
Citation: Chen, H.; Cui, X.; Shi, Y.; Li,

Z.; Liu, Y. Impact of Policy Intensity

on Carbon Emission Reductions:

Based on the Perspective of China’s

Low-Carbon Policy. Sustainability

2024, 16, 8265. https://doi.org/

10.3390/su16188265

Received: 30 August 2024

Revised: 17 September 2024

Accepted: 19 September 2024

Published: 23 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Impact of Policy Intensity on Carbon Emission Reductions:
Based on the Perspective of China’s Low-Carbon Policy
Haonan Chen 1,*, Xiaoning Cui 2,*, Yu Shi 3, Zhi Li 1 and Yali Liu 1

1 School of Economics, Capital University of Economics and Business, Beijing 100070, China;
lizhi@cueb.edu.cn (Z.L.); 12021030002@cueb.edu.cn (Y.L.)

2 School of International Business, Beijing Foreign Studies University, Beijing 100070, China
3 School of Architecture and Art Design, Hebei University of Technology, Tianjin 300401, China;

shiyu20001102@163.com
* Correspondence: chn@cueb.edu.cn (H.C.); cuixiaoning@bfsu.edu.cn (X.C.)

Abstract: Economic development often results in significant greenhouse gas emissions, contributing
to global climate change, which demands immediate attention. Despite implementing various low-
carbon policies to promote sustainable economic and environmental progress, current evaluations
reveal limitations and deficiencies. Therefore, this study utilizes a dataset detailing policy intensity
at a prefecture-level city in China to investigate the impacts of these policies on carbon emission
reduction from 2007 to 2022 in 334 prefecture-level cities, employing a fixed-effects model. Addition-
ally, it assesses the policies’ efficacy. The findings indicate a significant negative correlation between
China’s low-carbon policies and carbon emissions, supported robustly by multiple tests. Specifi-
cally, a one-unit increase in China’s policy intensity correlates with a 0.53-unit reduction in carbon
emissions. Furthermore, the heterogeneity analysis shows that variations in urban agglomerations,
environmental resource endowments, pollution levels, and low-carbon policy intensities influence
the effectiveness of these policies in reducing carbon emissions. This analysis underscores that policy
intensity achieves emission reductions through technological innovation, industrial transformation,
welfare crowding out, and pollution transfer, with varying impacts across different environmental
contexts, pollution levels, and policy intensities. Based on this analysis, we recommend several poli-
cies: formulating low-carbon strategies tailored to local conditions, enhancing regional low-carbon
policies, establishing cross-regional coordination mechanisms, and so on. These recommendations
not only offer valuable policy insights for China but also serve as useful references for the green and
sustainable development of other developing countries.

Keywords: low-carbon policy intensity; carbon reduction; welfare crowding out; pollution shelters;
urban economy

1. Introduction

Over the past three decades, amidst the increasing frequency of climate extremes
and worsening global warming, the governmental focus has increasingly turned towards
concurrently advancing the economy and the ecosystem, heightening the urgency for
carbon reduction efforts [1–3]. In response to these unsustainable trends, policymakers are
actively pursuing pathways to achieve a low-carbon society, and in some cases, aiming
for a zero-carbon society [4,5]. Urban economies contribute approximately 80% to the
GDP and emit about 70% of carbon emissions, and so cities are recognized as pivotal
arenas for carbon mitigation strategies and sustainable development initiatives [6,7]. As
the world’s largest developing nation and a significant carbon emitter, China is proactively
exploring and implementing low-carbon policies to combat climate change [8–10]. However,
substantial heterogeneity persists among Chinese cities regarding policy frameworks, scale,
and economic development, emphasizing the need for further research to elucidate carbon
mitigation dynamics at the municipal level [11,12].
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In pursuit of its carbon reduction and sustainable development objectives, China
introduced over 7200 low-carbon policy initiatives and climate change measures from 2007
to 2022 [13,14]. In 2007, the State Council of China launched the National Program for
Responding to Climate Change, marking the beginning of China’s comprehensive policy
approach to addressing climate change [15]. In the realm of Chinese climate policy, a pivotal
initiative emerged in 2009 with the inception of the first national program for climate change
response by a developing nation. This foundational document laid the groundwork for
subsequent provincial-level low-carbon pilots aimed at tailoring development pathways to
local contexts [16]. Building upon this framework, the State Council furthered these efforts
in 2010 through the issuance of the Notice on the Pilot Work of Low-Carbon Provinces,
Regions, and Cities [17]. This notice formally introduced the concept of low-carbon devel-
opment at the urban level, cementing it as the trajectory for future urban endeavors [18].
The year 2013 marked a significant milestone with the launch of seven pilot cities for carbon
emissions trading, demonstrating China’s commitment to involving enterprises in pursuing
low-carbon development [19]. Additionally, on 17 June 2013, China inaugurated its first
National Low Carbon Day, dedicated to promoting low-carbon development principles
and advancing efforts to reduce greenhouse gas emissions in urban areas [20]. Subse-
quently, in 2015, China submitted its autonomous contributions to the United Nations,
outlining its efforts to combat climate change [21]. This submission laid the groundwork
for China’s pursuit of objectives outlined by the United Nations Framework Convention
on Climate Change (UNFCCC) [22]. China set a dual-carbon objective in 2021, aiming for
carbon peaking by 2030 and carbon neutrality by 2060, underscoring its proactive stance
toward achieving these goals across its cities. That same year, China achieved a governance
milestone by incorporating carbon neutrality into both the 14th Five-Year Plan and the
government’s work report for the National People’s Congress. Moreover, in 2021, China
established a national carbon emissions trading market, positioning itself as the world’s
largest market in terms of greenhouse gas emissions [23]. However, at the regional level,
particularly within local jurisdictions, the strength of low-carbon policies often exceeds that
at the national level [24,25]. Local low-carbon policies demonstrate greater specificity and
adaptability compared to national ones. Therefore, there is a critical need to quantify this
phenomenon through the concept of policy intensity. This study aims to develop a policy
indicator framework employing machine learning techniques [26]. This framework aims to
assess the index of policy intensity at the prefectural municipal level in China from 2007 to
2022. Furthermore, it seeks to analyze the impact of policy intensity on carbon emissions.

The purpose of this paper is to examine how policy intensity influences reductions
in carbon emissions. Building on this premise, the contributions of this study are two
points. First, its approach to variable measurement is methodologically rigorous and
robust. Departing from traditional practices reliant on proxy variables, this study extends
the methodological foundation by employing machine learning methodologies [26]. This
enables the development of a comprehensive indicator system designed to evaluate the
intensity of low-carbon policies. Such an approach enhances the authenticity and scientific
rigor of measuring policy intensity at the municipal level, distinguishing it from previous
studies. Second, in the realm of selecting variables for carbon emission reduction, this study
adopts a refined methodology inspired by the latest study [2]. By employing the continuous
dynamic distribution method of the improved kernel density function, it overcomes the
limitations associated with traditional techniques. This study applies their continuous
dynamic distribution method using the improved kernel density function to analyze carbon
emission reduction data across China’s prefecture-level cities. This approach circumvents
the constraints of traditional methods, which often rely on province-level panel data with
limited sample sizes. Additionally, this study expands the scope of research on low-carbon
policies and carbon emission reduction. While the existing literature has identified scientific
and technological innovation and industrial transformation paths as mechanisms through
which low-carbon policies affect carbon emission reduction [27–29], few studies have
explored mechanisms from the perspectives of welfare crowding out and pollution transfer.
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By incorporating these perspectives into the research framework, this study broadens the
understanding of the relationship between policy intensity and carbon emission reduction.
Consequently, it facilitates the analysis of the carbon emission reduction effects attributed
to the intensity of low-carbon cities. Moreover, it provides a scientific basis for national
and local governments to formulate urban low-carbon development plans and supportive
policies within the context of the “dual-carbon” strategy. Additionally, this study presents a
reference model for the low-carbon sustainable development pathways of other developing
nations based on China’s experiences in low-carbon road development.

