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Abstract: Accurate and timely risk assessment of short-term rainstorm-type flood disasters is very
important for ecological environment protection and sustainable socio-economic development. Given
the complexity and variability of different geographical environments and climate conditions, a
single machine learning model may lead to overfitting issues in flood disaster assessment, limiting
the generalization ability of such models. In order to overcome this challenge, this study proposed a
short-term rainstorm flood disaster risk assessment framework under the integrated learning model,
which is divided into two stages: The first stage uses microwave remote sensing images to extract
flood coverage and establish disaster samples, and integrates multi-source heterogeneous data to
build a flood disaster risk assessment index system. The second stage, under the constraints of Whale
Optimization Algorithm (WOA), optimizes the integration of random forest (RF), support vector
machine (SVM), and logistic regression (LR) base models, and then the WRSL-Short-Term Flood
Risk Assessment Model is established. The experimental results show that the Area Under Curve
(AUC) accuracy of the WRSL-Short-Term Flood Risk Assessment Model is 89.27%, which is 0.95%,
1.77%, 2.07%, 1.86%, and 0.47% higher than RF, SVM, LR, XGBoost, and average weight RF-SVM-LR,
respectively. The accuracy evaluation metrics for accuracy, Recall, and F1 Score have improved by
5.84%, 21.50%, and 11.06%, respectively. In this paper, WRSL-Short-Term Flood Risk Assessment
Model is used to carry out the risk assessment of flood and waterlogging disasters in Henan Province,
and ArcGIS is used to complete the short-term rainstorm city flood and waterlogging risk map. The
research results will provide a scientific assessment basis for short-term rainstorm city flood disaster
risk assessment and provide technical support for regional flood control and risk management.

Keywords: flood; risk assessment; machine learning; factor analysis; integrated model

1. Introduction

In recent years, extreme weather events have become more frequent and severe. The
escalation in extreme weather presents significant challenges to both ecological environ-
ments and socio-economic development [1,2]. Flooding, recognized as one of the most
devastating natural disasters [3–5], has a profound impact on people’s lives and property.
Due to global climate change, financial losses from flooding have risen markedly [6,7],
and urban storm waterlogging disasters have become frequent. Consequently, conduct-
ing short-term storm-type urban flood risk assessments is crucial to help city managers
prioritize flood resilience measures.

Current flood risk assessment methodologies are generally categorized into five
types [8]: historical disaster mathematical statistics, scenario simulation, coupling of re-
mote sensing and geographic information systems (GIS), multi-criteria decision analysis
(MCDA), and machine learning. The Historical Disaster Mathematical Statistics Method [9]
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utilizes mathematical statistics to identify patterns in disaster occurrences [10]. Although
this method is simple to calculate, it depends on long-term basic hydrological observation
data series for analysis. The assessment results can reflect the overall regional flood risk
but fail to illustrate spatial differences in risk. The scenario simulation method, based on
hydrology and hydraulics principles, builds flood simulation models [11,12] to simulate
the extent and impact of floods under various scenarios. However, the required data for
modeling, which may include encrypted information such as the design and capacity of
urban drainage networks, are often difficult to obtain, and the modeling process is complex.
Thus, this method is unsuitable for large-scale areas. The coupled remote sensing and
GIS method extracts information from remote sensing images (e.g., extent of inundation,
location of affected bodies) and inputs it into GIS software for spatial analysis, visualizing
the spatial distribution of flood hazards [13]. Nevertheless, optical remote sensing images
are prone to cloud cover, leading to data gaps [14]. Although microwave remote sensing
can penetrate clouds, it suffers from incomplete image coverage [15]. MCDA, grounded
in flood risk assessment theory, adapts key indicators to the regional context to develop
a risk assessment framework [16,17]. However, reliance on traditional mathematical and
statistical methods may compromise the objectivity in determining indicator weights [18].
Recently, the use of computational models and high-performance computing technologies
has popularized machine learning (ML) methods in flood assessment. Considering the
complex, nonlinear nature of flooding with significant spatial and temporal variability [19],
ML employs historical data to construct numerical models that accurately represent flood-
ing dynamics. This approach offers higher accuracy and performance than physical models,
while simplifying model construction to enhance flexibility and efficiency in practical
applications [20]. ML methods demonstrate superior accuracy compared to traditional
statistical models [21]. Commonly utilized ML models in flood risk assessment include
Artificial Neural Networks (ANNs) [22], support vector machines (SVMs) [23], random
forests (RFs) [24], and logistic regression (LR) [25] with XGBoost [26], which have yielded
notable results in flood risk assessment. However, a single ML model may suffer from
overfitting in flood risk assessment [27] and the stability of model generalization can be
challenging under different scenarios [28]. Consequently, integrated models have been de-
veloped to enhance flood risk assessment. Integration methods such as Bagging, Boosting,
Random Subspace (RS), Stacking, and Blending have been applied in flood hazard risk
analysis [29–33]. Bagging and Boosting reduce the instability or bias of individual models
by combining similar types (e.g., decision trees), while RS, Stacking, and Blending methods
integrate various base models. The results indicate that Bagging significantly improves
model performance compared to individual ML models, whereas RS does not enhance
performance [33]. Conversely, Stacking and Blending methods significantly improve the
accuracy, true rate, and AUC of the models, with the Blending method performing best
in terms of these performance indicators [29]. The strengths of integrated models lie in
their versatility and robustness, with many empirical studies showing that these methods
often outperform single ML models [34]. However, integrated learning methods applied to
flood risk assessment analysis still face challenges such as susceptibility to overfitting and
difficulty in parameter tuning.

