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Abstract: Due to the ever-growing load demand and the deregulation of the electricity market, power
systems often run near the stability boundaries, which deteriorates system voltage stability and
raises voltage issues for the stable operations of power systems. Transmission switching (TS) has
been applied to improve economic benefits and security operations for many applications. In this
paper, a multi-period voltage stability-constrained problem (MP-VSTS) is established, intending to
improve voltage security and the stability of a power system. Considering the online application of
transmission switching, the minimum number of switching actions is taken as the objective function of
the proposed MP-VSTS problem, which extends the TS application for real industries. The proposed
model provides the switching lines for the upcoming period and the state of power systems for
several successive periods. To overcome the solving difficulties of the proposed model, a two-stage
approach is presented, which balances speed and accuracy. Numerical studies on the IEEE 118- and
662-bus power systems have demonstrated the proposed approach’s performance.

Keywords: multi-period transmission switching; static voltage stability; voltage security; load margin;
the minimum number of actions

1. Introduction

Contemporary power systems have undergone significant changes on the source side,
power grid, and load side, such as changes in sources from traditional thermal generators to
renewable energy units, which leads to the deficiency of reactive power. With the increasing
load demand and competitive electricity market, power systems often operate around the
stable boundary and under the higher stressful condition. Hence, voltage instability and
the decrease of voltage support capability issues should be considered and taken more and
more seriously for the stable operation of power systems. Generally, voltage instability
often occurs at a low level of voltage magnitude, as shown with case 1 in Figure 1. It is
reported that the drop in voltage magnitude and voltage instability happen frequently
in power systems. The over-voltage issue in AC grids is studied in [1], and the variable
reactance technique is proposed to mitigate voltage violation in transformers under both
heavy and light loading conditions. More and more studies indicate that voltage instability
may even occur at a high voltage level [2]. In other words, power systems may lose voltage
stability before the bus voltage magnitude falls below voltage-secure level (e.g., 0.9 p.u.),
as shown with case 2 in Figure 1, which is explained in Section 2. To sum up, it is of
importance to consider voltage security and voltage stability (especially long-term voltage
stability) for the security operation.

Sustainability 2024, 16, 8272. https://doi.org/10.3390/su16188272 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16188272
https://doi.org/10.3390/su16188272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16188272
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16188272?type=check_update&version=1


Sustainability 2024, 16, 8272 2 of 19

Sustainability 2024, 16, x FOR PEER REVIEW 2 of 20 
 

up, it is of importance to consider voltage security and voltage stability (especially long-
term voltage stability) for the security operation. 

 
Figure 1. Illustration of voltage stability and security operation by P-V curves of two cases. 

Traditionally, the power grid topology is fixed and precomputed according to the 
predicted day-ahead load demands and generation schedules. As a matter of fact, many 
studies have demonstrated that transmission switching (TS) is a powerful control with 
significant advantages in economics (without extra investment), flexibility, convenience 
(without complex control operations), and effectiveness [3,4]. From the perspective of TS 
applications, it has been applied in relieving transmission line overloading [5,6], minimiz-
ing the generation cost and transmission loss [7,8], improving the voltage profile [9], en-
hancing the stability of a power system [10–12], improving the economy [13] and reliabil-
ity [14] of power systems, and reducing short-circuit currents [15]. In real industries, TS 
can provide a perfect option for system operators to deal with the overloading and voltage 
over-limit issues [16]. The cost of topology control for European networks can be reduced 
by between 0.30% under heavy net-loading conditions and 2.03% under light net-loading 
conditions [17]. In our previous studies, we determined that switching lines out from the 
current network topology can improve the load margin to the static voltage stability by 
7.03% using single-line switching and 55% using multiple-line switching in an IEEE 118-
bus power system and 12.26% in a large-scale power system [12]. Besides the base case, 
TS performed excellently in the N-1 contingency cases also. The load margin can be im-
proved by 1.64% for the base case and 26.62% for the most critical contingency case [18]. 
Even for the uncertainties from renewable energy sources and loads, TS can also handle a 
certain degree of prediction error; that is, the TS solutions under the predicted outputs of 
renewable energy sources and loads can handle a relatively small fluctuation range of 
uncertainties [19] because the switching action can be a step change for power systems 
[20]. Based on the above studies, the predictive errors of the uncertainties in a relatively 
short-term time scale can be ignored in a TS problem. However, the above TS studies focus 
on the TS performance and method at a certain time moment, and how to find the TS 
solutions and performance during a long time period is not discussed. 

In the literature, the approaches of solving TS problems within a reasonable time pe-
riod can be classified into two types. One is to solve it for a relatively long time scale, for 
example, 24 h. The approaches can provide the day-ahead TS solutions for optimizing the 
day-ahead network topology for different purposes. In [21], a time-partition method 
based on day-ahead loading and renewable power outputs is developed to partition 24 h 
into several time periods. In each time period, a suitable network topology for the distri-
bution system is identified to support the desired renewable integration requirement. The 
method is extended to power systems to ensure enough load margin to the static voltage 
stability limit [22]. In addition, TS is a very popular control that co-operates with other 

Figure 1. Illustration of voltage stability and security operation by P-V curves of two cases.

