Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management
Abstract
:1. Introduction
2. Literature Review
3. Material and Methods
3.1. Municipal Solid Waste Incinerated Fly Ash
3.2. Municipal Solid Waste Incinerated Fly Ash Micro Structure Analysis
3.3. Aluminium Foil Basic Test
3.3.1. Roughness
3.3.2. SEM Analysis for Aluminium Foil
3.3.3. Reflectivity Measurements
3.3.4. Reflectivity over Different Spectral Range
3.3.5. Aluminium Foil SRI Value
4. Municipal Solid Waste Incinerated Fly Ash Concrete Roof Tiles
4.1. Municipal Solid Waste Incinerated Fly Concrete Roof Tiles Temperature Analysis
4.2. Solar Reflectance
4.3. Solar Absorption
4.4. Thermal Emissivity
5. The Influence of Building Orientation on Solar Photovoltaic Power Generation
5.1. Ideal Alignment
5.2. Angle of Inclination
5.3. Factors to Consider Regarding Shading
5.4. Orientation and Design of the Roof
5.5. Influence of Orientation on Power Generation
5.6. Illustrative Situation
6. Municipal Solid Waste Incinerated Fly Ash Tiles Integrated with Solar PV
6.1. Prototype
6.2. Normal Side Wall without Aluminium Foil
6.3. Normal Side Wall vs. North-South-Side-Placed Aluminium Foil
6.4. Normal Side Wall vs. East to West-Placed Aluminium Foil
6.5. Normal Side Wall vs. All the Four Sides Are Covered with Aluminium Foil
7. Conclusions
- Improved Thermal Comfort: MSW fly ash tiles assist in regulating interior temperatures by minimizing the temperature disparity inside structures to only 2 degrees Celsius. This little temperature variation fosters a more stable and pleasant interior atmosphere, diminishing the need for excessive heating or cooling and thereby minimizing energy use.
- Enhanced Solar Photovoltaic (PV) Efficiency: The tiles are engineered to efficiently absorb and retain heat, hence improving the performance of integrated solar PV systems. Enhancing the thermal efficiency of the tiles substantially elevates the total energy production of the photovoltaic systems. This enhances the efficient use of solar energy, resulting in increased power output and less reliance on traditional energy sources.
- Strategic Application of Aluminium Foil: The integration of aluminium foil on all sides of the roof tiles is essential for optimizing energy absorption. Enveloping all four sides with aluminum foil yields a 5% increase in power production from the photovoltaic systems. Furthermore, positioning the foil in an east-west alignment increases power output by an additional 4%, and a north-south configuration yields an extra 3%. This strategic application enhances the energy-collecting efficiency of the roof tiles.
- Sustainable Resource Management: Substituting natural sand and M sand with municipal solid waste (MSW) fly ash mitigates waste management challenges by reusing incinerated fly ash, thereby reducing the dependence on natural resources. This method facilitates the recycling and repurposing of waste resources, therefore advancing a circular economy and fostering environmental sustainability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scoccimarro, E.; Cattaneo, O.; Gualdi, S.; Mattion, F.; Bizeul, A.; Risquez, A.M.; Quadrelli, R. Country-level energy demand for cooling has increased over the past two decades. Commun. Earth Environ. 2023, 4, 1–17. [Google Scholar] [CrossRef]
- Saavedra, A.; Galvis, N.A.; Mesa, F.; Banguero, E.; Castaneda, M.; Zapata, S.; Aristizabal, A.J. Current state of the worldwide renewable energy generation: A review. Int. J. Eng. Appl. (IREA) 2021, 9, 115. [Google Scholar] [CrossRef]