Therefore, this study integrates heterogeneous data from multiple sources and pro-
poses a short-term storm-based urban flood risk assessment method under an integrated
learning model. The main contributions of this study include:

(1) From the perspectives of hazard, exposure, and vulnerability, a total of 21 initial
indicators were selected. These indicators were reduced to 16 by eliminating redundant
factors using the Pearson method, thereby constructing a short-term storm-type urban
flood risk assessment index system.

(2) Integrating the machine learning methods of RF, SVM, and LR, the whale opti-
mization algorithm (WOA) is employed to calculate the weight of the integrated model.
The objective is to minimize the mean square error (MSE) between the estimated and
actual flood risk values, resulting in the development of the WRS – Short Term Flood Risk
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Assessment Model. This model facilitates the completion of a high-resolution (1km x 1km)
short-term rainstorm urban waterlogging risk assessment map.

2. Study Area and Data Sources
2.1. Study Area

Henan Province (31◦23~36◦22 N, 110◦21~116◦39 E) is situated in the central-eastern
part of China and spans the middle and lower reaches of the Yellow River. Covering an
area of 167,000 square kilometers, it has a resident population of 98.15 million, with an
overview of the study area depicted in Figure 1. The topography of Henan is characterized
by high elevations in the west and lower elevations in the east, bordered by mountains to
the north, west, and south, with the Huanghuaihai Plain centrally and easterly located. The
varied terrain includes plains, basins, mountains, hills, and watersheds, extending across
four major river basins: the Hai, Yellow, Huai, and Yangtze Rivers. The climatic regime is
primarily influenced by the westerly winds, featuring a warm-temperate to subtropical,
humid to semi-humid monsoon climate. This climate is noted for its four distinct seasons,
concurrent rainfall and heat, and complex and diverse nature, often accompanied by
frequent meteorological disasters [35]. On 20 July 2021, Henan Province experienced an
extreme heavy rainfall event. According to the Henan provincial government, the event
impacted 14.78 million individuals, resulting in 398 deaths or missing persons, and direct
economic losses estimated at approximately CNY 12 billion [36].

Sustainability 2024, 16, 8249 3 of 19 
 

factors using the Pearson method, thereby constructing a short-term storm-type urban 
flood risk assessment index system. 

(2) Integrating the machine learning methods of RF, SVM, and LR, the whale optimi-
zation algorithm (WOA) is employed to calculate the weight of the integrated model. The 
objective is to minimize the mean square error (MSE) between the estimated and actual 
flood risk values, resulting in the development of the WRS – Short Term Flood Risk As-
sessment Model. This model facilitates the completion of a high-resolution (1km x 1km) 
short-term rainstorm urban waterlogging risk assessment map. 

2. Study Area and Data Sources 
2.1. Study Area 

Henan Province (31°23~36°22 N, 110°21~116°39 E) is situated in the central-eastern 
part of China and spans the middle and lower reaches of the Yellow River. Covering an 
area of 167,000 square kilometers, it has a resident population of 98.15 million, with an 
overview of the study area depicted in Figure 1. The topography of Henan is characterized 
by high elevations in the west and lower elevations in the east, bordered by mountains to 
the north, west, and south, with the Huanghuaihai Plain centrally and easterly located. 
The varied terrain includes plains, basins, mountains, hills, and watersheds, extending 
across four major river basins: the Hai, Yellow, Huai, and Yangtze Rivers. The climatic 
regime is primarily influenced by the westerly winds, featuring a warm-temperate to sub-
tropical, humid to semi-humid monsoon climate. This climate is noted for its four distinct 
seasons, concurrent rainfall and heat, and complex and diverse nature, often accompanied 
by frequent meteorological disasters [35]. On 20 July 2021, Henan Province experienced 
an extreme heavy rainfall event. According to the Henan provincial government, the event 
impacted 14.78 million individuals, resulting in 398 deaths or missing persons, and direct 
economic losses estimated at approximately CNY 12 billion [36]. 

