Urban Spatial Development Mode and Haze Pollution in China: From the Perspective of Polycentricity
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
3. Model, Variable, and Data
3.1. Benchmark Model
3.2. Variable and Data Sources
3.2.1. Urban Polycentric Spatial Structure
3.2.2. Haze Pollution
3.2.3. Control Variables
4. Empirical Results and Discussion
4.1. Benchmark Regression Results
4.2. Robustness Check Results
4.3. Endogeneity Treatment Results
4.4. Heterogeneity Analysis Results
4.5. Mechanism Test Results
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, X.; Quan, J.; Zhao, X.; Pan, Y.; Cheng, Z.; Wei, Y.; Liao, Z.; Dou, Y.; Ma, P. Regional transport of aerosol above boundary layer and its radiation effect trigger severe haze pollution in Beijing. Atmos. Res. 2024, 298, 107145. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W. Increasing impact of urban fine particles (PM2.5) on areas surrounding Chinese cities. Sci. Rep. 2015, 5, 12467. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Han, L.; Zhang, R.Q. More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard. Environ. Pollut. 2016, 218, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Phipps, T.T.; Anselin, L. Measuring the benefits of air quality improvement: A spatial hedonic approach. J. Environ. Econ. Manag. 2003, 45, 24–39. [Google Scholar] [CrossRef]
- Chay, K.Y.; Greenstone, M. Does air quality matter? Evidence from the housing market. J. Political Econ. 2005, 113, 376–424. [Google Scholar] [CrossRef]
- Luechinger, S. Valuing air quality using the life satisfaction approach. Econ. J. 2009, 119, 482–515. [Google Scholar] [CrossRef]
- Ito, K.; Zhang, S. Willingness to pay for clean air: Evidence from air purifier markets in China. J. Political Econ. 2020, 128, 1627–1672. [Google Scholar] [CrossRef]
- Chay, K.Y.; Greenstone, M. The impact of air pollution on infant mortality: Evidence from geographic variation in pollution shocks induced by a recession. Q. J. Econ. 2003, 118, 1121–1167. [Google Scholar] [CrossRef]
- Tanaka, S. Environmental regulations on air pollution in China and their impact on infant mortality. J. Health Econ. 2015, 42, 90–103. [Google Scholar] [CrossRef]
- He, G.; Fan, M.; Zhou, M. The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games. J. Environ. Econ. Manag. 2016, 79, 18–39. [Google Scholar] [CrossRef]
- Schlenker, W.; Walker, W.R. Airports, air pollution, and contemporaneous health. Rev. Econ. Stud. 2016, 83, 768–809. [Google Scholar] [CrossRef]
- Cheung, C.W.; He, G.; Pan, Y. Mitigating the air pollution effect? The remarkable decline in the pollution-mortality relationship in Hong Kong. J. Environ. Econ. Manag. 2020, 101, 102316. [Google Scholar] [CrossRef] [PubMed]
- EEA. Air Quality in Europe—2019 Report; European Environment Agency (EEA): Copenhagen, Denmark, 2019. [Google Scholar]
- Viana, M.; Leeuw, F.; Bartonova, A.; Castell, N.; Ozturk, E.; Ortiz, A.G. Air quality mitigation in European cities: Status and challenges ahead. Environ. Int. 2020, 143, 105907. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Pang, R.; Chevallier, J.; Wei, Y.M.; Vo, D.T. Including intangible costs into the cost-of-illness approach: A method refinement illustrated based on the PM2.5 economic burden in China. Eur. J. Health Econ. 2019, 20, 501–511. [Google Scholar] [CrossRef]