- Strielkowski, W.; Tarkhanova, E.; Tvaronavǐ, M.; Petrenko, Y. Renewable Energy in the Sustainable Development of Electrical. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Hwang, R.-L.; Fang, P.-L.; Chen, W.-A. Impact of solar radiation on indoor thermal comfort near highly glazed façades in a hot-humid subtropical climate: An experimental evaluation. Build. Environ. 2023, 243, 110725. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Hafez, F.S.; Sa'Di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strat. Rev. 2023, 45, 101013. [Google Scholar] [CrossRef]
- Meena, M.D.; Dotaniya, M.; Meena, B.; Rai, P.; Antil, R.; Meena, H.; Meena, L.; Dotaniya, C.; Meena, V.S.; Ghosh, A.; et al. Municipal solid waste: Opportunities, challenges and management policies in India: A review. Waste Manag. Bull. 2023, 1, 4–18. [Google Scholar] [CrossRef]
- Sofi, M.; Sabri, Y.; Zhou, Z.; Mendis, P. Transforming Municipal Solid Waste into Construction Materials. Sustainability 2019, 11, 2661. [Google Scholar] [CrossRef]
- Nayak, D.K.; Abhilash, P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Reilly, A.; Kinnane, O. The impact of thermal mass on building energy consumption. Appl. Energy 2017, 198, 108–121. [Google Scholar] [CrossRef]
- Abera, Y. Optimizing Construction Waste Recycling: Strategies, Technologies, and Environmental Impacts. 2023, pp. 1–30. Available online: https://www.researchgate.net/publication/375152348_Optimizing_Construction_Waste_Recycling_Strategies_Technologies_and_Environmental_Impacts (accessed on 14 March 2024).
- Dutta, A.; Jinsart, W. Waste generation and management status in the fast-expanding Indian cities: A review. J. Air Waste Manag. Assoc. 2020, 70, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Nilimaa, J. Smart materials and technologies for sustainable concrete construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Salgado, F.d.A. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, 104452. [Google Scholar] [CrossRef]
- Cui, C.; Liu, Y.; Hope, A.; Wang, J. Review of studies on the public–private partnerships (PPP) for infrastructure projects. Int. J. Proj. Manag. 2018, 36, 773–794. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Yuan, Y.; Bai, H. Experimental Research on the Seismic Performance of Precast Concrete Frame with Replaceable Artificial Controllable Plastic Hinges. J. Struct. Eng. 2023, 149, 04022222. [Google Scholar] [CrossRef]
- Zhang, S.; Ocłoń, P.; Klemeš, J.J.; Michorczyk, P.; Pielichowska, K.; Pielichowski, K. Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renew. Sustain. Energy Rev. 2022, 165, 112560. [Google Scholar] [CrossRef]
- Iyer-Raniga, U.; Huovila, P.; Erasmus, P. Sustainable Buildings and Construction: Responding to the SDGs. Sustain. Cities Communities 2021, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.; Fang, Z.; Qian, Y.; Zhong, P.; Yan, J. Review of harmless treatment of municipal solid waste incineration fly ash. Waste Dispos. Sustain. Energy 2020, 2, 1–25. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Ghazali, M.F.; Kumarasamy, S. Pathway to Sustainability: An Overview of Renewable Energy Integration in Building Systems. Sustainability 2024, 16, 638. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, Y.; Zhang, W.; Zhu, L. Property Assessment of High-Performance Concrete Containing Three Types of Fibers. Int. J. Concr. Struct. Mater. 2021, 15, 39. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Zhang, W.; Yuan, Y. Seismic behavior of a friction-type artificial plastic hinge for the precast beam–column connection. Arch. Civ. Mech. Eng. 2022, 22, 201. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.; Zhang, C.; Yang, Z.; Li, C.; Qiao, P. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments. Adv. Struct. Eng. 2022, 26, 533–546. [Google Scholar] [CrossRef]