 

Figure 1. Schematic diagram of experimental area. 

2.2. Data Sources 
2.2.1. Data Acquisition of Flood Disaster Sample Points 

Pre-disaster and post-disaster Sentinel-1 images from 1 July to 19 July 2021, and from 
20 July to 10 August 2021, were used for the experiment. The identification of the affected 
surface extent of urban flooding was accomplished using the U-Net++ network [37]. In 
Zhengzhou and Xinxiang cities, 250 flooded and 350 non-flooded points were randomly 
selected for the training set, and 107 flooded and 150 non-flooded points comprised the 

Figure 1. Schematic diagram of experimental area.

2.2. Data Sources
2.2.1. Data Acquisition of Flood Disaster Sample Points

Pre-disaster and post-disaster Sentinel-1 images from 1 July to 19 July 2021, and from
20 July to 10 August 2021, were used for the experiment. The identification of the affected
surface extent of urban flooding was accomplished using the U-Net++ network [37]. In
Zhengzhou and Xinxiang cities, 250 flooded and 350 non-flooded points were randomly
selected for the training set, and 107 flooded and 150 non-flooded points comprised the test
set. To further verify the model’s generalizability, 107 flooded and 150 non-flooded points
were randomly selected to construct the validation set in other regions of Henan Province
(excluding Zhengzhou and Xinxiang cities). Ultimately, the distribution among the training
set, test set, and validation set was 7:3:3, and the distribution of flooding sample points is
shown in Figure 2.
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Figure 2. Distribution of flooding sample points: (a) training samples; (b) test and validation samples.

2.2.2. Flood Risk Assessment Indicator Data

Indicator factors were selected from three dimensions: hazard, exposure, and vulner-
ability, comprising a total of 21 as detailed in Table 1. Hazard indicators include rainfall,
annual precipitation variability, land erosion modulus, elevation variation coefficient, to-
pographic relief, slope, aspect, planar curvature, and profile curvature, summing up to
nine. Exposure indicators are composed of the topographic wetness index (TWI), stream
power index (SPI), flow accumulation (FA), NDVI, impervious area, and sediment transport
index (STI), also totaling six. Vulnerability indicators include night lights, population den-
sity, Gross Domestic Product (GDP), medical facilities, educational level, and emergency
shelters, also amounting to six.

Table 1. Source of indicator factors.

Raw Data Indicator Factors Abbreviation Spatial
Resolution Time Data Sources

DEM

Elevation variation
coefficient EVC

1000 × 1000 m 2000

National Science and Technology
Infrastructure Platform—National
Earth System Science Data Centre

(http://www.geodata.cn, accessed
on 1 December 2023)

Topographic relief UR
Slope Slope

Aspect Aspect
Plane curvature PC1
Profile curvature PC2

Topographic wetness
index TWI

Stream power index SPI
Flow accumulation FA

Sediment transport index STI

Annual
precipitation in

2010–2020
Annual rainfall variability ARV 1000 × 1000 m 2010–

2020

National Science and Technology
Infrastructure Platform—National
Earth System Science Data Centre

(http://www.geodata.cn, accessed
on1 December 2023)

http://www.geodata.cn
http://www.geodata.cn
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Table 1. Cont.

Raw Data Indicator Factors Abbreviation Spatial
Resolution Time Data Sources

Daily
precipitation
from 17–23
July 2021

Rainfall Rainfall 11,132 × 11,132 m 2021

NASA Global Precipitation
Measurement (GPM) v6

Precipitation Dataset (https:
//gpm.nasa.gov/missions/GPM,

accessed on 1 December 2023)

Soil type Land erosion modulus LEM 1000 × 1000 m 1995

Resource Environmental Science
and Data Centre

(https://www.resdc.cn/, accessed
on 1 February 2024)

NDVI Normalized difference
vegetation index NDVI 30 × 30 m 2021

National Earth System Science Data
Centre (http://www.geodata.cn,

accessed on 1 February 2024)

Impervious
layer Impervious area IA 30 × 30 m 2020

Zenodo (https://zenodo.org/
record/5220816#.YrUCEPnraly,

accessed on 1 February 2024)