- Qin, Y.; Wu, J.; Yan, J. Negotiating housing deal on a polluted day: Consequences and possible explanations. J. Environ. Econ. Manag. 2019, 94, 161–187. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. Sprawl and urban growth. In Handbook of Regional and Urban Economics; Elsevier: Amsterdam, The Netherlands, 2004; Volume 4, pp. 2481–2527. [Google Scholar]
- Brezzi, M.; Veneri, P. Assessing polycentric urban systems in the OECD: Country, regional and metropolitan perspectives. Eur. Plan. Stud. 2015, 23, 1128–1145. [Google Scholar] [CrossRef]
- Kloosterman, R.C.; Musterd, S. The polycentric urban region: Towards a research agenda. Urban Stud. 2001, 38, 623–633. [Google Scholar] [CrossRef]
- Liang, C.; Liu, X.; Tavera, C. Environmental externalities of urban agglomeration in China: New evidence from the perspective of economic density. Singap. Econ. Rev. 2023, 1–25. [Google Scholar] [CrossRef]
- Harari, M. Cities in bad shape: Urban geometry in India. Am. Econ. Rev. 2020, 110, 2377–2421. [Google Scholar] [CrossRef]
- Macioszek, E.; Granà, A.; Fernandes, P.; Coelho, M.C. New perspectives and challenges in traffic and transportation engineering supporting energy saving in smart cities—A multidisciplinary approach to a global problem. Energies 2022, 15, 4191. [Google Scholar] [CrossRef]
- Newman PW, G.; Kenworthy, J.R. Gasoline consumption and cities: A comparison of US cities with a global survey. J. Am. Plan. Assoc. 1989, 55, 24–37. [Google Scholar] [CrossRef]
- Zeng, J.; Qian, Y.; Yin, F.; Zhu, L.; Xu, D. A multi-value cellular automata model for multi-lane traffic flow under lagrange coordinate. Comput. Math. Organ. Theory 2022, 28, 178–192. [Google Scholar] [CrossRef]
- Carozzi, F.; Roth, S. Dirty density: Air quality and the density of American cities. J. Environ. Econ. Manag. 2023, 118, 102767. [Google Scholar] [CrossRef]
- Han, S.; Sun, B.; Zhang, T. Mono-and polycentric urban spatial structure and PM2.5 concentrations: Regarding the dependence on population density. Habitat Int. 2020, 104, 102257. [Google Scholar] [CrossRef]
- Faberman, R.J.; Freedman, M. The urban density premium across establishments. J. Urban Econ. 2016, 93, 71–84. [Google Scholar] [CrossRef]
- Duranton, G.; Turner, M.A. Urban form and driving: Evidence from US cities. J. Urban Econ. 2018, 108, 170–191. [Google Scholar] [CrossRef]
- Giuliano, G.; Small, K.A. Sub-centers in the Los Angeles region. Reg. Sci. Urban Econ. 1991, 21, 163–182. [Google Scholar] [CrossRef]
- McMillen, D.P. Nonparametric employment sub-center identification. J. Urban Econ. 2001, 50, 448–473. [Google Scholar] [CrossRef]
- Lee, B. “Edge” or “edgeless” cities? Urban spatial structure in US metropolitan areas, 1980 to 2000. J. Reg. Sci. 2007, 47, 479–515. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. How polycentric is urban China and why? A case study of 318 cities. Landsc. Urban Plan. 2016, 151, 10–20. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. How did urban polycentricity and dispersion affect economic productivity? A case study of 306 Chinese cities. Landsc. Urban Plan. 2018, 173, 51–59. [Google Scholar] [CrossRef]