- Yao, J.; Xu, H.; Dai, Y.; Huang, M. Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel. Sol. Energy 2020, 197, 279–291. [Google Scholar] [CrossRef]
- Das, S. Short term forecasting of solar radiation and power output of 89.6 kWp solar PV power plant. Mater. Today Proc. 2020, 39, 1959–1969. [Google Scholar] [CrossRef]
- Lebbi, M.; Touafek, K.; Benchatti, A.; Boutina, L.; Khelifa, A.; Baissi, M.T.; Hassani, S. Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study. Appl. Therm. Eng. 2020, 182, 116033. [Google Scholar] [CrossRef]
- Hu, Y.-H.; Li, M.-J.; Zhou, Y.-P.; Xi, H.; Hung, T.-C. Multi-physics investigation of a GaAs solar cell based PV-TE hybrid system with a nanostructured front surface. Sol. Energy 2021, 224, 102–111. [Google Scholar] [CrossRef]
- Li, D.; King, M.; Dooner, M.; Guo, S.; Wang, J. Study on the cleaning and cooling of solar photovoltaic panels using compressed airflow. Sol. Energy 2021, 221, 433–444. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wang, M.; Deng, J.; Cai, Y.; Wei, W.; Guo, M. Optimization, validation and analyses of a hybrid PV-battery-diesel power system using enhanced electromagnetic field optimization algorithm and ε-constraint. Energy Rep. 2024, 11, 5335–5349. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Huang, Y.; Lin, B.; Kang, S. Temperature-dependent debonding behavior of adhesively bonded CFRP-UHPC interface. Compos. Struct. 2024, 340, 118200. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, Y.; Zhang, W.; Li, M. Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint. Eng. Struct. 2021, 245, 112848. [Google Scholar] [CrossRef]
- Abinaya, T.L.; Balasubramanian, M. A Circular Economy in Waste Management Carrying Out Experimental Evaluation of Compressed Stabilized Earth Block Using Municipal Solid Waste Incinerator Fly Ash. J. Eng. Res. 2022, 10. [Google Scholar] [CrossRef]
- Latha, A.T.; Murugesan, B.; Kabeer, K.S.A. Valorisation of municipal solid waste incinerator bottom ash for the production of compressed stabilised earth blocks. Constr. Build. Mater. 2024, 423, 135827. [Google Scholar] [CrossRef]
- Latha, A.T.; Murugesan, B.; Thomas, B.S. Compressed Stabilized Earth Block Incorporating Municipal Solid Waste Incinerator Bottom Ash as a Partial Replacement for Fine Aggregates. Buildings 2023, 13, 1114. [Google Scholar] [CrossRef]
- Rönnelid, M.; Adsten, M.; Lindström, T.; Nostell, P.; Wäckelgård, E. Optical scattering from rough-rolled aluminum surfaces. Appl. Opt. 2001, 40, 2148–2158. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Wang, X.; Tang, H. Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete. Structures 2023, 58, 105500. [Google Scholar] [CrossRef]
- He, L.; Chen, B.; Liu, Q.; Chen, H.; Li, H.; Chow, W.T.; Tang, J.; Du, Z.; He, Y.; Pan, J. A quasi-exponential distribution of interfacial voids and its effect on the interlayer strength of 3D printed concrete. Addit. Manuf. 2024, 89, 104296. [Google Scholar] [CrossRef]
- He, L.; Pan, J.; Hee, Y.S.; Chen, H.; Li, L.G.; Panda, B.; Chow, W.T. Development of novel concave and convex trowels for higher interlayer strength of 3D printed cement paste. Case Stud. Constr. Mater. 2024, 21, e03745. [Google Scholar] [CrossRef]
- Mukilan, P.; Balasubramanian, M.; Narayanamoorthi, R.; Supraja, P.; Velan, C. Integrated solar PV and piezoelectric based torched fly ash tiles for smart building applications with machine learning forecasting. Sol. Energy 2023, 258, 404–417. [Google Scholar] [CrossRef]