Traditionally, the power grid topology is fixed and precomputed according to the
predicted day-ahead load demands and generation schedules. As a matter of fact, many
studies have demonstrated that transmission switching (TS) is a powerful control with
significant advantages in economics (without extra investment), flexibility, convenience
(without complex control operations), and effectiveness [3,4]. From the perspective of TS
applications, it has been applied in relieving transmission line overloading [5,6], minimizing
the generation cost and transmission loss [7,8], improving the voltage profile [9], enhancing
the stability of a power system [10–12], improving the economy [13] and reliability [14]
of power systems, and reducing short-circuit currents [15]. In real industries, TS can
provide a perfect option for system operators to deal with the overloading and voltage
over-limit issues [16]. The cost of topology control for European networks can be reduced
by between 0.30% under heavy net-loading conditions and 2.03% under light net-loading
conditions [17]. In our previous studies, we determined that switching lines out from
the current network topology can improve the load margin to the static voltage stability
by 7.03% using single-line switching and 55% using multiple-line switching in an IEEE
118-bus power system and 12.26% in a large-scale power system [12]. Besides the base
case, TS performed excellently in the N-1 contingency cases also. The load margin can be
improved by 1.64% for the base case and 26.62% for the most critical contingency case [18].
Even for the uncertainties from renewable energy sources and loads, TS can also handle
a certain degree of prediction error; that is, the TS solutions under the predicted outputs
of renewable energy sources and loads can handle a relatively small fluctuation range of
uncertainties [19] because the switching action can be a step change for power systems [20].
Based on the above studies, the predictive errors of the uncertainties in a relatively short-
term time scale can be ignored in a TS problem. However, the above TS studies focus on
the TS performance and method at a certain time moment, and how to find the TS solutions
and performance during a long time period is not discussed.

In the literature, the approaches of solving TS problems within a reasonable time
period can be classified into two types. One is to solve it for a relatively long time scale, for
example, 24 h. The approaches can provide the day-ahead TS solutions for optimizing the
day-ahead network topology for different purposes. In [21], a time-partition method based
on day-ahead loading and renewable power outputs is developed to partition 24 h into
several time periods. In each time period, a suitable network topology for the distribution
system is identified to support the desired renewable integration requirement. The method
is extended to power systems to ensure enough load margin to the static voltage stability
limit [22]. In addition, TS is a very popular control that co-operates with other controls,
such as optimal power flow (OPF) and unit commitment (UC), within a long time period.
For example, the co-optimized UC and TS over 24 h are employed on European grids with
renewable power [17]. In [23], TS is united with UC to reduce the generation cost, in which
TS can provide benefits by reducing the volatility of wind power and the generation cost.
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In recent years, many approaches have been presented to speed up the computation time.
In [24], a real-time switching heuristic method based on neural networks is developed and
can provide almost instant switching actions. A genetic algorithm for an ACOPF-based
OTS problem is developed to better search the solution space in [25]. However, the above
TS problems are all solved at a fixed time or time period (several hours) with the following
disadvantages: (1) TS solutions using the above methods are solved based on the day-
ahead predicted data (including loads and renewable outputs) or the worst scenario, which
may be relatively conservative; (2) TS solutions for the fixed time or a time period do not
consider the system states of two adjacent time. Hence, the solutions only apply to a single
time, so the number of TS actions for the whole time periods may be too much, which is
potentially ‘unfriendly’ for system operators.

With respect to the multiple TS solutions, several works have investigated the multiple
TS solutions issue [26–28], which indicates that the different TS solutions with different
numbers of switching actions may exist and contribute to the same objective, for example,
the same generation cost. In [27], a two-stage optimization method is developed to reduce
the generation cost, which demonstrates that multiple TS solutions serve the same gen-
eration cost. According to our experience, regarding TS in [12,18], the same TS solutions
for the same load margin to the steady-state voltage stability limit also exist. For example,
the load margin to steady-state voltage stability limit is 2.161 p.u. by switching 47–49 and
38–37 out and by only switching 37–40 out in example 2 in [18]. In addition, a switching
line solution group exists; that is, there is a group of switching solutions in which the
solutions with different numbers of switching lines serve the approximately equal load
margins. However, from the point of view of practical TS application, system operators
prefer the minimum number of operation actions. The reasons are that (1) system operators
need enough operation time for switching lines out/in from power systems; too many
switching actions may increase the operating time and complexity, and (2) they may trigger
the electromechanical transient and electromagnetic transient issues if too many lines are
switched from the power network, because the switching operations represent the step
changes to some extent, being similar to contingency [21]. Hence, the fewer switching
solutions with the similar objective are more practical than the global solutions with the
optimal objective.

This paper focuses on multi-period static voltage security and stability-constrained
transmission switching (MP-VSTS) to ensure enough load margin to the static voltage
stability and security limit. In this study, the outputs of generators are assumed to be
unchanged. To extend the online application of transmission switching for industries,
the minimum number of switching actions is considered as the objective function in the
proposed problem. The proposed MP-VSTS problem is solved in a rolling horizon, as
shown in Figure 2, which is interpreted in Section 2.

In particular, the contributions of this paper are as follows:

• To demonstrate the necessity of incorporating both voltage stability and voltage
security constraints, a modified IEEE 14-bus power system with detailed data is
presented to show the two cases to voltage stability and voltage security limits, which
demonstrates the necessity of the voltage stability and voltage security in the proposed
MP-VSTS problem.

• A rolling multi-period transmission switching scheduling strategy is developed to
overcome the difficulties of single-period optimal transmission switching issue, whose
solution gives consideration both to the requirements of the upcoming time period
and several future time periods.