- Anselin, L.; Lozano-Gracia, N. Errors in variables and spatial effects in hedonic house price models of ambient air quality. Empir. Econ. 2008, 34, 5–34. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E.; Liu, H. Towards a system of open cities in China: Home prices, FDI flows and air quality in 35 major cities. Reg. Sci. Urban Econ. 2010, 40, 1–10. [Google Scholar] [CrossRef]
- Zheng, S.; Cao, J.; Kahn, M.E.; Sun, C. Real estate valuation and cross-boundary air pollution externalities: Evidence from Chinese cities. J. Real Estate Financ. Econ. 2014, 48, 398–414. [Google Scholar] [CrossRef]
- Nishitateno, S.; Burke, P.J. Willingness to pay for clean air: Evidence from diesel vehicle registration restrictions in Japan. Reg. Sci. Urban Econ. 2021, 88, 103657. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Hao, Y.; Lu, Z.; Wu, H.; Ran, Q. Do economic activities cause air pollution? Evidence from China’s major cities. Sustain. Cities Soc. 2019, 49, 101593. [Google Scholar] [CrossRef]
- Acharyya, J. FDI, growth and the environment: Evidence from India on CO2 emission during the last two decades. J. Econ. Dev. 2009, 34, 43. [Google Scholar] [CrossRef]
- Harrison, R.M.; Van Vu, T.; Jafar, H.; Shi, Z. More mileage in reducing urban air pollution from road traffic. Environ. Int. 2021, 149, 106329. [Google Scholar] [CrossRef]
- Awan, A.M.; Azam, M. Evaluating the impact of GDP per capita on environmental degradation for G-20 economies: Does N-shaped environmental Kuznets curve exist? Environ. Dev. Sustain. 2022, 24, 11103–11126. [Google Scholar] [CrossRef]
- Hanson, G.H. Market potential, increasing returns and geographic concentration. J. Int. Econ. 2005, 67, 1–24. [Google Scholar] [CrossRef]
- Ioannides, Y.M.; Zhang, J. Walled cities in late imperial China. J. Urban Econ. 2017, 97, 71–88. [Google Scholar] [CrossRef]
- Skinner, G.W. The City in Late Imperial China; Palo Alto: Santa Clara, CA, USA; Stanford University Press: Redwood City, CA, USA, 1977. [Google Scholar]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef]
Variables | Variable Description | Observations | Mean | Standard Deviation |
---|---|---|---|---|
LnPM2.5 | Natural logarithm of annual average surface concentration of PM2.5 | 5925 | 3.554 | 0.594 |
LnPoly_a | Natural logarithm of the number of urban sub-centers | 3571 | 0.998 | 0.703 |
Poly_b | Population of urban sub-centers as a proportion of the population of all centers | 4130 | 0.326 | 0.218 |
Second | Proportion of secondary industry | 4746 | 49.842 | 12.438 |
Pfdi | Level of economic openness | 4346 | 2.783 | 4.153 |
Proad | Road area per capita | 4738 | 9.792 | 11.306 |
LnPgdp | Natural logarithm of GDP per capita | 4773 | 10.075 | 0.825 |
Capital | Whether it is a provincial capital city | 4849 | 0.113 | 0.317 |
Travelcity | Whether it is a tourist city | 5002 | 0.462 | 0.499 |
LnHistoricalsite | Natural logarithm of the number of historic sites | 4157 | 0.351 | 0.470 |
LnSummertemp | Natural logarithm of average summer temperature | 4849 | 3.198 | 0.132 |
LnLatitude | Natural logarithm of geographic latitude | 4849 | 3.472 | 0.206 |
LnPM2.5 | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