The increase in carbon emissions resulting from economic growth has triggered global
warming, underscoring the critical need to balance economic prosperity with environmen-
tal preservation for sustainable development [30,31]. Research highlights that reducing
carbon emissions is essential for fostering sustainability [32–34]. There are two primary ap-
proaches to achieve this: leveraging scientific, technological, and innovative advancements
to enhance energy efficiency and drive industrial transformation [35,36], and implementing
regulatory measures to limit carbon emissions [37]. Among these methods, the effectiveness
of low-carbon policies warrants thorough investigation. At the city level, such policies
play a crucial role in achieving the Sustainable Development Goals [38]. Accordingly,
extensive academic discourse has emerged on the efficacy of stringent policies in reducing
carbon emissions at urban levels [39,40], thereby advancing the SDGs. Most research in
this area focuses on developed countries, leaving a significant gap in studies of developing
nations [41]. While some scholars have examined the objectives, developmental contexts,
and assessment methodologies of low-carbon policies [42,43], little attention has been paid
to investigating the impact of carbon intensity on emission reduction in low-carbon cities.
This gap may stem from challenges in accurately measuring city-level carbon dioxide
emissions, which hinders the creation of comprehensive datasets. This study addresses
this gap by employing an enhanced continuous stochastic kernel density function method,
building on a dynamic distribution approach, to quantify China’s carbon emissions at the
prefecture-level city scale from 2007 to 2022 [44]. Unlike conventional methods like vegeta-
tion carbon sequestration and urban satellite data, this approach mitigates subjective biases
in sample partitioning, ensuring consistent traversal outcomes and transfer probabilities
in the calculation results. Furthermore, it directly assesses the inherent nature of carbon
emissions, thereby reducing the impacts of extraneous factors.

In the realm of urban low-carbon policies, scholarly attention predominantly focuses
on elucidating the determinants of carbon emissions, outlining mechanistic pathways, and
devising evaluation frameworks [45,46]. Significant contributions include the establishment
of evaluative metrics by scholars, which serve as benchmarks for assessing the effective-
ness of low-carbon policy initiatives. Liu et al. (2022) employed spatial Markov chains,
nonparametric kernel density estimation, and spatial variability function models to analyze
the spatial and temporal evolution of carbon emission intensity [47]. Zhou et al. (2021)
utilized a double-difference approach to evaluate the effectiveness of low-carbon policy
pilots [48]. Guo and Yu (2024) applied geographically weighted regression methods and
exploratory spatial data analysis to measure the carbon emission rates in resource-based
cities, all of which provide valuable references [49]. However, there is a scarcity of studies
exploring the depth of low-carbon policies, primarily due to the absence of comprehensive
databases detailing policy intensity. Consequently, some researchers resort to using binary
variables to represent policy intensity, employing the double-difference (DID) methodology
for analysis. However, this approach often fails to accurately capture the magnitude of
regional policy intensities and frequently encounters challenges related to meeting the
common trend assumption. Building on the foundation laid, this study assesses policy
intensity through an indicator system crafted using machine learning techniques. This
methodology addresses endogeneity issues and provides a more authentic and scientifically
rigorous approach, thereby offering novel data and empirical insights into the investigation
of policy intensity.
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In urban centers, two primary strategies for carbon reduction emerge: one involves an
active mechanism focused on scientific and technological innovation and industrial trans-
formation, while the other adopts a passive approach that includes welfare displacement
and pollution transference. The former strategy sees cities pioneering new energy sources
and improving energy efficiency through scientific breakthroughs and industrial restructur-
ing to foster industrial transformation, particularly toward cleaner energy sources [27,50].
Specifically, a heightened policy intensity leads to increased costs for enterprises with
significant energy consumption and pollution within urban areas, making their survival
and growth challenging. Consequently, these enterprises opt to engage in scientific and
technological innovations aimed at improving energy efficiency, reducing energy consump-
tion, and mitigating pollution, thereby adhering to principles of low-carbon development.
According to Porter’s hypothesis, appropriate environmental regulation will spur tech-
nological innovation, and so it can be inferred that environmental regulations stimulate
innovation and progress. Specifically, appropriate environmental regulations can offset
the “environmental compliance costs” borne by enterprises, enhance their competitive-
ness, and facilitate their transition toward low-carbon practices aimed at reducing carbon
emissions. Moreover, low-carbon policies are positioned to optimize capital allocation and
drive industries toward cleaner production methods. In the implementation of low-carbon
policies, local governments often leverage their regional resource endowments and max-
imize their strengths in alignment with directives from higher tiers of government. For
example, within the agricultural sector, considerations extend beyond ecological devel-
opment to encompass low-carbon agricultural practices. Similarly, within the industrial
sector, key energy-intensive industries, such as iron smelting, coal, chemicals, and electric
power, must pursue energy-saving technological advancements and adopt low-energy-
consumption equipment to achieve low-carbon development through equipment upgrades
and technological innovations. Additionally, in the service sector, integrating low-carbon
principles into modern service industries, such as finance, food and beverage, tourism, and
transportation, is crucial.

The second strategy involves cities enacting stringent low-carbon policies aimed at
internalizing the negative externalities of environmental pollution, thereby transforming
them into endogenous costs. This approach aims to reduce firm welfare and restrain firm
performance. According to the pollution refuge hypothesis, companies in polluting-intensive
industries tend to be based in countries or regions with relatively low environmental standards,
where firms typically operate to maximize profit. Consequently, such stringent policies
incentivize pollution-intensive firms to adopt pollution-shifting strategies [51], ultimately
leading to decreased firm welfare. Specifically, when a firm operates in a region with stringent
regulations and high environmental standards, it faces higher environmental regulation costs,
such as pollution taxes, compared to firms in less regulated areas. To maximize profitability,
these firms may choose to relocate their operations to cities with more favorable regulatory
environments to avoid the constraints imposed by environmental regulations. This relocation
trend occurs spatially, with firms showing a tendency to move operations to areas with
looser regulations, even if it results in increased pollution levels in the new location. This
phenomenon supports the “pollution refuge hypothesis”, which suggests that firms seek
refuge from strict regulations by moving to less regulated areas, thereby undermining the
effectiveness of environmental governance. Moreover, the relocation of pollution by firms
increases transfer costs, further impacting their original welfare.

Based on this premise, the study proposes the following research hypotheses:

Hypothesis 1. A greater intensity of low-carbon policies leads to a more significant reduction in
carbon emissions.