• A multi-period MP-VSTS formulation is established to ensure a sufficient load margin
by switching lines in a rolling horizon for power systems. The distinguishing feature of
the proposed formulation is that the exact AC power flow equations and AC continual
power flow equations are included instead of the linearized DC power flow equations
and simplified voltage stability index.
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• An effective two-stage approach is proposed to solve the proposed MP-VSTS problem,
which balances speed and accuracy. In the first stage, a sensitivity-based method is
presented to fast screen all the switching candidates. In the second stage, an iterative
process is developed to solve the large-scale mixed-integer nonlinear programming
problem to obtain the switching line solution for the upcoming time period.
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rolling horizon strategy.

The structure of this paper is as follows: Section 2 interprets the idea of multi-period
transmission switching with the voltage stability and security constraints. Section 3 formu-
lates the mathematic model of the proposed MP-VSTS problem and presents the overall
architecture of the proposed method and the detailed numerical steps. Numerical studies
on the IEEE 118-bus and 662-bus power systems are discussed in Section 4. Section 5
concludes this paper.

2. MP-VSTS Problem Formulation
2.1. Explanation of the Necessity of Voltage Security and Stable Constraints

To interpret the necessity of incorporating both the voltage stability and voltage
security constraints into the proposed MP-VSTS problem. P-V curves of two cases are used
to denote the two possible operation situations in power systems, as shown in Figure 1.
Point a denotes the operation point of the power system, corresponding to the solution
of power flow equations; point b denotes the voltage bifurcation point; and point c is
the voltage security point, which indicates the point to the minimum voltage magnitude
limit (say 0.9 p.u.) of the maximum voltage magnitude limit (say 1.1 p.u.). The voltage
magnitude upper/lower bounds are often defined by system operators according to the
secure operation requirements of power systems:

• Case 1: Generally, in some situations, the voltage security limit may be reached before
the voltage collapse point (i.e., the voltage bifurcation point, point b), as shown with
the P-V curve of case 1 in Figure 1. Hence, the load margin to the voltage stability
and security limit is λ = λC, where λC is the distance between the operation point
(point a) and the voltage security point (point c). This situation is quite common in
power systems.

• Case 2: In other situations, the voltage bifurcation point (point b) may be reached
before the voltage magnitude reaches the voltage security limit (point c), as shown with
the P-V curve of case 2 in Figure 1. Hence, the load margin to the voltage stability and
security limit is λ = λb, where λb is the distance between the operation point (point
a) and the voltage bifurcation point (point b). To show this, the authors performed
the simulations on a modified IEEE 14-bus power system, whose detailed data of the
example are listed in Tables 1 and 2 and whose diagram is shown in Figure 3. The
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continuation power flow method is employed to calculate the exact load margin to the
static voltage stability limit. The load margin of this case is computed as 194 MW (i.e.,
λbase = 1.2985) along with the active and reactive power variations listed in Table 3.
The P-V curves of all PQ buses are plotted in Figure 4.
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Table 1. The branch data of the modified IEEE 14-bus power system.

No. From Bus To Bus Resistance
(p.u.)

Reactance
(p.u.)

Admittance
(p.u.)

Non-Standard
Ratio of

Transformer

1 2 5 0.05695 0.17388 0.034 -
2 6 12 0.12291 0.25581 0 -
3 12 13 0.22092 0.19988 0 -
4 6 13 0.06615 0.13027 0 -
5 6 11 0.09498 0.19890 0 -
6 11 10 0.08205 0.19207 0 -
7 9 10 0.03181 0.08450 0 -
8 9 14 0.12711 0.27038 0 -
9 14 13 0.17093 0.34802 0 -

10 7 9 0 0.11001 0 -
11 1 2 0.01938 0.05917 0.0528 -
12 3 4 0.06701 0.17103 0.0346 -
13 1 5 0.05403 0.22304 0.0492 -
14 5 4 0.01335 0.04211 0.0128 -
15 2 4 0.05811 0.17632 0.0374 -
16 5 6 0 0.25202 - 0.932
17 4 9 0 0.55618 - 0.969
18 4 7 0 0.20912 - 0.978
19 8 7 0 0.17615 - 0

The voltage magnitudes of all PQ buses at the bifurcation point are higher than
0.9 p.u., so it can be concluded that no voltage magnitude violations are encountered before
the voltage collapse point (i.e., the voltage stability limit of this case is the limit factor
instead of the voltage security limit). Based on the above numerical studies, the operational
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limit for a power system cannot only be voltage magnitude violation but is also the voltage
collapse. Therefore, the two constraints should be incorporated into the optimal operation
decision of power systems.

Table 2. Power flow data of the modified IEEE 14-bus power system.

Bus
Shunt
(p.u.)

Voltage Generator Load

Magnitude Phase Angle
(Degree)

Active
Power

Reactive
Power

Active
Power

Reactive
Power

1 - 1.06 0 2.4801 0.5679
2 0.4 1 −0.0709 0.4000 −1.5516 0.217 0.127
3 - 1 −0.4308 0.4874 0.942 0.19
4 0.6 1.0256 −0.2522 0.478 0.04
5 0.93 1.0331 −0.2063 0.076 0.016
6 - 1 −0.3015 −0.6170 0.112 0.075
7 - 1.0397 −0.3106
8 - 1 −0.3106 −0.2253
9 0.4 1.0612 −0.3409 0.295 0.166
10 - 1.0427 −0.3401 0.090 0.058
11 - 1.0181 −0.3247 0.035 0.018
12 - 0.9988 −0.3221 0.061 0.016
13 - 1.0065 −0.3331 0.135 0.058
14 0.4 1.0853 −0.3853 0.149 0.050

Table 3. The real and reactive generation/load variations.

Generation
/Load

Bus
Increased Direction (p.u.)