Population Population density POP 1000 × 1000 m 2020 ORNL (https://landscan.ornl.gov,
accessed on 1 February 2024)

Economy Gross GDP GDP 1000 × 1000 m 2020
GitHub (https://github.com/

thestarlab/ChinaGDP, accessed on
1 February 2024)

POI
Emergency shelter ES

1000 × 1000 m 2021
Golder Open Platform

(https://lbs.amap.com/, accessed
on 1 February 2024)

Medical facility MF
The Seventh
Population

Census
Educational level EL 1000 × 1000 m 2020 2020 China Census Information

by County

Nighttime light
data of

DMSP-OLS
Night lights NL 1000 × 1000 m 2021

Improved DMSP-OLS time series
data for the China category by

integrating DMSP-OLS and
SNPP-VIIRS

(https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:

10.7910/DVN/GIYGJU, accessed
on 1 February 2024)

(1) Hazard

A hazard indicates the potential damage from flooding within a certain period [38].
Heavy rainfall is a major influence on flooding, while topographic factors directly affect
the flooding process [39]. Factors such as rainfall, variability in annual precipitation,
and the land erosion rate directly impact the likelihood and severity of flooding events.
Topographic elements, including the elevation variation coefficient, relief, slope, aspect,
plane curvature, and profile curvature, influence flood runoff, flow direction, and velocity,
increasing flood risk.

(2) Exposure

Exposure refers to the likelihood of encountering floods over a specific period [33].
High TWI values signify a higher risk of waterlogging; higher SPI values indicate stronger
stream power, which may exacerbate flooding; areas with high FA are more prone to
flooding; NDVI reflects surface vegetation, with dense coverage mitigating flood risks;
large impervious surfaces increase runoff and flood exposure; and high STI values may lead
to channel obstruction and increase flood risk. Therefore, the topographic wetness index
(TWI), stream power index (SPI), flow accumulation (FA), NDVI, impervious surfaces, and
the sediment transport index (STI) are crucial in assessing regional flood exposure.

https://gpm.nasa.gov/missions/GPM
https://gpm.nasa.gov/missions/GPM
https://www.resdc.cn/
http://www.geodata.cn
https://zenodo.org/record/5220816#.YrUCEPnraly
https://zenodo.org/record/5220816#.YrUCEPnraly
https://landscan.ornl.gov
https://github.com/thestarlab/ChinaGDP
https://github.com/thestarlab/ChinaGDP
https://lbs.amap.com/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU
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(3) Vulnerability

Vulnerability refers to the overall capacity and manner in which a disaster-tolerant
system reduces risk and damage [40]. Vulnerability factors encompass nighttime lighting,
population density, GDP, presence of healthcare facilities, educational attainment, and
emergency shelters. Among them, the level of urbanization and population density are
derived from nighttime light intensity data. GDP quantifies the ability to cope with and
recover from a disaster [41]. The presence of healthcare and educational facilities measures
a region’s resilience in the face of sudden flooding. In addition, the distribution and capacity
of emergency shelters are critical to ensure the safety of people in the event of a disaster.

3. Risk Assessment Framework for Short-Term Rainstorm Urban Flood Disaster

Initially, key flood assessment factors are identified from the perspectives of a hazard,
exposure, and vulnerability. Through a Pearson correlation analysis, multicollinearity
among these factors is addressed, and the number of initial factors is reduced via dimen-
sionality reduction. This process formed the basis for constructing a short-term rainstorm
urban flood disaster risk assessment system. Subsequently, the WOA is employed to
refine the weights, and models such as RF, SVM, and LR are integrated to develop the
WRSL-Short-Term Flood Risk Assessment Model. Finally, the performance of the model is
evaluated, and a flood risk assessment map is generated (Figure 3).
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A framework for assessing the risk of short-term, storm-type urban flooding is devel-
oped from the three critical perspectives: hazard, exposure, and vulnerability (abbreviated
as ‘H-E-V’). The mathematical representation of this framework is detailed in Equation (1):

f WRSL
risk = w1 · f RF

risk(H, E, V) + w2 · f SVM
risk (H, E, V) + w3 · f LR

risk(H, E, V) (1)
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where f WRSL
risk is the flood risk index of the WRSL-Short-Term Flood Risk Assessment Model;

f RF
risk(H, E, V), f SVM

risk (H, E, V), and f LR
risk(H, E, V) are the flood risk indices from the RF, SVM,

and LR models, respectively; and w1, w2, and w3 denote the respective weights assigned to
each model.