Hypothesis 2. Intensified low-carbon policies achieve reductions in carbon emissions through techno-
logical innovation, industrial transformation, welfare crowding-out, and pollution transfer effects.
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2. Selection of Variables, Data Sources, and Modeling by Materials and Methods
2.1. Selection of Variables

First, the primary dependent variable in this study is urban carbon emissions (CO2),
measured using the enhanced continuous dynamic distribution method, which character-
izes carbon emission reduction as described below.

Assuming that the distribution of the variable x at time t can be represented using the
terms ft(x) denoted by the distribution, ft(x) conforms to a normal distribution, and if this
distribution obeys a one-medium stochastic process, the distribution at period t + τ(τ > 0)
can then be represented by Equation (1):

ft+τ(z) =
∫ ∞

0
gτ(z|x) ft+τ(x)dx (1)

where gτ(z|x) is the conditional probability density function of z with respect to x. Assum-
ing that gτ(z, x) is the joint distribution density function, then we have

gτ(z|x) =
gτ(z, x)
gτ(x)

(2)

To estimate the joint distribution density, it must be calculated using the following equation:

gτ(z, x) =
1
n

n

∑
i=1

1
hx
√

2π
e−0.5( x−xi

hx
)2 1

hz
√

2π
e−0.5( z−zi

hz
)2

(3)

Among them, hx and hz denote the moments of variables x and z, respectively, which
can be computed utilizing Silveman’s Rule of Thumb:

h =

(
4

3n
)1/5σ (4)

At this juncture, we can derive the marginal distribution of x as follows:

gτ(x) =
∫ ∞
−∞ gτ(z, x)dz

= 1
n ∑n

i=1
1

hx
√

2π
e−0.5( x−x1

hx
)2∫ ∞

−∞
1

hz
√

2π
e−0.5( z−z1

hz
)2

dz
(5)

This, in turn, facilitates the determination of the long-run distribution employing the
following formula f∞(z):

f∞(z) =
∫ ∞

0
gτ(z|x)f∞(x)dx (6)

When the transfer probability matrix remains constant, this long-term distribution
tends towards a steady state devoid of further change, effectively capturing the evolutionary
trajectory of the variable. Given the focus of this paper solely on the transfer probability of
each city, a more accurate representation of this transfer probability is achieved by utilizing
the net transfer probability to construct the transfer probability map, computed as follows:

p(x) =
∫ ∞

x
gτ(z|x)dx −

∫ x

0
gτ(z|x)dx (7)

In terms of carbon emissions, a positive value indicates an inclination towards in-
creased emissions in the city, while a negative value suggests a tendency towards reduction.

This study categorizes urban carbon emissions into two primary components: direct
energy consumption, which includes coal, natural gas, and gasoline, and indirect energy
consumption, such as electricity and heat. Carbon emissions from direct consumption
can be calculated using conversion factors outlined by the Intergovernmental Panel on
Climate Change (IPCC2006). It is worth mentioning that the conversion factor is always
being updated, but in order to unify the measurement criteria and facilitate the calculation,
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we used the conversion factor of 2006 as the conversion factor for each year. Electric-
ity consumption poses significant computational challenges, and this study adopts the
methodology proposed to address this complexity. The methodology assumes a single
emission factor per region and utilizes baseline emission factors for both regional grids and
city-specific electricity consumption to estimate carbon emissions attributable to electricity
use in each city [52].

Urban transportation primarily relies on gasoline, and this study follows the approach
outlined in [53]. They establish a proportional relationship between energy consumption
intensity and carbon emission intensity across different transportation modes. This study
uses transportation sector energy consumption data to estimate transportation-related
carbon emissions per unit.

Regarding thermal energy dynamics in cities, this study considers the heat supply
from thermal power plants and boilers utilizing historical centralized heat supply data.
Given that the boiler thermal efficiency typically ranges from 65% to 78%, this research
adopts an average value of 70% to calculate thermal efficiency. Additionally, this study
incorporates low-level heat generation from raw coal, approximately 20,908 kJ/kg. Based
on these factors, this study derives a standard coal coefficient of 0.7143 kg standard coal/kg
to quantify energy consumption. Using IPCC2006 data, this study calculates the amount
of raw coal consumed for thermal energy, applying a carbon emission factor of 2.53 kg
CO2/kg per kg of raw coal to determine thermal energy-related carbon emissions.

Second, the main independent variable is identified. Building on the research, this
study adopts the intensity of low-carbon policies as its central independent variable [26].
It utilizes a “policy target–policy instrument” model, quantifying intensity through the
multiplication of policy targets, instruments, and their respective levels. This approach
addresses challenges associated with selecting a singular policy instrument for analysis
and mitigates concerns about the endogeneity inherent in constructing a policy indicator
system. Moreover, this indicator incorporates phrase-oriented natural language processing
algorithms and text-based cue learning techniques, reducing human subjectivity and
enhancing the reproducibility of experimental outcomes. Importantly, this methodological
approach embodies a significant degree of scientific innovation.

Specifically, we constructed a list of low-carbon policies based on the PKULaw.com
(https://pkulaw.com/, accessed on 1 July 2024) policy database. The policy texts were then
generated according to the policy titles, focusing on articles related to “dual carbon”, “low
carbon”, “green technology”, “emission reduction”, “energy conservation”, and “capacity
utilization”. The extracted policy texts were subsequently screened; irrelevant text files were
manually excluded, and the remaining texts were refined using the “policy objectives–policy
tools” model. This process resulted in the generation of 38 seed words. Word2vec was then
employed to extract detailed expressions, yielding 90 synonyms with the highest similarity.
A low-carbon policy dictionary was constructed, categorizing policies into three main classes
based on the frequency of central phrases: policy level (e.g., carbon emission reduction
and energy conservation), policy tools (e.g., capacity utilization and green technology), and
policy objectives (e.g., carbon emission reduction). The intensity of low-carbon policies was
quantified according to these classifications using the following formula:

PIr,a,t = Lr,a,t,l × Or,a,t,o × Ir,a,t,i (8)

where PIr,a,t denotes the intensity of low-carbon policies for policy a in region r during year
t; Lr,a,t,l represents the intensity of the policy level in region r during year t; Or,a,t,o indicates
the intensity of policy objective o in region r during year t; and Ir,a,t,i signifies the strength
of the policy instrument in region r during year t. A supervised prompt learning model
was then trained on the policy texts to predict the intensity of policy objectives and tools.
Given the varying industries and economic conditions across cities in China, classifying
carbon policy intensities is challenging. Therefore, this study employs manual labeling for
further subdivision. For instance, policy objectives that are more specific to sectors, regions,
and those mentioned repeatedly will receive higher scores. Due to differing evaluation

https://pkulaw.com/
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systems for policy levels, policy instruments, and policy objectives, a four-level scoring
system and normalized assignment are used in this study.

Subsequently, machine learning and prediction were carried out. Based on the manual
labeling described, a fixed architecture of the language model (LM) was constructed and
trained using a fine-tuning paradigm through natural language processing (NLP) to adapt
the model for downstream tasks. The text task model P(y|x; θ) was employed to measure
performance θ. First, a dataset was designed with the prompt function promptx′ = fprompt(x),
mapping the input text x to output text z. The pre-trained language model was then used to

classify the output z, obtaining the highest score
ˆ
z as given by Equation (9). Finally, the output

label y with the highest score was predicted.