LnPoly_a | 0.072 *** | 0.067 *** | 0.049 *** | 0.050 *** | ||
(0.009) | (0.010) | (0.009) | (0.009) | |||
Poly_b | 0.076 *** | 0.076 ** | ||||
(0.029) | (0.030) | |||||
Second | 0.004 *** | 0.004 *** | ||||
(0.001) | (0.001) | |||||
Pfdi | 0.005 ** | 0.004 * | ||||
(0.003) | (0.002) | |||||
Proad | −0.002 ** | −0.002 *** | ||||
(0.001) | (0.001) | |||||
LnPgdp | 0.289 *** | 0.259 *** | ||||
(0.079) | (0.075) | |||||
(LnPgdp)2 | −0.019 *** | −0.017 *** | ||||
(0.004) | (0.004) | |||||
Capital | 0.057 *** | 0.106 *** | 0.058 *** | 0.112 *** | ||
(0.017) | (0.020) | (0.018) | (0.020) | |||
Travelcity | −0.018 | 0.011 | −0.025 * | 0.002 | ||
(0.014) | (0.015) | (0.013) | (0.014) | |||
LnHistoricalsite | 0.142 *** | 0.154 *** | 0.147 *** | 0.157 *** | ||
(0.013) | (0.014) | (0.012) | (0.013) | |||
LnSummertemp | 2.117 *** | 2.062 *** | 2.398 *** | 2.346 *** | ||
(0.098) | (0.096) | (0.076) | (0.088) | |||
LnLatitude | 0.777 *** | 0.740 *** | 0.881 *** | 0.849 *** | ||
(0.049) | (0.048) | (0.044) | (0.047) | |||
Year FE | NO | YES | YES | YES | YES | YES |
Observations | 3571 | 3571 | 3042 | 2721 | 3537 | 3160 |
R2 | 0.016 | 0.050 | 0.362 | 0.377 | 0.428 | 0.415 |
LnPM2.5 | |||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
L1. LnPoly_a | 0.044 *** | ||||
(0.009) | |||||
L2. LnPoly_a | 0.042 *** | ||||
(0.010) | |||||
L1. Poly_b | 0.057 * | ||||
(0.031) | |||||
L2. Poly_b | 0.055 * | ||||
(0.033) | |||||
LnCompact | −0.144 *** | ||||
(0.012) | |||||
Second | 0.005 *** | 0.005 *** | 0.005 *** | 0.005 *** | 0.004 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Pfdi | 0.010 *** | 0.013 *** | 0.007 *** | 0.010 *** | 0.005 ** |
(0.002) | (0.002) | (0.002) | (0.002) | (0.002) | |
Proad | −0.001 | −0.001 | −0.002 ** | −0.003 *** | −0.003 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
LnPgdp | 0.338 *** | 0.320 *** | 0.296 *** | 0.268 *** | 0.221 * |
(0.087) | (0.083) | (0.078) | (0.073) | (0.130) | |
(LnPgdp)2 | −0.022 *** | −0.021 *** | −0.020 *** | −0.018 *** | −0.012 * |
(0.005) | (0.004) | (0.004) | (0.004) | (0.007) | |
Capital | 0.119 *** | 0.112 *** | 0.116 *** | 0.113 *** | 0.180 *** |
(0.021) | (0.022) | (0.021) | (0.023) | (0.019) | |
Travelcity | 0.009 | 0.008 | 0.001 | 0.002 | 0.021 |
(0.016) | (0.017) | (0.015) | (0.016) | (0.014) | |
LnHistoricalsite | 0.149 *** | 0.148 *** | 0.153 *** | 0.147 *** | 0.147 *** |
(0.014) | (0.015) | (0.013) | (0.014) | (0.012) | |
LnSummertemp | 2.088 *** | 2.054 *** | 2.378 *** | 2.369 *** | 2.118 *** |
(0.104) | (0.108) | (0.094) | (0.099) | (0.093) | |
LnLatitude | 0.716 *** | 0.705 *** | 0.827 *** | 0.825 *** | 0.828 *** |
(0.051) | (0.054) | (0.050) | (0.052) | (0.044) | |
Year FE | YES | YES | YES | YES | YES |
Observations | 2468 | 2243 | 2889 | 2645 | 3160 |
R2 | 0.385 | 0.369 | 0.424 | 0.417 | 0.449 |
LnPoly_a | LnPM2.5 | Poly_b | LnPM2.5 | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
First Stage | Second Stage | First Stage | Second Stage | |
LnPoly_a | 0.445 *** | |||
(0.042) | ||||
Poly_b | 1.872 *** | |||
(0.196) | ||||
LnCitywall | 0.283 *** | 0.065 *** | ||
(0.018) | (0.005) | |||
Second | −0.004 ** | 0.005 *** | −0.001 ** | 0.005 *** |
(0.001) | (0.001) | (0.000) | (0.001) | |
Pfdi | 0.002 | 0.002 | 0.002 ** | −0.002 |