3.1. Integration Model Based on Whale Algorithm Optimization

The WRSL-Short-Term Flood Risk Assessment Model employs RF, SVM, and LR
as baseline models, training them to obtain respective flood risk values and using three
weighting factors (w1, w2, w3) to integrate the outputs of these models. In this study,
the search is optimized with the mean square error (MSE) between the flood risk values
assessed by the integrated model and the actual values. A smaller mean square error
indicates a smaller error in the simulation results. Therefore, the mean square error is
calculated as the value of the model fitness function to identify the best individual position.
The mathematical expression of the objective function is as follows:

MSE =
1
n

n

∑
i=1

(
fi − f̂ WRSL

risk

)2

(2)

where n is the number of sample points; the fi value of the training sample is 1 for flood
points and 0 for non-flood points; and f̂ WRSL

risk is the i-th integrated flood risk index.
WOA has the advantages of a minimal number of parameters and a robust opti-

mization capability, and performs well in solving the minimization objective function
problem [42]. Therefore, in this study, WOA is used to determine the numerical solutions of
w1, w2 and w3 and optimize the weights of RF, SVM, and LR models to obtain the optimal
combination of flood risk values.

(1) The mathematical model of WOA consists of three main components: encircling
prey, spiral bubble hunting, and random search for prey. The first part involves encircling
prey. Humpback whales initially pinpoint the location of the prey and progressively encircle
it by adjusting their position. During this process, the search agent nearest to the target
becomes the optimal position, and other whales update their positions gradually to encircle
the prey effectively. The position update calculation is expressed as follows:

Diter = |CX ∗ (titer)− X(titer)| (3)

X(titer + 1) = X ∗ (titer)− A · Diter (4)

where Diter is the distance between the current position and the optimal position; X ∗ (titer)
is the position vector of the optimally fit whale; X(titer) is the current individual’s position
vector; titer represents the current iteration; and A and C are parameter vectors defined by

A = a · (2r1 − 1) (5)

C = 2r2 (6)

where r1 and r2 are random vectors between 0 and 1; a decrease linearly from 2 to 0 over
the iterations is as shown below:

a = 2 ·
(

1 − titer
tmax_iter

)
(7)

where tmax_iter is the maximum number of iterations.
The second part is a spiral bubble Hunting. As whales encircle prey, they may choose

to tighten the circle or advance in a spiral motion. Assuming that whales have Pi probability
of choosing to shrink the encirclement and 1 − Pi probability of choosing to spiral forward,
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respectively, during a spiral bubble hunt, the mathematical model expression for this
simultaneous choice is as follows:

X(titer + 1) =

{
X ∗ (titer)− A · Diter, P < P
X ∗ (titer) + D′ebl cos(2πl), P ≥ P

(8)

where P is a random number between 0 and 1; l ⊆ (−1, 1); D′ = |X(titer)− X ∗ (titer)| is
the distance between each current individual and the optimal individual; b is a constant to
describe the spiral shape; and Pi is generally taken as 0.5.

From Equation (7), it can be seen that as the number of iterations increases, a decreases
linearly, while at the same time the value of each element in A fluctuates between [−a, a];
when [−a, a], the next position of the individual whale is any position between the current
position of the individual whale and the prey. The algorithm sets that when the absolute
value of each element value in A is less than 1, the whale will launch a strike at the prey.

The third part is a random search for prey. The search mechanism for each whale
depends on the values in A. If the absolute values are less than 1, the whale updates its
position based on the optimal position and conducts a local search. If greater than 1, it
forces the whale away from the optimal position, and updates occur based on a randomly
selected whale’s position, triggering a global search. The mathematical models for these
actions are

Drand = |C · Xrand(titer)− X(titer)| (9)

X(titer + 1) = Xrand(titer)− A · Drand (10)

where Xrand is the position vector of a randomly selected individual whale, and Drand is
the distance to the prey.

In the experimentally designed WOA, each whale’s position represents potential
weight values for the models RF, SVM, and LR. When the algorithm runs, the position of
the optimal solution indicates the combination of weights that minimizes the mean square
error of the integrated model, thereby determining the most effective model weights.

(2) RF
RF employs a bootstrap sampling technique to train numerous decision trees and

aggregates them into a model [43]. This method improves the model’s stability and
generalization ability by aggregating outputs of the trees through voting or weighted
averaging [44]. It is effective for both classification and regression tasks. The construction
process of a RF involves (1) using the bootstrap method to randomly generate K subsets
from the entire dataset and constructing K classification trees; (2) selecting several features
randomly at any tree node and choosing the best one for splitting; (3) continuing to split
each tree until all training samples at a node fall into the same category; (4) combining all
the trees to form the complete RF.