ˆ
z = searchP

(
f f ill

(
x′, z

)
; θ
)

(9)

ERNIE 3.0, a large-scale knowledge-enhancement pre-trained model demonstrating strong
performance, was employed to execute the classification task concerning policy objectives and
intensity using machine learning techniques. Additionally, the augmentation strategy known as
TrustAI was utilized to address data divergence and ensure accurate predictions.

Thirdly, attention is directed towards the control variables. Given the multifaceted
nature of factors influencing urban carbon emissions, this study draws insights from the
relevant literature [54,55]. Variables such as per capita gross domestic product (GDP),
industrial output value (IOV), green coverage area within urban built-up spaces (Green),
foreign direct investment (FDI), and industrial soot and dust emissions (Smoke) are incor-
porated as control variables. Additionally, to address concerns regarding heteroskedasticity,
this study employs the logarithmic transformation of each variable. Descriptive statistics
for these variables are presented in Table 1.

Table 1. Descriptive statistics of the independent variable, dependent variable and control variables.

Variables Mean S.D. Min. Max. P50 N

CO2 29.47 25.16 0.48 230.77 22.41 2993

Intensity 3.93 0.86 0.69 5.28 4.030 2993

Gdpr 10.58 0.63 8.19 12.28 10.56 2993

Ser 47.12 12.22 9.74 90.97 47.04 2993

Green 3.71 0.24 0.86 5.96 3.75 2993

Smoke 9.67 1.14 3.58 15.46 9.75 2993

Fdi 0.02 0.01 0.00 0.20 0.01 2993

2.2. Data Sources

The primary data sources for the core dependent variable (CO2) in this study include
the China Statistical Yearbook, China Urban Construction Statistical Yearbook, China
Regional Statistical Yearbook, and China Urban Statistical Yearbook. Meanwhile, the core
independent variable (Intensity) is sourced from an open dataset provided by Nature
(https://www.nature.com/articles/s41597-024-03033-5#Abs1, accessed on 1 July 2024).
The control variables are extracted from authoritative references such as the China Statistical
Yearbook, the China Environmental Yearbook, and the China Urban Statistical Yearbook.
In the end, we obtained data from 2007 to 2022 for 334 prefecture-level cities, but due to
data availability, we deleted the samples with missing data.

https://www.nature.com/articles/s41597-024-03033-5#Abs1
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2.3. Modeling by Materials and Methods
2.3.1. Benchmark Regression Model

The principal objective of this study is to examine the impact of policy intensity on
carbon emissions and quantify the reduction in carbon emissions per unit of intensity.
Consequently, the paper formulates the regression model as follows:

Co2it = α1 + α2intensityit + α3Xit + δt + ηi + εit (10)

where CO2it denotes carbon emissions, ai represents the coefficient, intensityit signifies the
carbon emission intensity, δt denotes the time fixed effect, ηi represents the city fixed effect,
and εit indicates the random perturbation term.

2.3.2. Robustness Test of the Model

We used three methods to perform the robustness test. The first methodological
consideration addressed is the omitted variable test. This study acknowledges the potential
for coefficient instability when additional control variables are introduced, a phenomenon
known as selective bias, as per the principle of coefficient stability. Given the potential
influence of regional population activities on carbon emissions, we introduce the logarithm
of the regional year-end population number (denoted as “Human”) as a control variable.
Subsequently, we conduct the replacement variable test to address potential measurement
biases within the sample, which could skew the results of the benchmark regression. In
this examination, we choose to replace both the independent and dependent variables to
strengthen the robustness of our analysis. Specifically, the annual mean of PM2.5 (PM2_5)
is designated as the dependent variable for estimation. Considering the time lag effect, the
independent variable is lagged by one period (denoted as “L_lntensity”) before estimation.
Lastly, we consider the aspect of policy transferability. Given China’s characteristic of
top-down incremental reforms, a meticulous examination of the top-level design and
policy transmissibility concerning low-carbon policies becomes imperative. To this end, we
aggregate indicators at both the national and provincial levels to evaluate the impact of
China’s policy intensity on carbon emissions.

Based on the above analysis, we can set up the following robustness test model:

Co2it = α1 + α2intensityit + α3Xit + Humanit + δt + ηi + εit (11)

PM2_5it = α1 + α2intensityit + α3Xit ++δt + ηi + εit (12)

Co2it = α1 + α2L_intensityit + α3Xit + Humanit + δt + ηi + εit (13)

2.3.3. Instrumental Variable Test

Instrumental variable tests are crucial when the explanatory variables in the model
exhibit correlations with the random error term, potentially leading to biased estimates and
endogeneity issues. Recognizing this concern, to precisely discern the effects of low-carbon
development stemming from policy intensity, an instrumental variable estimation is em-
ployed in this study. Drawing from established research methodologies, this paper uses
the frequency of climate extremes (referred to as “Climate”) documented in international
climate reports sourced from the website of the China Meteorological Administration as
an instrumental variable. Climate extremes are intricately linked to the introduction of
climate policies, and the intensity of low-carbon policies stems from the inception and fre-
quent modifications of these policies. Furthermore, climate extremes represent infrequent,
objective climate phenomena less susceptible to carbon emission influences. Hence, this
instrumental variable satisfies the prerequisites of homogeneity and relevance. Neverthe-
less, it is imperative to acknowledge that extreme climate events operate at a macro-level,
making it unfeasible to control for temporal and regional effects if directly utilized as an
instrumental variable. Consequently, this study employs the Batik instrumental variable
method to refine the utilization of this instrumental variable. Regions characterized by
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lower levels of policy intensity are more susceptible to climate policy regulations when
confronted with extreme climate events. This study employs the product of the mean
value of regional climate change per year (“Score”) to represent the magnitude of impact,
with the number of extreme climate occurrences (“Climate”) serving as the external shock
(designated as “Score_Climate”) used as the instrumental variable.

2.3.4. Mechanistic Tests

Drawing on the theoretical analysis in the preceding section, it is evident that the
intensity of low-carbon policies contributes to reducing carbon emissions through proactive
and reactive avenues. However, empirical explorations of the mechanisms underlying
these pathways remain limited. Thus, this study adopts a stepwise regression approach to
investigate the roles of scientific and technological innovation, industrial transformation,
welfare crowding out, and pollution transfer in shaping the relationship between policy
intensity and carbon emissions.

The first mechanism under consideration is the scientific and technological innovation
mechanism. As the intensity of low-carbon policies increases, enterprises with high energy
consumption and pollution face higher operational costs in urban settings, making survival
and growth challenging. Consequently, these enterprises are incentivized to undertake
scientific and technological innovation initiatives to enhance energy utilization efficiency,
reduce energy consumption, and curb pollution levels. These strategic shifts align with
the overarching goal of promoting low-carbon development. Drawing upon Porter’s
hypothesis, environmental regulations can spur innovation by reducing the “environmental
compliance cost” burden on enterprises, thereby enhancing business competitiveness and
accelerating the transition to low-carbon practices, leading to reduced carbon emissions. To
quantify the capacity for scientific and technological innovation, this study employs the
logarithm of regional R&D income, denoted as “Tec”.

