Managing the balance between energy, environmental
goals, and economic growth while ensuring agricultural productivity and food security
is crucial. Effectively leveraging agriculture’s role in reducing greenhouse gas emissions
and advancing low-carbon agriculture within a low-carbon economy presents a significant
challenge for the Chinese government.

Thirdly, the development of low-carbon agriculture does not necessitate the complete
exclusion of agricultural production materials. While advancing low-carbon practices, it
is important to maintain investment in capital and agricultural inputs, such as fertilizers
and pesticides. Instead of eliminating these inputs, the focus should be on reducing their
usage while improving fertilization techniques. This includes adopting biodiversity-based
agricultural practices, conducting soil testing for optimized fertilization, enhancing nutrient
management, and increasing the effectiveness of input use. Concurrently, promoting the
use of organic fertilizers, combining organic and inorganic fertilizers, ensuring product
safety from the source, and advancing ecological environmental protection are essential
steps in developing low-carbon agriculture.

5.2. Limitations and Future Research Directions

(1) In terms of research scope, the development of low-carbon agriculture should embrace
the concept of “big agriculture,” which includes five sectors: crop farming, forestry,
animal husbandry, fishery, and ancillary industries. Among these, animal husbandry
is the primary source of carbon emissions, while forestry plays the leading role in
carbon absorption. However, this paper focuses primarily on crop farming, which
is a subset of “small agriculture.” Therefore, future research should emphasize the
broader concept of “big agriculture.”

(2) When calculating agricultural GDP, the impact of inflation was not taken into account.

6. Conclusions and Recommendations
6.1. Conclusions

Choosing an appropriate low-carbon agricultural development model based on re-
source endowments and development stages is crucial. While the concept of low-carbon
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agriculture is widely accepted worldwide, its interpretation varies according to national
conditions and contexts. Unlike developed countries, which may have more resources
and advanced technologies, developing nations focus on balancing development with
environmental protection. As a result, there are significant differences in how sustainable
agricultural development models are implemented across countries.

At China’s current stage, the development of low-carbon agriculture should not
compromise economic growth or food security. Efforts must ensure that the “dual carbon”
goals and food security advance simultaneously.

(1) Expanding agricultural land area is an important means of increasing carbon sinks
in farmland. The key is to continuously optimize agricultural practices, adjusting
cropping systems according to local conditions and seasons to increase cropping
intensity, which effectively amounts to expanding sowing areas.

(2) From 2010 to 2022, the overall trend of agricultural carbon emissions in Shaanxi
Province showed fluctuations, with a general pattern of “increase followed by a grad-
ual decline”. In 2013, agricultural carbon emissions in Shaanxi Province reached their
peak, with the primary sources of carbon being fertilizers, pesticides, and agricultural
films used in land utilization. This effectively implements the key objectives outlined
in China’s 2014 agricultural planting guidelines, focusing on goals such as water con-
trol, fertilizer control, and pesticide control. It aims to gradually achieve low-carbon
and high-yield production.

(3) The level of economic development is a crucial factor affecting the intensity of agricul-
tural carbon emissions.

6.2. Recommendation

1. Strengthening low-carbon technological innovation in agriculture and controlling
carbon emissions from major sources are essential. This includes reducing the use
of agricultural inputs such as fertilizers and pesticides to achieve emission reduc-
tion goals.

The amount of diesel used in agriculture is a key factor influencing carbon emissions.
Irrigation of farmland and the use of agricultural machinery are the main contributors to
carbon emissions from diesel use in agriculture. In the future, there is a need to explore new
types of green energy with lower carbon emissions to replace polluting energy sources.

Vigorously promote and disseminate technologies for reducing and increasing the
efficiency of chemical fertilizers and pesticides. Specifically, this can be achieved by im-
plementing reduced fertilizer application, rational use of water-soluble fertilizers, and
controlled-release fertilizers to enhance fertilizer utilization efficiency. Control the use of
pesticides and promote new methods such as the use of biological pesticides. Additionally,
advance the development of agricultural waste recycling technologies and enhance the
recycling and reuse of materials such as agricultural films and pesticide packaging.

2. While ensuring food security, it is crucial to make rational adjustments to the rural
industrial structure, promote low-carbon planting techniques, and enhance the green
production level of agriculture comprehensively.

In summary, during the “14th Five-Year Plan” period, Shaanxi Province should estab-
lish a development concept for green and low-carbon agriculture that prioritizes ecology,
emphasizes green principles, adopts long-term strategies, and focuses on industry. This
includes exploring advanced technologies in “clean production, green transformation, and
low-carbon emission reduction”, promoting the utilization of agricultural waste biomass
resources, advancing the green and low-carbon cleaning of agricultural production, opti-
mizing agricultural ecological environments, and improving the livelihoods of farmers.
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