(3) SVM
The SVM is a machine learning algorithm based on VC dimension theory and the

principle of structural risk minimization within statistical learning theory [45], demon-
strating significant advantages in addressing small samples, non-linearities [46,47], and
high-dimensional pattern recognition [48]. Originally developed for binary classification,
the fundamental concept of SVMs involves identifying an optimal classification hyperplane
that maximizes the margin between the nearest data points of two classes [49]. The data
points that define this margin are known as support vectors, and the hyperplane runs
centrally through the maximized margin. In cases where data are not linearly separable,
the model uses a kernel function to map data points to a higher dimensional space, making
linear separation possible. Misclassified points are given reduced weight to minimize their
influence on the model [50].

(4) LR
A LR model is a generalized linear model [51] that establishes a multiple-regression

relationship between a dependent variable and several independent variables to predict
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the probability of an event’s occurrence in a specific area [25]. The dependent variable in
LR is categorical; specifically, the occurrence of flooding is modeled. A value of ‘1′ indicates
flooding, while ‘0’ indicates no flooding.

LR predicts the probability of flood events by expressing the logarithmic odds of flood-
ing as a linear combination of multiple independent variables, as detailed in Mathematical
Expression (12):

log it( f LR
risk) = βo + β1x1 + · · ·+ βnxn (11)

f LR
risk =

eβo+β2x2+···+βnxn

1 + eβo+β2x2+···+βnxn
(12)

where log it( f LR
risk) is the log odds of a flood event occurring; βo, β1, β2, · · · , βn is the LR

coefficient; and xo, x1, x2, · · · , xn is the impact factor.

3.2. Pearson’s Correlation Coefficient

The Pearson correlation analysis method measures the correlation between two vari-
ables, ensuring that the indicator factors used in model training maintain a high degree of
independence. This analysis supports the construction and optimization of subsequent ma-
chine learning models. The mathematical expression of the Pearson correlation coefficient
is provided in Equation (13).

r = σ2
xy/σxσy (13)

where r represents the correlation coefficient; σ2
xy is the covariance between variables x and

y; σx is the standard deviation of variable x; and σy is the standard deviation of variable
y. The value of r ranges from −1 to 1, indicating the correlation direction; a negative r
signifies a negative correlation, whereas a positive r indicates a positive correlation. The
closer |r| is to 1, the stronger the correlation between the variables.

3.3. Precision Analysis Evaluation Indicators

To objectively assess the performance of different models, the experiment uses the
accuracy, Precision, Recall, F1 Score, and Receiver Operating Characteristic Curve (ROC)
for evaluation. TP denotes the number of true positives, TN denotes the number of
true negatives, FP denotes the number of false positives, and FN denotes the number of
false negatives.

Accuracy is defined as the ratio of correctly classified samples to the total number of
samples, serving as a comprehensive statistical measure. This is expressed mathematically
in Formula (14):

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision, also termed as positive predictive value, measures the ratio of correctly
identified positive samples to the total samples classified as positive by the model. It
focuses on the accuracy of positively identified data and is defined in Formula (15):

Precision =
TP

TP + FP
(15)

Recall, or sensitivity, indicates the ratio of correctly identified positive samples to
the actual positive samples. This metric concentrates on the accuracy of truly positive
identifications and is expressed in Formula (16):

Recall =
TP

TP + FN
(16)
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The F1 Score, a harmonic mean of Precision and Recall, balances both metrics and is a
standard statistical measure for classification accuracy. The score ranges between 0 and 1,
with higher values indicating superior model performance, as shown in Equation (17).

F1 = 2 × Precision × Recall
Precision + Recall

(17)

The ROC curve illustrates the relationship between model predictions and actual
outcomes [52]. The curve plots the False Positive Rate (FPR) against the True Positive Rate
(TPR), and by varying the classification threshold, it describes the model’s generalization
capability. The area beneath the ROC curve, known as the AUC value, quantifies the
accuracy; a larger AUC value signifies a more accurate model [53].