The second mechanism under scrutiny pertains to industrial transformation. Low-
carbon policies play a crucial role in optimizing capital allocation and facilitating the
transition of industries toward cleaner production methods. In implementing low-carbon
policies, local governments often leverage their regional resources and strengths in align-
ment with higher-level directives. For example, in the agricultural sector, considerations
extend beyond ecological development to encompass low-carbon agricultural practices.
Within the industrial sector, critical energy-intensive industries, such as iron smelting, coal,
chemicals, and electric power, are required to adopt energy-saving technological innova-
tions and upgrade to low-energy-consuming equipment. These measures are pivotal for
fostering low-carbon development through enhanced technological capabilities. Similarly,
the service sector, encompassing industries like finance, food and beverage, tourism, and
transportation, must integrate low-carbon concepts to align with contemporary environ-
mental imperatives. To quantify the transformation and upgrading of industries (Ind), this
study utilizes the index of advanced industrial institutions, defined as the ratio of tertiary
industry output to total industrial output.

Lastly, welfare crowding-out and pollution transfer mechanisms are observed. Rig-
orous low-carbon policies transform environmental pollution externalities into internal
costs, thereby diminishing firm welfare and impeding performance. Firms, driven by profit
maximization, may resort to pollution-shifting decisions under such stringent policies,
leading to reduced welfare. Specifically, firms operating in regions with stricter environ-
mental regulations face higher environmental compliance costs, such as pollution taxes. To
optimize profits, these firms may relocate to cities with less stringent regulations, resulting
in increased pollution levels at the new locations. This relocation trend confirms the “pol-
lution refuge hypothesis”, undermining environmental governance efficiency. Moreover,
pollution transfer escalates relocation costs for enterprises, further squeezing their original
welfare. To quantify the output of heavily polluting industries within a region, data from
the Ministry of Ecology and Environment’s Guidelines for Environmental Information
Disclosure of Listed Companies are utilized. These guidelines classify heavy polluting
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industries, including thermal power, iron and steel, cement, electrolytic aluminum, coal,
metallurgy, chemicals, petrochemicals, building materials, papermaking, brewing, phar-
maceuticals, fermentation, textiles, tanneries, and mining. The study aggregates output
values from these industries using industry-specific coding sourced from publications like
the China Statistical Yearbook, the China Industrial Economic Statistics Yearbook, and the
China Environmental Statistics Yearbook. Consequently, the logarithm of the absolute
change in the output value of these industries serves as a key variable characterizing the
welfare crowding-out effect (denoted as “Wel”). Furthermore, enterprise transfers are
categorized based on the alignment between registered offices and headquarters of listed
enterprises. The aggregation of transferred enterprises within each region quantifies the
welfare crowding-out effect. Similarly, we aggregate the number of firm transfers at the
regional level, denoted as “Trans”.

3. Empirical Analysis
3.1. Benchmark Regression Results

In this study, Equation (8) is utilized to formulate the benchmark regression model,
with detailed results presented in Table 2 below. Notably, whether area-fixed effects or
year-fixed effects are employed, a statistically significant negative relationship (p < 0.01)
is observed between policy intensity (Intensity) and carbon emissions. This suggests
that a higher policy intensity is associated with reduced carbon emissions. This finding
is consistent with prior research by the latest studies [5,56,57]. Of particular interest
in this paper is the coefficient measuring the relationship between policy intensity and
carbon emissions. Our analysis indicates that a one-unit change in the intensity of low-
carbon policies corresponds to a 0.53% decrease in carbon emissions. This observed
effect is attributed to the utilization of an improved continuum dynamic distribution
methodology for measuring urban carbon emissions, which enhances the accuracy of
regional carbon emission assessments and thereby provides initial validation for Hypothesis
1. In economics, we should pay more attention to the significance of coefficients, and there
is no comparison between the magnitude of coefficients. Therefore, it is normal for some
control variables to be of high significance, but small in size.

Table 2. Benchmark regression results for the none-fixed effect, area-fixed effect, year-fixed effect,
and double-fixed effect.

Variables None-Fixed Area-Fixed Year-Fixed Double-Fixed

Intensity −0.002 *** −0.019 *** −0.004 *** −0.005 ***
(−8.27) (−6.32) (−7.45) (−3.87)

Gdpr 0.029 *** 0.046 *** 0.016 *** 0.050 ***
(5.61) (2.78) (3.17) (3.03)

Ser 0.000 *** 0.001 *** 0.000 0.001 ***
(4.37) (4.79) (0.12) (3.74)

Green −0.002 ** −0.002 −0.002 ** −0.000
(−2.42) (−0.47) (−2.34) (−0.01)

Fdi 0.063 *** 0.244 *** 0.034 ** 0.202 ***
(3.81) (4.56) (2.33) (3.75)

SO2 0.027 *** 0.406 *** 0.013 *** 0.384 ***
(3.61) (3.09) (3.07) (2.79)

Constant −0.353 *** −5.586 *** −0.014 −5.268 ***
(−3.38) (−2.85) (−0.25) (−3.07)

City No Yes No YES
Year No No Yes YES
Obs 2993 2993 2993 2993
R2 0.987 0.469 0.990 0.458

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05.
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3.2. Robustness Tests

This research used three methods for robustness testing. As shown in columns (1)–(3) of
Table 3, whether adding control variables, replacing core variables, or lagging variables, there
was no substantial change in the magnitude and significance of the coefficients (p < 0.01). The
robustness of our findings is evident, further validating Hypothesis 1.

Table 3. Results of robustness tests and instrumental variable tests.

(1) (2) (3) (4) (5)
Variables Add Control Variables PM2_5 CO2 Intensity (First Stage) CO2 (Second Stage)

Intensity −0.002 *** −0.070 *** −0.038 ***
(−2.70) (−3.87) (−2.97)

L_Intensity −0.004 ***
(−2.93)

Score_Climate 0.028 ***
(3.89)

Human 0.055 ***
(4.93)

Gdpr 0.057 *** 0.658 *** 0.049 *** 0.113 *** 0.026 ***
(4.09) (3.10) (2.83) (2.96) (3.18)

Ser 0.001 *** 0.014 *** 0.001 *** 0.021 *** 0.001 ***
(−8.02) (11.86) (11.31) (9.39) (2.78)

Green −0.008 ** −0.000 −0.002 −0.043 −0.003
(−2.03) (−0.01) (−0.53) (0.50) (−1.08)

Fdi 0.094 *** 2.708 *** 0.232 *** 0.462 0.067
(2.66) (3.80) (4.17) (0.44) (1.34)

SO2 0.274 *** 5.478 *** 0.392 *** 0.953 *** 0.018 ***
(2.99) (3.27) (2.89) (3.19) (2.94)

Constant −4.191 *** −75.044 *** −5.357 *** −9.79 *** 0.213
(−2.69) (−3.58) (−2.60) (−2.77) (0.92)

City YES YES YES YES YES
Year YES YES YES YES YES
Obs 2993 2993 2730 2993 2993
R2 0.706 0.476 0.449 0.426 0.693

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05.