(0.003) | (0.002) | (0.001) | (0.002) | |
Proad | 0.003 | 0.002 | 0.003 *** | −0.002 |
(0.003) | (0.002) | (0.001) | (0.002) | |
LnPgdp | −0.345 * | 0.106 | 0.119 ** | −0.287 |
(0.198) | (0.126) | (0.060) | (0.183) | |
(LnPgdp)2 | 0.033 *** | −0.013 ** | −0.005 | 0.012 |
(0.010) | (0.007) | (0.003) | (0.009) | |
Capital | −0.164 *** | 0.120 *** | −0.203 *** | 0.425 *** |
(0.045) | (0.029) | (0.013) | (0.047) | |
Travelcity | 0.114 *** | −0.054 *** | −0.028 *** | 0.042 * |
(0.033) | (0.021) | (0.009) | (0.023) | |
LnHistoricalsite | −0.041 | 0.109 *** | −0.039 *** | 0.145 *** |
(0.033) | (0.019) | (0.010) | (0.021) | |
LnSummertemp | −1.098 *** | 2.184*** | −0.259 *** | 2.434 *** |
(0.149) | (0.122) | (0.043) | (0.110) | |
LnLatitude | −0.217 ** | 1.062 *** | −0.096 *** | 1.247 *** |
(0.086) | (0.063) | (0.025) | (0.061) | |
Year FE | YES | YES | YES | YES |
F-statistic | 242.43 | —— | 163.95 | —— |
Observations | 2388 | 2388 | 2733 | 2733 |
LnPM2.5 | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
LnPoly_a | 0.054 *** | 0.162 *** | 0.053 *** | |||
(0.010) | (0.028) | (0.011) | ||||
Poly_b | 0.085 *** | 0.219 *** | 0.078 *** | |||
(0.031) | (0.070) | (0.030) | ||||
LnPoly_a×Subway | −0.054 *** | |||||
(0.020) | ||||||
LnPoly_a×LnSubway_road | −0.158 *** | |||||
(0.033) | ||||||
LnPoly_a×LnSubway_station | −0.042 *** | |||||
(0.007) | ||||||
Poly_b×Subway | −0.225 *** | |||||
(0.072) | ||||||
Poly_b×LnSubway_road | −0.202 ** | |||||
(0.081) | ||||||
Poly_b×LnSubway_station | −0.047 ** | |||||
(0.021) | ||||||
Subway | 0.080 ** | 0.152 *** | ||||
(0.035) | (0.035) | |||||
LnSubway_road | 0.387 *** | 0.088 *** | ||||
(0.062) | (0.024) | |||||
LnSubway_station | 0.097 *** | 0.021 *** | ||||
(0.014) | (0.007) | |||||
Controls | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Observations | 2721 | 3176 | 3176 | 3160 | 3160 | 3160 |
R2 | 0.378 | 0.080 | 0.079 | 0.418 | 0.415 | 0.415 |
LnPbus | LnPbus | LnCar | LnCar | LnPc | LnPc | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
LnPoly_a | −0.199 *** | 0.289 *** | 0.121 *** | |||
(0.025) | (0.026) | (0.040) | ||||
Poly_b | −0.551 *** | 0.696 *** | 0.398 *** | |||
(0.079) | (0.096) | (0.124) | ||||
Controls | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Observations | 2692 | 3121 | 532 | 572 | 3170 | 3673 |
R2 | 0.364 | 0.355 | 0.512 | 0.435 | 0.663 | 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Zhao, J.; Ma, W. Urban Spatial Development Mode and Haze Pollution in China: From the Perspective of Polycentricity. Sustainability 2024, 16, 8250. https://doi.org/10.3390/su16188250
Liang C, Zhao J, Ma W. Urban Spatial Development Mode and Haze Pollution in China: From the Perspective of Polycentricity. Sustainability. 2024; 16(18):8250. https://doi.org/10.3390/su16188250
Chicago/Turabian StyleLiang, Changyi, Jing Zhao, and Weibiao Ma. 2024. "Urban Spatial Development Mode and Haze Pollution in China: From the Perspective of Polycentricity" Sustainability 16, no. 18: 8250. https://doi.org/10.3390/su16188250
APA StyleLiang, C., Zhao, J., & Ma, W. (2024). Urban Spatial Development Mode and Haze Pollution in China: From the Perspective of Polycentricity. Sustainability, 16(18), 8250. https://doi.org/10.3390/su16188250