4. Experimental Analysis and Results
4.1. Correlation Analysis of Indicators for Risk Assessment of Short-Term Heavy Rainfall-Based
Urban Floods

The study utilized Pearson correlation analysis to mitigate potential collinearity among
factors, thereby preserving the model’s efficiency and accuracy. Results from the Pearson
correlation (Figure 4), revealed significant correlations—all exceeding 0.6—among profile
curvature, topographic relief, STI, medical facilities, and night lights. Consequently, these
five indicator factors were excluded to refine the indicator system (Figure 5).
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4.2. Model Performance Assessment

In the WOA, optimal settings for population size (Pop) and maximum iterations are
crucial for algorithm performance. A small Pop size risks entrapment in local optima,
while a large Pop size may increase computational demands and hinders convergence.
Similarly, too few iterations result in insufficient search depth, whereas too many prolong
computation time and decrease convergence rates [54]. The experiment settings included
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a Pop of 30 and a maximum of 100 iterations. To enhance stability and robustness, the
WOA was performed 10 times, demonstrating convergence in the results; thus, the optimal
outcome was selected as the final model output. Figure 6 illustrates the fitness curves,
showing the algorithm’s gradual convergence towards the optimal solution, achieved after
43 total iterations.
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The ROC curves compare the performance of the WRSL-Short-Term Flood Risk As-
sessment Model with that of the average weight RF-SVM-LR model, as well as the RF, SVM,
LR, and XGB models, as shown in Figure 6. The accuracy, Precision, Recall, F1 Score, and
AUC for these models are detailed in Table 2.
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Table 2. Model performance evaluation results.

Name Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

RF 80.74 81.77 69.16 74.94 88.32
SVM 82.88 83.87 72.90 78.00 87.50
LR 82.49 84.83 70.56 77.04 87.20

XGBoost 78.40 81.99 61.68 70.4 87.41
average weight RF-SVM-LR 83.85 86.59 72.43 78.88 88.80

WRSL-Short-Term Flood Risk Assessment Model 84.24 79.82 83.18 81.46 89.27

According to the accuracy results, the WRSL-Short-Term Flood Risk Assessment
Model outperforms RF, SVM, LR, XGBoost, and average weight-RF-SVM-LR in assessing
flood risk, exhibiting superior performance in terms of accuracy, recall, F1 score, and AUC,
though it shows weaker precision metrics.

The increase in accuracy signifies that the model more accurately predicts both flood
and non-flood points. Recall demonstrates the model’s enhanced capability to identify
actual flood hazards, effectively reducing false alarms. The F1 score, a balanced average of
precision and recall, serves as a comprehensive metric for evaluating the model’s perfor-
mance. The increase in F1 Score reflects the model’s improved balance between avoiding
false alarms and reducing underreporting. Similarly, the rise in AUC demonstrates the
model’s enhanced ability to distinguish between flood and non-flood points. Despite a
decrease in precision—about 5% lower compared to other models, due to misclassifying a
small number of non-flooded points as high-risk areas—the significant boost in recall more
than compensates for this shortfall, resulting in enhanced overall model performance. This
shows that the WRSL-Short-Term Flood Risk Assessment Model does not unduly sacrifice
precision while prioritizing recall, thereby providing a more comprehensive and accurate
assessment of flood risk.

4.3. Mapping of Flood Risk Assessment Results

Using the natural breakpoint method, flood risk assessment results are categorized
into five levels, very-high-risk, high-risk, medium-risk, low-risk, and very-low-risk areas,
as shown in Figure 7. The flood risk map produced by the optimal model, the WRSL-
Short-Term Flood Risk Assessment Model, shows that the very-high- and high-risk zones
predominantly occur in areas characterized by low terrain, gentle slopes, high rainfall,
sparse vegetation cover, and high terrain humidity. The cities of Zhengzhou, Jiaozuo, and
Xinxiang are the most significantly impacted, with Hebei, Luoyang, Kaifeng, and Anyang
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also being affected to a lesser extent. Rapid urbanization and population growth have trans-
formed large expanses of natural land into residential and commercial zones, diminishing
areas that naturally regulate water, such as wetlands and grasslands. These areas were
initially capable of absorbing and storing significant volumes of rainwater; however, due
to the proliferation of impervious surfaces such as concrete and asphalt, rainwater fails to
infiltrate, leading to rapid pooling and increased surface runoff, thus exacerbating flooding
risks. In addition, the flat topography and minimal elevation changes in these regions
hinder the swift drainage of rainwater, causing water accumulation and elevated flood
risks. Medium risk areas, influenced by topography, are dispersed throughout the province,
prone to rainwater accumulation. Low-risk and very-low-risk areas are typically situated at
higher elevations, characterized by dense vegetation and low population densities. In these
regions, the higher elevation facilitates quicker water flow, reducing the time for water
accumulation. Dense vegetation enhances rainwater absorption and decreases surface
runoff. Low population density minimizes land development pressure, preserving natural
hydrological regulation zones. Additionally, a low level of economic activity helps maintain
the natural hydrological cycle by limiting land and infrastructure development.
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The flood risk zoning results and flood point densities derived from the WRSL-Short-
Term Flood Risk Assessment Model are presented in Figure 8. The distribution of risk
zones is as follows, an extremely-low-risk area (45.3%), low-risk area (32.1%), medium-risk
area (14.4%), high-risk area (5.8%), and extremely-high-risk area (2.4%), each associated
with respective flood point densities, corresponding to flood point densities of 7.99 × 10−8,
2.82 × 10−7, 4.21 × 10−7, 4.79 × 10−7, and 3.36 × 10−5Pcs/km2. Most of the study area is
classified into extremely-low-risk and low-risk categories. As risk levels increase, there
is a corresponding rise in the density of flood points, demonstrating that the risk area
categorization of the WRSL model aligns with the actual distribution of flood points in
the region.
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5. Discussion