3.3. Instrumental Variable Tests

The instrumental variables are displayed in columns (4) and (5) of Table 3. The first-
stage regression analysis reveals a significant positive correlation between the instrumental
variables and the intensity of urban low-carbon policies (p < 0.01). Subsequently, the second-
stage regression results indicate a significant negative correlation between the intensity
of low-carbon policies and the impact of carbon emissions (p < 0.01), consistent with the
findings of the baseline regression analysis, thereby confirming result robustness [58]. In
summary, H1 is further substantiated.

4. Further Analysis
4.1. Analysis of the Mechanism of Action
4.1.1. Science, Technology, and Innovation Mechanisms

The findings presented in Table 4, specifically columns (1) and (2), underscore the role
of policy intensity in driving low-carbon development through STI, consistent with recent
research [59,60]. Based on the above research, H2 has been partially verified.
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Table 4. Results of the mechanism of action tests.

(1) (2) (3) (4) (5) (6) (7) (8)
Variables Tec CO2 (Tec) Ind CO2 (Ind) Wel CO2 (Wel) Trans CO2 (Trans)

Tec −0.025 ***
(−3.29)

Ind −0.238 ***
(−3.12)

Wel −0.025 ***
(−3.39)

Trans −0.032 ***
(−3.81)

Intensity 0.051 *** −0.003 ** 0.202 *** −0.001 * −0.096 ** −0.005 *** 0.079 *** −0.001
(3.80) (−2.23) (−3.57) (−1.89) (−2.09) (−3.48) (−5.55) (−0.77)

Gdpr 0.096 *** 0.014 *** 0.068 *** 0.003 *** 0.058 ** 0.043 *** 0.112 *** 0.014 ***
(3.36) (6.51) (2.76) (7.77) (2.46) (23.78) (4.26) (7.66)

Ser 0.008 *** 0.001 *** 0.009 *** 0.001 *** 0.007 *** 0.001 *** 0.008 *** 0.001 ***
(7.23) (5.95) (7.32) (51.27) (6.46) (9.99) (7.34) (7.47)

Green −0.013 −0.008 ** −0.025 −0.005 *** −0.027 −0.004 −0.001 −0.011 ***
(−0.21) (−2.51) (−0.42) (−5.70) (−0.47) (−1.04) (−0.01) (−3.24)

Fdi 0.441 0.147 *** 0.058 0.048 *** 0.575 0.207 *** 0.090 0.068
(0.63) (2.95) (0.09) (6.25) (0.83) (3.76) (0.13) (1.50)

SO2 0.880 *** 0.344 *** 0.640 *** 0.008 *** 0.938 *** 0.390 *** 0.781 *** 0.315 ***
(5.41) (3.10) (3.52) (3.23) (5.79) (3.21) (4.74) (3.52)

Constant −7.481 *** −4.594 *** −4.433 * −0.098 *** −8.383 *** −5.383 *** −5.900 *** −4.125 ***
(−3.46) (−2.61) (−1.82) (−2.95) (−3.91) (−2.95) (−2.69) (−3.35)

City YES YES YES YES YES YES YES YES
Year YES YES YES YES YES YES YES YES
Obs 2993 2993 2991 2991 2856 2856 2988 2988
R2 0.038 0.574 0.037 0.984 0.035 0.466 0.044 0.621

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05, and * p < 0.1.

4.1.2. Mechanisms for Industrial Transformation

The results of the industrial transformation mechanism test are detailed in Table 4
below. An analysis of columns (3) and (4) in Table 4 indicates that stringent low-carbon
policies drive sustainable development through scientific and technological innovation,
facilitating improvements in industrial processes and reductions in carbon emissions.
These findings corroborate other studies [27,61]. Based on the above research, H2 has been
partially verified.

4.1.3. Welfare Crowding-Out and Pollution Transfer Mechanisms

Based on the data presented in columns (5) and (6) of Table 4, it is evident that the
intensity of low-carbon policies reduces regional welfare and carbon emissions, primar-
ily due to decreased output in heavy-polluting industries. Likewise, an examination of
columns (7) and (8) reveals a significant increase in firms’ likelihood to relocate operations
due to intensified low-carbon policies, resulting in reduced carbon emissions—a finding
consistent with empirical evidence. Therefore, H2 is substantiated. Based on the above
research, H2 has been fully verified.

4.2. Heterogeneity Analysis

In light of the foregoing analysis, it can be inferred that the intensity of low-carbon
policies significantly inhibits carbon emissions in urban settings. However, the magnitude
of this effect may vary across distinct urban agglomerations due to differences in natural
resource endowments, pollution levels, and the varying intensity of policy implementation.
This study addresses these variations from four perspectives, urban agglomeration, regional
natural resource endowment, pollution severity, and the intensity of low-carbon policy
implementation, thereby facilitating an exploration of the heterogeneous effects of policy
intensity on carbon emissions.
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4.2.1. Heterogeneity of Urban Agglomerations

The phenomenon of agglomeration among cities leads to the formation of city clusters,
promoting the free flow of factors within these clusters and generating a synergistic effect
where the whole exceeds the sum of its parts. Consequently, variations in sample attributes
are expected across different city clusters. China’s vast geographic expanse further amplifies
these differences, as factors influencing city clusters, alongside their spatial and temporal
contexts, exhibit significant disparities. These divergences contribute to varying effects on
the intensity of low-carbon policies and subsequent reductions in carbon emissions. In this
study, we categorize the sample into eleven distinct city clusters: Beijing–Tianjin–Hebei (Jjj),
the Yangtze River Delta (Csj), the Pearl River Delta (Zsj), Guangdong–Hong Kong–Macao
Bay Area (Yg), the West Coast of the Taiwan Straits (Hx), the Shandong Peninsula (Sd),
Chengdu–Chongqing (Cy), the Central Yangtze River Delta (Cj), the Central Plains (Zy), the
Guanzhong Plain (Gz), and Central–South Liaoning (Lzn). The heterogeneity test results
for these city clusters are presented in Table 5 below. The empirical analysis indicates
that policy intensity and carbon emissions exhibit negative and statistically significant
relationships across these eleven city clusters, albeit with varying levels of significance.
Specifically, the Beijing–Tianjin–Hebei city cluster (Jjj), Yangtze River Delta city cluster
(Csj), Pearl River Delta city cluster (Zsj), Guangdong–Hong Kong–Macao Greater Bay Area
city cluster (Yg), Shandong Peninsula city cluster (Sd), and Central Plains city cluster (Zy)
demonstrate highly significant results (p < 0.01). Situated primarily in eastern and central
regions, these clusters highlight the notable intensities and impacts of their low-carbon
policies, which have effectively curbed highly polluting and energy-consuming industries.
This has facilitated the rapid transformation of industrial structures, thereby fostering a
reduction in carbon emissions. In contrast, the West Coast city cluster (Hx), Chengdu–
Chongqing city cluster (Cy), and the city cluster in the middle reaches of the Yangtze
River (Cj) show relatively less significance (p < 0.05), while the city clusters of Guanzhong
Plain (Gz) and Central–South Liaoning (Lzn) exhibit slightly higher significance levels (p
< 0.1). Most of these urban agglomerations are located in central and northeastern China.
This geographical distribution suggests that these regions experience slower scientific and
technological development, a relatively limited capital scale, slower marketization, and
less effective spatial layout and industrial integration. Consequently, the impact of regional
green and low-carbon development is comparatively weaker than that observed in the
eastern region. This finding aligns with previous studies on urban agglomerations and
low-carbon development [55,62].