∆P ∆Q

Generation
6 0.80676

8 0.53784

Load
2 0.36 0.135
3 0.864 0.270

11 0.270 0.081
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2.2. Architecture of the Proposed MP-VSTS Problem

The traditional single-period optimal scheduling of power systems usually focuses
on the optimal solution for the immediate time but fails to be optimal for the successive
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time periods. A multi-period transmission switching rolling scheme is developed in this
paper, which can be observed in Figure 2. Compared with the redispatch of generators, a
switching line is a kind of action with a relatively large step change on the operating state
of the power system. Hence, in the proposed MP-VSTS rolling strategy, the time resolution
can be relatively long, say one hour for each time period, instead of a 15 min resolution
for the generator’s dispatch problem. Therefore, the look-ahead schedule module for the
MP-VSTS problem is one hour of time resolution with a rolling horizon/window every 4 h.

The necessary input data for the proposed rolling MP-VSTS problem include the
current system states (i.e., voltage magnitude and phase angle, line current, generator
outputs, and the load demands) and the data of the upcoming time period (i.e., the load
demands and generator schedule for the upcoming time period (see one hour) and the three
following time periods). The solved transmission line status of the upcoming time period
serves as the solution and is sent to system operators to implement. The transmission line
solutions of the three other time periods serve as the initial point for the next rolling cycle.
The presented MP-VSTS problem is solved as in receding horizon control, as shown in
Figure 2.

Another important issue is raised regarding the real application of transmission
switching in industries. Line switching cannot be conducted frequently, and the system
operators prefer the least actions to maintain the stable and secure operation of power
systems. Hence, in this paper, the number of switching lines for operators to operate is
considered and established as the objective function of the proposed MP-VSTS problem.

2.3. Formulation of the Proposed MP-VSTS Problem

The proposed MP-VSTS problem seeks to identify the minimum number of switching
lines to ensure enough voltage stability margin (i.e., load margin) in the entire rolling time
domain. Hence, the MP-VSTS problem can be stated as follows:

min
T

∑
t=1

∑
ij∈ΩL,t

(
1 − Zij,t

)
(1)

s.t.


Pg

i,t − Pd
i,t = Vi,t ∑

j∈i
Vj,t[(Gij cos θij,t + Bij sin θij,t)Zij,t]

Qg
i,t − Qd

i,t = Vi,t ∑
j∈i

Vj,t[(Gij sin θij,t − Bij cos θij,t)Zij,t]
(2)



Pg
i,t − Pd

i,t + λtd
p
i,t = VB

i,t ∑
j∈i

VB
j,t[(Gij cos θB

ij,t + Bij sin θB
ij,t)Zij,t]

Qg
i,t − Qd

i,t + λtd
q
i,t = VB

i,t ∑
j∈i

VB
j,t[(Gij sin θB

ij,t − Bij cos θB
ij,t)Zij,t]

dp
i,t =

(
Pg

i,t+1 − Pg
i,t

)
−

(
Pd

i,t+1 − Pd
i,t

)
dq

i,t =
(

Qd
i,t+1 − Qd

i,t

) , t ∈ {1, 2, · · · , T − 1}

(3)

λ
post
t ≥ λth (4)

Vmin
i ≤ Vi,t ≤ Vmax

i (5)

θmin
ij ≤ θij,t ≤ θmax

ij (6)

max
(∣∣Sij,t

∣∣, ∣∣Sji,t
∣∣) ≤ Smax

ij (7)

∑
m∈Ut(i)

Zim,t ≥ 1 (8)

where t is the current time period; T is the number of periods in a rolling time horizon; Zij,t
is an integer variable representing the operating status of transmission line i − j if the line
i − j is switched out from the network at the tth time period Zij,t = 0; otherwise, the line
i − j is in service at Zij,t = 1; ΩL,t is the set of transmission lines; Pg

i,t and Qg
i,t are the active
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and reactive power outputs of generators on bus i at the tth time period; Vi,t and θij,t are the
bus i voltage magnitude and its angle difference between buses i and j at the tth time period,
respectively; Gij,t and Bij,t are the conductance and susceptance of line i − j, respectively;
VB

i,t and θB
ij,t are the voltage magnitude of bus i and voltage angle difference between buses

i and j at the tth time period, respectively; λt is the load margin at the tth time period; λ
post
t

is the load margin after line switching at the tth time period; λth is a desirable load margin
value; αt is the load margin increase ratio at the tth time period; Vmax

i and Vmin
i are the

upper and lower limits of the voltage magnitude on bus i; θmax
ij and θmin

ij are the upper and

lower limits of the voltage phase angle difference between bus i and j at the tth time period;
Sij,t and Smax

ij are the apparent power and its limit between bus i and j, respectively; Zim,t is

the operating status of the mth line connected on bus i at the tth time period; and Ut(i) is
the set of buses connected to bus i at the tth time period.

The objective function (1) is to minimize the number of switching actions to ensure
that the load margin of all time periods in a rolling time horizon meets the expected require-
ments. Constraints (2) and (3) denote the AC power flow equations and AC continual power
flow equations. Constraint (4) indicates the load margin requirement. Constraints (5)–(7)
denote the operation constraints for the post-switching power system, including the voltage
magnitude constraint (5), voltage phase angle constraint (6), and thermal limit constraint (7).
Constraint (8) is used to avoid the occurrence of islands for a post-switching power system.