- Poyyamozhi, M.; Murugesan, B.; Perumal, S.; Chidambaranathan, V.; Senthil, R. Elevating thermal comfort with eco-friendly concrete roof tiles crafted from municipal solid waste. J. Build. Eng. 2024, 88, 109222. [Google Scholar] [CrossRef]
- Schabbach, L.M.; Marinoski, D.L.; Güths, S.; Bernardin, A.M.; Fredel, M.C. Pigmented glazed ceramic roof tiles in Brazil: Thermal and optical properties related to solar reflectance index. Sol. Energy 2018, 159, 113–124. [Google Scholar] [CrossRef]
- Singh, K.; Hachem-Vermette, C.; D’almeida, R. Solar neighborhoods: The impact of urban layout on a large-scale solar strategies application. Sci. Rep. 2023, 13, 18843. [Google Scholar] [CrossRef] [PubMed]
- Mehleri, E.; Zervas, P.; Sarimveis, H.; Palyvos, J.; Markatos, N. Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renew. Energy 2010, 35, 2468–2475. [Google Scholar] [CrossRef]
- Yuliza, E.; Lizalidiawati, L.; Ekawita, R. The effect of tilt angle and orientation of solar surface on solar rooftop miniature system in Bengkulu University. Int. J. Energy Environ. Eng. 2021, 12, 589–598. [Google Scholar] [CrossRef]
- Jamal, J.; Mansur, I.; Rasid, A.; Mulyadi, M.; Marwan, M.D.; Marwan, M. Evaluating the shading effect of photovoltaic panels to optimize the performance ratio of a solar power system. Results Eng. 2024, 21, 101878. [Google Scholar] [CrossRef]
- Panicker, K.; Anand, P.; George, A. Assessment of building energy performance integrated with solar PV: Towards a net zero energy residential campus in India. Energy Build. 2023, 281, 112736. [Google Scholar] [CrossRef]
- Wu, X.; Yang, C.; Han, W.; Pan, Z. Integrated design of solar photovoltaic power generation technology and building construction based on the Internet of Things. Alex. Eng. J. 2021, 61, 2775–2786. [Google Scholar] [CrossRef]
Physical Properties | Value |
---|---|
Water absorption | 14.08% |
Specific gravity | 2.4 |
Finess modulus | 2.3 |
Loose bulk density | 1105 kg/m3 |
Compacted bulk density | 1356 kg/m3 |
Chemical Properties | Value% |
---|---|
SiO2 | 64.75 |
Al2O3 | 0.78 |
Fe2O3 | 0.38 |
CaCO3 | 14.85 |
Mg | 0.74 |
C | 15.53 |
Test Name | Value |
---|---|
Roughness Value | |
Bright Side | (Ra = 0.210 ± 0.012 µm) |
Matte Side | (Ra = 0.467 ± 0.079 µm). |
Sample | Cement | M-Sand | Torched Fly Ash | Course Aggregate (6 mm) | Course Aggregate (12 mm) | W/C Ratio |
---|---|---|---|---|---|---|
Torched Fly Ash Roof Tiles layer one | 1 | 0.7 | 0.3 | - | 2 | 0.4 |
Torched Fly Ash Roof Tiles layer two | 1 | 1.4 | 0.6 | 1 | 3 | 0.4 |
Tiles SRI Value | Value |
---|---|
Solar reflectivity | 0.8 |
Solar absorption | 0.259 |
Thermal emissivity | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poyyamozhi, M.; Murugesan, B.; Narayanamoorthi, R.; Abinaya, T.L.; Shorfuzzaman, M.; Aboelmagd, Y. Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management. Sustainability 2024, 16, 8257. https://doi.org/10.3390/su16188257
Poyyamozhi M, Murugesan B, Narayanamoorthi R, Abinaya TL, Shorfuzzaman M, Aboelmagd Y. Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management. Sustainability. 2024; 16(18):8257. https://doi.org/10.3390/su16188257
Chicago/Turabian StylePoyyamozhi, Mukilan, Balasubramanian Murugesan, Rajamanickam Narayanamoorthi, Thenarasan Latha Abinaya, Mohammad Shorfuzzaman, and Yasser Aboelmagd. 2024. "Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management" Sustainability 16, no. 18: 8257. https://doi.org/10.3390/su16188257
APA StylePoyyamozhi, M., Murugesan, B., Narayanamoorthi, R., Abinaya, T. L., Shorfuzzaman, M., & Aboelmagd, Y. (2024). Sustainable Concrete Roof Tiles: Integrating Aluminium Foil, Fly Ash, Solar PV, and Management. Sustainability, 16(18), 8257. https://doi.org/10.3390/su16188257