Table 5. Results of the heterogeneity test for city clusters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Variables Jjj Csj Zsj Yg Hx Sd Cy Cj Zy Gz Lzn

Intensity −0.002 *** −0.007 *** −0.004 *** −0.004 *** −0.003 ** −0.001 *** −0.002 ** −0.001 ** −0.007 *** −0.004 * −0.001 *
(−3.32) (−2.60) (−2.99) (−3.92) (−2.21) (−3.12) (−2.53) (−2.31) (−2.63) (−1.74) (−1.68)

Gdpr 0.037 *** 0.049 *** 0.014 ** 0.025 *** 0.038 *** 0.018 ** 0.019 *** 0.040 *** 0.026 *** 0.068 *** 0.033 ***
(3.72) (8.33) (2.27) (3.99) (6.23) (2.48) (4.37) (4.09) (4.82) (7.08) (6.72)

Ser 0.000 0.002 *** 0.002 *** 0.000 0.002 *** 0.001 0.001 *** 0.002 *** 0.001 *** 0.002 *** 0.000
(0.72) (3.68) (7.34) (1.49) (5.93) (0.99) (5.54) (5.31) (7.59) (5.17) (1.09)

Green −0.014 −0.130 *** −0.001 −0.037 ** −0.060 *** −0.006 −0.077 *** −0.004 −0.005 −0.004 −0.036 *
(−0.56) (−3.21) (−0.31) (−2.05) (−4.56) (−1.21) (−3.67) (−0.12) (−0.38) (−0.31) (−1.89)

Fdi 0.643 *** 0.181 1.396 *** 3.493 *** 0.010 0.808 *** 0.420 *** 0.202 ** 0.719 ** 0.043 0.597 **
(3.41) (1.08) (8.46) (11.82) (0.04) (3.22) (2.61) (2.12) (2.26) (0.14) (2.30)

SO2 0.142 *** 0.492 *** 0.484 *** 0.116 *** 0.194 *** 0.350 *** 0.179 *** 0.199 *** 0.235 *** 0.317 *** 0.517 ***
(4.88) (3.72) (3.42) (4.93) (3.43) (5.54) (4.62) (3.55) (8.66) (5.61) (7.01)

Constant −1.931 *** −6.156 *** −6.107 *** −1.651 *** −2.347 *** −4.517 *** −1.862 *** −2.649 *** −3.011 *** −4.508 *** −6.761 ***
(−5.86) (−3.15) (−4.13) (−4.97) (−3.05) (−5.66) (−3.50) (−3.54) (−8.31) (−5.92) (−6.84)

Obs 133 309 78 172 237 87 192 112 344 101 217
City YES YES YES YES YES YES YES YES YES YES YES
Year YES YES YES YES YES YES YES YES YES YES YES
R2 0.462 0.534 0.850 0.822 0.288 0.526 0.271 0.467 0.477 0.543 0.328

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05, and * p < 0.1.
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4.2.2. Heterogeneity of Resource Endowments

Resource-based cities are defined as urban centers where the extraction and processing
of natural resources, such as minerals and forests, constitute the primary industry. These
cities serve as crucial strategic bases for China’s energy resources, playing a pivotal role in
the sustained and healthy development of the national economy. Facilitating the sustainable
progress of resource-based cities stands as a significant strategy to expedite the transition
towards an economically and environmentally sustainable trajectory. Given China’s vast
expanse, the heterogeneous nature of regional resource endowments can variably influence
the implementation of low-carbon policies and carbon emissions. Consequently, guided
by the National Sustainable Development Plan for Resource-Based Cities endorsed by
the State Council, this study categorizes Chinese cities into growth, maturity, decline,
and regeneration phases. The analysis presented in Table 6 reveals that regenerative
regions exhibit marginal significance (p < 0.1). This underscores the substantial impacts
of disparities in natural resource endowments on the intensity of low-carbon policies and
carbon emissions. It emphasizes China’s imperative, despite its reliance on resources, to
swiftly transform towards achieving sustainable economic and environmental development
goals, echoing findings in Song et al.’s (2020) study [63].

Table 6. Resource endowment heterogeneity test results.

(1) (2) (3) (4)
Variables Grow Mature Rebore Decline

Intensity −0.006 *** −0.013 *** −0.007 ** −0.000
(−2.87) (−2.87) (−1.99) (−0.04)

Gdpr 0.041 *** 0.039 *** 0.030 *** 0.084 ***
(5.74) (5.34) (4.83) (3.51)

Ser 0.001 *** 0.000 0.001 *** 0.000
(4.36) (1.26) (3.64) (0.04)

Green −0.004 −0.047 −0.021 −0.034 **
(−0.56) (−1.34) (−1.51) (−2.48)

Fdi 0.019 0.859 *** 0.336 * 0.686
(0.22) (6.72) (1.70) (0.97)

SO2 0.387 *** 0.236 *** 0.312 *** 0.180 ***
(2.99) (4.11) (5.45) (4.04)

Constant −5.209 *** −3.440 *** −4.066 *** −2.826 ***
(−2.93) (−3.65) (−5.37) (−4.90)

Obs 1179 167 233 130
City YES YES YES YES
Year YES YES YES YES
R2 0.428 0.544 0.209 0.711

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05, and * p < 0.1.

4.2.3. Heterogeneity in Pollution Levels and Low-Carbon Policy Intensity

Moreover, due to the heterogeneous impact of pollution levels, regional variations in
policy intensity can affect carbon emissions. Therefore, this paper classifies the median
carbon dioxide emissions as the pollution degree (Poll) and the median policy intensity as
the policy intensity (Lcb). Table 7 illustrates the heterogeneity of pollution degrees and low-
carbon policy intensities in the test results. It reveals that irrespective of whether pollution
levels are low or high, the policy intensity consistently exerts a negative and significant
effect on carbon emissions (p < 0.01). This indicates that the impact of policy intensity
on pollution levels, specifically carbon emissions, is comprehensive and far-reaching,
consistent with the study’s conclusions. However, areas with a low policy intensity show
no significant effects, with only cities exhibiting a high policy intensity demonstrating
substantial reductions in carbon emissions, and so they do not need too strong low-carbon
policies, while the cities with a high policy intensity are significant, which shows that the
policy effect is significant, consistent with the findings [64,65].
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Table 7. Results of the test for heterogeneity in pollution degree and heterogeneity in low-carbon
policy intensity.