2.4. Difficulties of the Proposed MP-VSTS Problem

The constraints make the presented MP-VSTS problem (1)–(8) highly nonlinear, and it
is a typical mixed-integer nonlinear programming (MINLP) problem that is hard to solve
directly. The difficulties include the following: (1) Several time periods are involved in a
rolling time horizon; hence, the solutions of each period in a rolling horizon need to not
only decide for the upcoming period but also adapt to the other time periods, which results
in the increasing number of constraints for multiple time periods and solving the proposed
MP-VSTS problem difficultly and complicatedly. (2) The involvement of the nonlinear
AC continuation power flow equations and the 0–1 decision variables further increases
the difficulty for solving the proposed MP-VSTS problem, resulting in an excessively long
computation time. In the following section, we develop a two-stage solution approach
balancing the speed and accuracy. It should be noted that the developed approach is not
devoted to finding the optimal TS solutions but rather the feasible solutions as soon as
possible for system operators due to the practical application.

In the proposed MP-VSTS model, the 0–1 variable Zij is as a product term multiplying
the nonlinear term of constraints (2) and (3). The conventional dealing method is the big-M
method, which is suitable for linear constraints, such as DC power flow equations, but
is not applicable to the nonlinear model. Therefore, we move the 0–1 variables from the
nonlinear term to the bus admittance matrix and develop a transmission switching model
based on the branch addition method. Taking the branch h as an example, the bus voltage
equations of branch h can be expressed as[

Ih
f

Ih
o

]
= Yh

br

[
Vh

f
Vh

o

]
=

[
Yh

f f Yh
f o

Yh
o f Yh

oo

][
Vh

f
Vh

o

]
(9)

where Yh
br is the admittance matrix of the hth branch; Yh

f f , Yh
f o, Yh

o f , and Yh
oo are the four

partitioned matrixes of Yh
br; f and o are the first bus and the end bus of the hth branch,

respectively; Ih
f and Ih

o are the injected currents of bus f and bus o of the hth branch,

respectively; and Vh
f and Vh

o are the voltage magnitude of bus f and bus o of the hth branch,
respectively. Hence,

Y f = diag
[
Y f f

]
C f + diag

[
Y f o

]
Co (10)
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Yo = diag
[
Yo f

]
C f + diag[Yoo]Co (11)

Ybus = CT
f Y f + CT

o Yo + Ysh (12)

where Y f and Yo are the admittance matrices of the first bus and the end bus of the hth

branch, respectively; diag[·] is the diagonalization operator; C f and CO are the NL × Nb
dimensional connection matrices of bus f and bus o, respectively; Ysh is an additional
matrix of ground susceptance; and NL and Nb are the numbers of transmission lines and
buses, respectively.

Taking the single line i − j switching as an example, the nature of the switching line
i − j is to change the elements (i.e., gij and bij) in the original admittance matrix. Therefore,
the admittance matrix Y′

bus after the switching line i − j can be expressed as the sum of the
original admittance matrix Ybus and the branch admittance change matrix ∆Yij by (13)–(14):

Y′
bus = Ybus + ∆Yij (13)

∆Yij = Cb,ijdiag
[
−yij

(
1 − Zij

)]
CT

b,ij + Cb f ,idiag
[
−jbij0

(
1 − Zij

)]
CT

b f ,i + Cbo,jdiag
[
−jbij0

(
1 − Zij

)]
CT

bo,j (14)

where Cb,ij is the bus–branch association matrix; and Cb f ,i and Cbo,j are the position vec-
tors of bus i and bus j of line i − j, where Cb,ij= Cb f ,i − Cbo,j. When several lines are
allowed to be switched out, the change in the admittance matrix can be extended according
to (13)–(14).

3. Solution Methodology
3.1. Overall Architecture of the Proposed Decomposition Method

Due to the strong nonlinear characteristics of the MP-VSTS problem, a two-stage
solution method is proposed to obtain the feasible solutions of a rolling time horizon within
a reasonable time period. The two stages include the prescreening stage (stage 1) and the
decomposition stage (stage 2). The tasks of the two stages are summarized as follows:

Stage 1 (the prescreening stage): To quickly solve the proposed problem, a prescreening
method is employed to screen all the line candidates and reserve the possible effective
switching lines for stage 2 for final identification.

Stage 2 (the decomposition stage): In this stage, the proposed MP-VSTS problem
model is decomposed into two subproblems and solved iteratively, i.e., a MILP and an NLP
subproblem, which will be explained below.

To clearly describe the solving process, the MP-VSTS problem formulation can be
written in the following compact form:

min
T

∑
t=1

∑
ij∈ΩL,t

(
1 − Zij,t

)
(15)

s.t. g(xt, pt) = 0 (16)

h(xt, pt) ≤ 0 (17)

gB(xB
t , pt, λt) = 0 (18)

hB(xB
t , pt, λt) ≤ 0 (19)

pij,t = Zij,t p0
ij,t, Zij,t ∈ {0, 1} (20)

where g(·) and g(·)B are the AC power flow equations and the AC continuation power
flow equations; h(·) and h(·)B are the inequality constraints; xt is the state variables of
post-switching power system at the tth time period, including the voltage magnitude and
phase angle; pt is the control vector at the tth time period, which is composed of all the
transmission lines; and pij,t and p0

ij,t are the transmission line i − j parameters at the tth

time period.
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3.2. The Proposed Two-Stage Solution Methodology

Stage 1: the prescreening stage

A prescreening technique based on a linear sensitivity method is employed to pre-
screen switching candidates whose disconnection can increase the load margin to the static
voltage stability limit. The compact AC continuation power flow equations can be written
as follows:

g(x, p, λ) = 0 (21)

At the bifurcation point (x∗, λ∗), there exists a nonzero vector ω orthogonal to the
Jacobian matrix J, i.e., ω J = 0,