Experiments confirmed the reliability of the short-term storm-type urban flood risk
assessment model proposed in this study. Traditional integration methods such as Bagging,
Boosting, Random Subspace (RS), Stacking, and Blending faced challenges with overfit-
ting and parameter tuning. In contrast, the WOA performed an efficient global search,
automatically adjusted its search strategy, and adapted to varying environments, proving
more robust to outliers [54]. Therefore, WOA can address the limitations of the afore-
mentioned integration methods, enhancing the model’s performance and robustness. The
WRSL-Short-Term Flood Risk Assessment Model outperforms single models in terms of
accuracy, recall, F1 score, and AUC, mainly because it synergizes the strengths of RF, SVM,
and LR [55–57]. This integration reduces the bias and variance inherent in single models,
thus enabling more reliable predictions. RF is particularly robust in handling nonlinear
and complex relationships, especially with high-dimensional data, by integrating multiple
decision trees to minimize overfitting. SVM excels in small sample and high-dimensional
data scenarios, adapting to different data structures via kernel functions. LR is valued
for the interpretability of its models and suits classification problems, particularly binary
classifications, offering clear predictions and straightforward models.

This study illustrates the benefits of an integrated learning approach for short-term
heavy rainfall-based urban flood risk assessment, highlighting its effectiveness in enhanc-
ing the accuracy and robustness of assessments. The flood risk assessment results indicate
higher risks in the central, eastern, and northeastern parts of Henan Province, providing
crucial guidance for resource allocation and emergency management. In practice, govern-
ment and emergency management authorities can use these results to prioritize resource
distribution, ensuring that critical areas receive necessary support. While this study focuses
on integrating three machine learning models—RF, SVM, and LR—future research could
explore combinations of other models like XGBoost, Artificial Neural Network, Decision
Tree, and K-Nearest Neighbor to further enhance performance. Additionally, comparative
studies with other integration methods such as Bagging, Boosting, RS, Stacking, and Blend-
ing will be included in future experiments to deeply investigate the differences between
the WRSL-Short-Term Flood Risk Assessment Model and alternative approaches.

6. Conclusions

In this study, the flooding disaster resulting from short-term extreme rainstorms in
Henan Province from 17 to 23 July 2021 serves as a case example. Influencing factors were
selected from three perspectives: hazard, exposure, and vulnerability. Pearson correlation
analysis was employed to reduce the multiple covariance among these factors. To harness
the strengths of RF, SVM, and LR models, an integrated learning model was developed,
utilizing the WOA as an optimization method to determine the optimal weights of the
model. This approach aimed to minimize the discrepancy between the flood risk assessment
and the actual disaster outcomes. Ultimately, an urban flood risk assessment map was
produced. The specific conclusions are as follows:

(1) The WRSL-Short-Term Flood Risk Assessment Model developed in this study
outperforms both the single model and the average weight RF-SVM-LR model in terms of
accuracy, Recall, F1 Score, and AUC. It offers a more precise assessment of flood risk and
presents a novel approach to evaluating the risks associated with short-term rainstorms,
enabling a more accurate assessment of the risk to the affected area.

(2) The optimally performing WRSL-Short-Term Flood Risk Assessment Model was
applied to evaluate flood risk from short-term heavy rainfall in Henan Province. The risks
were stratified into five categories, a very-low-risk zone, low-risk zone, medium-risk zone,
high-risk zone, and very-high-risk zone, constituting 45.3%, 32.1%, 14.4%, 5.8%, and 2.4%
of the area, respectively. The analysis indicates that the very-high-risk and high-risk zones
predominantly occur in the central, eastern, and northeastern regions of Henan Province,
largely in low-lying, heavily urbanized areas such as Zhengzhou, Jiaozuo, and Xinxiang.
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