(1) (2) (3) (4)
Variables Poll_Low Poll_High Lcb_Low Lcb_High

Intensity −0.004 *** −0.002 *** −0.001 −0.006 ***
(−2.74) (−3.63) (−0.43) (−3.51)

Gdpr 0.050 *** 0.050 *** 0.037 *** 0.051 ***
(2.68) (2.87) (3.20) (3.81)

Ser 0.001 *** 0.001 *** 0.001 *** 0.001 ***
(3.59) (3.89) (4.43) (3.25)

Green −0.001 −0.000 −0.006 −0.003
(−0.10) (−0.03) (−1.10) (−0.47)

Fdi 0.225 *** 0.167 ** 0.446 *** 0.103 *
(2.69) (2.38) (4.32) (1.69)

SO2 0.403 *** 0.374 *** 0.401 *** 0.389 ***
(3.74) (2.60) (5.27) (4.36)

Constant −5.536 *** −5.115 *** −5.374 *** −5.348 ***
(−3.38) (−3.58) (−5.76) (−5.33)

Obs 1146 1847 1132 1861
City YES YES YES YES
Year YES YES YES YES
R2 0.442 0.467 0.433 0.445

Note: Robust t-statistics are shown in parentheses; *** p < 0.01, ** p < 0.05, and * p < 0.1.

5. Discussion and Conclusions
5.1. Discussion, Limitations, and Future Developments
5.1.1. Discussion

Policy intensity refers to the extent of implementation of sustainable development
policies aimed at reducing carbon emissions. It serves as a pivotal strategy for fostering
a mutually beneficial relationship between the economy and ecology, thereby promoting
low-carbon sustainable development in urban areas. This study meticulously selected panel
data spanning from 2007 to 2022, encompassing prefecture-level cities in China. Employing
fixed-effects and mediated-effects models, we analyzed the directional impact of policy
intensity on regional carbon emissions. Our methodology integrated empirical analyses to
substantiate the causal pathway and test our research hypotheses.

Over the past three decades, as climate extremes have intensified and global warming
worsened, policymakers are seeking ways to achieve a low-carbon society. The government
has actively promulgated a series of policies on low-carbon and sustainable development to
promote carbon emission reduction, but whether the intensity of these policies can promote
carbon emission reduction is an open question. After a series of theoretical and empirical
analyses, this study found that policy intensity significantly suppressed carbon emissions,
which broadened the existing research perspective [34,66]. From the perspective of the
mechanistic pathway, our study finds that there is an important influencing mechanism
of technological innovation and industrial transformation between policy intensity and
carbon emission reduction, which is consistent with the existing research [29,35,36], but
the welfare crowding-out and pollution transfer effects are slightly different from those
reported by relevant scholars [67]. In the heterogeneity analysis, we found that different
urban agglomerations, environmental resource endowments, and pollution levels had
different impact effects, which is in line with the current mainstream academic view [37,68].

5.1.2. The Limitations of This Research

Despite its contributions, this study has limitations. Quantifying the impact of low-
carbon policies proves challenging due to the cross-effects of policy implementation in both
the short and long term, regional cultural differences, and varying levels of public awareness.
Moreover, the experimental data’s accuracy may be compromised because the policy intensity
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data, sourced from the PKULaw.com Policy Database (https://pkulaw.com/, accessed on
1 July 2024), might exclude certain policies. This limitation could affect the precision of the
data, though it does not substantially impact the overall regression results of the study. We
used the conversion factors outlined in the 2006 Intergovernmental Panel on Climate Change
report as a measure of carbon emissions for each year, but the conversion factors have been
updated, which is also a shortcoming of this study, but it does not have much impact on the
conclusions and we will further address these issues in future studies.

5.1.3. The Future Developments of This Research

Future research should continue to investigate the impacts of quantitative low-carbon
policies on short-term and long-term cross-cutting effects, regional cultural differences,
and public awareness. It will be essential to develop more refined methods for quantifying
low-carbon policies and to construct research addressing these areas comprehensively.
Additionally, integrating the Policy Modeling Consistency (PMC) model with our measure-
ment approach could facilitate an analysis of policy consistency, highlighting the strengths
and weaknesses of evaluated policies. This approach would provide insights into the signif-
icance and levels of various variables beyond a mere intensity measurement. Furthermore,
applying existing research methods to other countries could enable comparisons of carbon
emission intensity and responsibilities, potentially advocating for enhanced United Nations
carbon reduction mandates and the Sustainable Development Goals.

5.2. Conclusions and Policy Recommendations
5.2.1. Conclusions

Our study yields two primary findings. First, the policy intensity demonstrates a substan-
tial capacity to reduce carbon emissions across the sample of prefecture-level cities examined.
This conclusion persisted following rigorous robustness tests, indicating that a unit increase
in low-carbon intensity corresponds to a 0.53% decrease in carbon emissions. Second, the
relationship between policy intensity and carbon emissions exhibits heterogeneous effects
across different urban agglomerations, environmental resource endowments, pollution levels,
and intensities of low-carbon policies. Specifically, significant reductions in carbon emissions
were observed in urban agglomerations located in the eastern, central, and southern regions,
with less pronounced effects noted in the western and northeastern areas. Moreover, regions
categorized as growing, mature, and regenerative showed significant impacts, whereas declin-
ing regions did not display statistical significance. Additionally, irrespective of pollution levels,
policy intensity consistently exerts a negative and significant influence on carbon emissions,
with primary significance observed in higher-intensity regions compared to lower-intensity
ones. Policy intensity achieves carbon emission reductions through both active and passive
mechanisms, including innovation, industrial transformation, welfare crowding-out, and
pollution transfer effects.

5.2.2. Policy Recommendations

Based on our analysis, this study proposes several policy recommendations.
First, it advocates for maintaining a focused approach to carbon peaking at the

prefecture-level city level, rooted in principles of low-carbon development and adapted
to local conditions. This involves implementing scientifically formulated carbon-neutral
and carbon-peak strategies, optimizing energy policies, reducing fossil fuel consumption,
promoting renewable energy sources, offering policy incentives for clean energy adop-
tion, launching low-carbon flagship projects, and widely disseminating carbon-peak and
carbon-neutral policies.

Second, there is a call to strengthen the intensity of low-carbon policies across China’s
diverse regions. Given regional disparities, governments should bolster environmental
regulations, adopt a new development paradigm, and enhance environmental constraints
to effectively address variations in carbon emission reductions. To address environmental
challenges effectively, stringent measures are imperative. These include compelling heavily

https://pkulaw.com/
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polluting enterprises to innovate and undergo industrial transformation, intensifying local
pollution control supervision, and enhancing penalties.

Additionally, a multifaceted approach is necessary to achieve pollution and carbon
reduction objectives. This involves bolstering territorial spatial planning, minimizing hu-
man encroachment on the environment, prioritizing the conservation of local ecological
stability, fostering the greening of industries, and accelerating the growth of clean sectors.
Facilitating the transfer and transformation of heavily polluting industries is crucial for
reducing carbon emissions. Leveraging “big data +” methodologies for monitoring, foster-
ing public environmental oversight and engagement, advancing environmental education,
and augmenting human environmental literacy and ecological civilization awareness are
pivotal steps.

Moreover, establishing a cross-regional negative list coordination mechanism is imper-
ative to mitigate the potential ecological ramifications of relocating polluting industries.
A comprehensive negative list for environmental access should be devised to regulate
such relocations. Concurrently, implementing a collaborative prevention and integrated
management strategy is essential. This strategy promotes harmonization of environmental
regulations across regions to incentivize enterprises to proactively transform rather than
simply relocate. The precise identification of industries positioned for future advantages,
refinement of relocation–industry criteria, elevation of social welfare standards in each
region, and mitigation of environmental pollution-induced harm are crucial objectives for
minimizing ecological and environmental damage.
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