J = [gx]|T(x∗ ,λ∗)
(22)

∆λ =
−ω

[
gp

]∣∣T
(x∗ ,λ∗)

ω[ fλ]|T(x∗ ,λ∗)

∆p = Sp∆p (23)

where gx is the derivatives of (21) with respective to x; gp is the derivatives of (21) with
respective to p; gλ is the derivatives of (21) with respective to λ; and ∆λ is the change in the
load margin, which can be estimated using (23). Therefore, the change in the load margin
due to switching line i − j out is

∆λij,t = Sp∆pij (24)

where ∆pij is the negative parameter of line i − j. ∆λij,t > 0 indicates that switching line
i − j out may increase the load margin; otherwise, the load margin may be decreased. After
the prescreening stage, the candidates for 0–1 integer variables of each period are reduced
from 2Nl to 2N1

L , where N1
L is the total number of elements of the candidate line set Ω1

L,t.
After the prescreening stage, Ω1

L,t is sent to stage 2.

Stage 2: the decomposition stage

The proposed MP-VSTS problem is a typical MINLP problem that is difficult to solve
directly. In this stage, the proposed MP-VSTS model is decomposed into a MILP sub-
problem and an NLP subproblem. The MILP subproblem is to determine the possible TS
solutions using a linearized model. The NLP subproblem aims to obtain a slack TS subprob-
lem solution (the solutions are continuous variables between 0 and 1) with the nonlinear
AC power flow equations and AC continuation power equations. The two subproblems
are solved iteratively till the solutions of these two subproblems are converged. The two
subproblems are MILP and NLP which can be solved using the available commercial solver.

MILP subproblem

The MILP subproblem determines the possible TS solutions of a rolling horizon
(4 time periods in this paper) with the objective of minimizing the solution difference of the
two subproblems. Before constructing the MILP model, a continuation power flow tool is
employed to obtain the load margin of the pre-switching base case and the system states
(including the voltage magnitude and phase angle). The MILP subproblem is subject to
the linearized constraints of the equalities and the inequalities in (15)–(20) according to
the states at the bifurcation point. The MILP subproblem formulation can be listed in the
following form (25)–(31):

min
T

∑
t=1

∑
ij∈Ω1

L,t

∣∣∣Zk
ij,t − Zk

ij,t

∣∣∣ (25)

s.t. g
(

xk
t , pk

t

)
+∇g

(
xk

t , pk
t

)[
xt − xk

t pt − pk
t
]T

= 0 (26)

h
(

xk
t , pk

t

)
+∇h

(
xk

t , pk
t

)[
xt − xk

t pt − pk
t
]T ≤ 0 (27)

gB
(

xB,k
t , pk

t , λ
k
t

)
+∇gB

(
xB,k

t , pk
t , λ

k
t

)[
xB

t − xB,k
t pt − pk

t λt − λ
k
t

]T
= 0 (28)
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hB
(

xB,k
t , pk

t , λ
k
t

)
+∇hB

(
xB,k

t , pk
t , λ

k
t

)[
xB

t − xB,k
t pt − pk

t λt − λ
k
t

]T
≤ 0 (29)

∑
ij/∈Φt

Zij,t − ∑
ij∈Φt

Zij,t ≤ N1
L,t − 1 (30)

pij,t = Zij,t p0
ij,t, Zij,t ∈ {0, 1} (31)

where k is the number of iterations; ∇g(·) and ∇gB(·) are the Jacobian matrixes of the

equality constraints g(·) and gB(·), respectively;
(

xk
t , pk

t , λ
k
t , Zk

t

)
denote the feasible solu-

tions of the NLP subproblem; and Zk
ij is the integer vector representing the transmission

line i − j state in the NLP subproblem (which is solved in the NLP subproblem) Zk
ijϵZk

t .
∑

ij/∈Φt

Zij,t − ∑
ijϵΦt

Zij,t < N1
L,t − 1 is employed to avoid the endless loop during solving the

MILP subproblem and Φt =
{

ij : Zk
ij = 0

}
.

Obviously, the above model (25)–(31) is a non-convex optimization programming
problem, and the objective function can be converted to (32) by introducing the auxiliary
variable ηij. After that, the MILP subproblem is ultimately transformed into a convex
optimization problem, which can be directly solved using a linear solver.

min
T

∑
t=1

∑
ij∈Ω1

L,t

ηij,t (32)

s.t. − ηij,t ≤ Zk
ij,t − Zk

ij,t ≤ ηij,t (33)

ηij,t ≥ 0 (34)

NLP subproblem

The NLP subproblem can be listed in the following form (35)–(40) after the 0–1 integer
variables are relaxed to the 0–1 continuous variables:

min
T

∑
t=1

∑
ij∈Ω1

L,t

∣∣∣Zk
ij,t − Zk

ij,t

∣∣∣ (35)

s.t. g
(

xk
t , pk

t

)
= 0 (36)

h
(

xk
t , pk

t

)
≤ 0 (37)

gB
(

xB,k
t , pk

t , λ
k
t

)
= 0 (38)

hB
(

xB,k
t , pk

t , λ
k
t

)
≤ 0 (39)

pij,t = Zij,t p0
ij,t (40)

where Zk
ij,t is a continuous variable between 0 and 1 denoting the state of line i − j at the

tth time period and the kth iteration. In (35), if Zk
ij,t = 1, |Zk

ij,t − Zk
ij,t| = 1 − Zk

ij,t; otherwise,

|Zk
ij,t −Zk

ij|=Zk
ij,t. Then the objective function in (35) can be replaced by the convex function

shown in (41). Hence, it can be solved directly using the available NLP methods (such as
the IPM method) or NLP solvers.

min ∑
i,j∈Φ

Zk
ij,t + ∑

i,j/∈Φ

(
1 − Zk

ij,t

)
(41)
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To deal with the relaxed integer variables, we propose a strategy combining the
round-off technique and the sensitivity (24) according to (42).

Zk
ij,t =

{
0 Zk

ij,t < 0.5, ∆λ
k
ij,t > 0

1 other
(42)

3.3. Numerical Steps

The numerical steps of the proposed two-stage strategy are sketched as below, whose
flow chart is shown in Figure 5.
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Step 1: Input the necessary data for the MP-VSTS problem, including the current network
topology, the generation schedules, the operation states (say from the state estimator), and the
load margin requirement; input the rolling time domain range t∈{m, m + 1, . . . m + T − 1} and
the line-switching candidates. Let m = 1.

Step 2: Apply a continuation power flow tool to compute the load margins λbase
t of

pre-switching power systems of each period in the whole rolling horizon.
Step 3 (the prescreening stage): Calculate the sensitivities of all the switching candi-

dates using (24). Select the switching lines with the positive sensitivity, that is, the lines
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that contribute to increasing the load margins, from the candidate line set Ω1
L,t, and send

them to step 4. Let k = 1, and input the maximum number of iterations kmax.
Step 4: Construct the MILP subproblem model according to the information at the

bifurcation point calculated in step 3 according to (25)–(34). Solve the MILP subproblem
using the available commercial solver, and send the solution Zk

t to the next step.
Step 5: Construct the NLP subproblem model according to (35)–(42). Solve the NLP

subproblem to obtain the integer solutions Zk
t .

Step 6: If Zk
t = Zk

t and k < kmax, the switching line solutions are found; go to step 7;
otherwise, let k = k + 1, and go back to step 4.

Step 7: Output the TS solutions of all the time periods in the whole rolling horizon.
Send the TS solutions for the upcoming time period to the system operators, and send the
TS solutions for the other time periods to the next rolling horizon as the initial guess. Let
m = m + 1, and go back to step 2.

4. Results and Discussion

The proposed MP-VSTS problem and two-stage method are evaluated on the IEEE 118-
bus [29] and the 662-bus power systems. The proposed two-stage method is implemented
in MATLAB2018bm. The solvers for the MILP and NLP subproblems are Gurobi and
Bonmin, respectively.

4.1. Example 1

The test is performed in the IEEE 118-bus power system, which consists of 186 trans-
mission lines with total active and reactive loads of 4242 MW and 1438 Mvar, respectively.
A total of 39 loads at buses #33–#36, #39–#60, #62, #66–#67, #76–#80, #97–#99, #116, and
#118 are increased, and the rests remain unchanged. The generators on buses #1, #4, and
#31 are scheduled to supply the increasing loads. Here, λth = 2550 MW.

The load margins of the pre-switching power system at each time period are shown
in Figure 6, in which the load margins of periods #5–#9 and #11–#12 do not meet the
requirement. Taking period #5 as an example, 34 switching lines with positive sensitivities
are selected using (19) after the prescreening stage and sent to stage 2. In this stage, the
number of the integer variables is reduced from 2175 to 234. Transmission lines with the
top 10 sensitivities are listed in Table 4. In stage 2, the TS solutions of the MILP and
NLP subproblems of each iteration are listed in Table 5. The iterative solving process is
converged after two iterations. The changes in the control variables in these two iterations
are listed in Table 6. In the MILP subproblem, 11 out of 34 candidate transmission lines
obtained in stage 1 are selected and sent to the NLP subproblem. After the NLP subproblem,
the switching lines, including 1–3 and 31–32, are rounded to 0. In the second iteration,
the solutions of the MILP subproblem and the NLP subproblem are converged, and the
iteration terminates. The final solution is line 31–32.

Applying the proposed two-stage method for the whole 12 h, the transmission line
switching schemes for each period are shown in Table 7. The load margins of each time
period before and after transmission switching are shown in Figure 7.

Table 4. The top 10 switching lines of period #5 in IEEE 118-bus power system.

Switching Lines Sensitivity Switching Lines Sensitivity

17–31 10.5293 2–12 2.0216
31–32 4.8266 8–30 1.9530

1–3 4.6048 32–113 1.8210
1–2 3.6998 15–17 1.6247
3–5 3.4171 3–12 1.5856
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Figure 6. Load margins of the pre-switching power system at each time period in the 118-bus
power system.

Table 5. TS solutions of each iteration in IEEE 118-bus power system.

k Problem Line No. Switching Lines

1
MILP 2, 3, 4, 21, 23, 29, 37, 39,

42, 116, 180
1–3, 4–5, 3–5, 15–17, 17–18, 22–23,
8–30, 17–31, 31–32, 69–75, 32–113

NLP 2, 42 1–3, 31–32

2
MILP 42 31–32
NLP 42 31–32

Table 6. Changes in 0–1 integer variables in IEEE 118-bus power system.

k Problem Z2 Z3 Z4 Z21 Z23 Z29 Z37 Z39 Z42 Z116 Z180

1
MILP 0 0 0 0 0 0 0 0 0 0 0
NLP 0.181 1 1 1 1 1 1 1 0.029 1 1

2
MILP 1 1 1 1 1 1 1 1 0 1 1
NLP 1 1 1 1 1 1 1 1 0.132 1 1
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Table 7. Transmission line switching schemes for each period of IEEE 118-bus power system.

Line
Transmission Line Status (Hour)

1 2 3 4 5 6 7 8 9 10 11 12

3–5 1 1 1 1 1 1 1 0 0 0 0 0
31–32 1 1 1 1 0 0 0 0 0 0 0 0

In this example, the proposed method has been implemented for 12 h, and there are a
total of six time periods whose load margins are not satisfied with the desired load margin.
Using the proposed MP-VSTS model and method, two transmission lines (line 3–5 and
line 31–32) are needed to switch out from the base case, and the load margins of the whole
12 h are increased to meet the requirement.

4.2. Example 2: 662-Bus Power System

A 662-bus power system is used to verify the effectiveness of the proposed MP-VSTS
method on a large-scale power system. The test system consists of 1017 transmission lines,
with total loads of 25827 MW and 8364 Mvar, respectively. A total of 50 loads at buses
#630–#638, #640–#645, #650–#658, #662–#668, #673–#676, #680–#683, #686–#690, #693, and
#696–#700 are increased, and the rest of the loads remain unchanged. Five generators
at buses #571, #572, #639, #649, and #659 are committed to supplying the increased load
demands. Here, λth = 3950 MW. The load margins of the pre-switching base case of each
period are shown in Figure 8.
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The proposed two-stage method is applied for the case at period #4. After the pre-
screening stage, 56 out of 866 transmission candidates are reserved due to the positive
sensitives, and the transmission candidates with the top 10 sensitivities are listed in Table 8.
The iterative TS solutions of the MILP and NLP subproblems and the changes in the
0–1 integer variables are shown in Tables 9 and 10, respectively. For period #4, the
switching line solutions are found after two iterations. In the first iteration of solving
the MILP subproblem, six lines are selected from all the candidate lines (obtained in stage
1), and then the solutions of the MILP subproblem are sent to the NLP subproblem as
the initial point. After the NLP subproblem, lines 714–727 are solved (Z1

714−727.4 = 0.0032;

∆λ
1
714−724.4 = 0.0018). The 0–1 variable of the line 714–727 is rounded to zero according to

(26) and sent to the MILP subproblem of the next iteration. During the second iteration, the
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solutions of the two subproblems are converged, and line 714–727 with a load margin of
4007.65 MW is the final solution.

Table 8. Sensitivities of the top 10 lines at period #4.

Switching Lines Sensitivity Switching Lines Sensitivity

697–727 6.3289 714–727 3.7150
643–698 5.1848 696–708 3.6778
687–714 4.7291 624–745 2.5994
624–625 4.3707 894–895 2.4184
641–649 3.9131 735–761 2.1806

Table 9. TS solutions of each iteration in a 662-bus power system.

k Problem Switching Lines

1
MILP 624–625, 643–698, 643–798, 686–708, 697–727, 714–727
NLP 714–727

2
MILP 714–727
NLP 714–727

Table 10. Changes in 0–1 integer variables in stage 2 in a 662-bus power system.

k Problem Z624−625 Z643−698 Z643−798 Z686−708 Z697−727 Z717−727

1
MILP 0 0 0 0 0 0
NLP 1 1 1 1 1 0.0018

2
MILP 1 1 1 1 1 0
NLP 1 1 1 1 1 0.0032

The load margins before and after line switching of each period are shown in Figure 9,
and the status of the transmission line in each period is listed in Table 11. In this example,
the load margins of periods 4–6 are increased above the desired value by switching line
714–727 out. And the load margins of periods 7–12 meet the load margin demand by
switching line 624–625 out at period #7. Only two lines are needed to be switched out at
periods 4 and 7 in this example.
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Table 11. Transmission line switching schemes for each period of 662-bus power system.

Line
Transmission Line Status (Hour)

1 2 3 4 5 6 7 8 9 10 11 12

624–625 1 1 1 1 1 1 0 0 0 0 0 0
714–727 1 1 1 0 0 0 0 0 0 0 0 0

4.3. Comparisons with the Methods in the Literature

In this section, the proposed method is compared with the continuation power flow
tool (CPFLOW) [30] and the method used in [12]. The solutions of the IEEE 118-bus system
and the 662-bus power system are listed in Tables 12 and 13, respectively.

Table 12. Comparison of different methods of IEEE 118-bus system.

Period Method Switching Lines λ
post
t /MW Time/s

#5
Proposed method 31–32 2570.05 13.61

Method in [12] 31–32 2570.05 121.42
CPFLOW 31–32 2570.05 220.64

#8
Proposed method 1–2 2710.12 12.54

Method in [12] 3–5 2624.34 78.32
CPFLOW 1–2 2710.12 213.62

Table 13. Comparison of different methods in the 662-bus system.

Period Method Switching Lines λ
post
t /MW Time/s

#4
Proposed method 714–727 4007.65 30.74

Method in [12] 714–727 4007.65 2785.64
CPFLOW 624–625 3972.42 5573.85

#7
Proposed method 624–625 4042.48 29.89

Method in [12] 624–625 4042.48 2548.34
CPFLOW 624–625 4042.48 3935.03

It can be observed that (1) the proposed method can identify the same solution as that
of the CPFLOW, which can be viewed as the global solution; however, the solution using
the method in [12] may be different from that of the CFPLOW; (2) the total computation
times of the proposed method are 13.61 s and 12.54 s, respectively, which is significantly less
than that of the CPFLOW. Compared with the CPFLOW method and the method in [12],
the proposed method can find effective solutions within a relatively short time, especially
in large-scale power systems.

5. Conclusions

In this paper, a multi-period static voltage security and stability-constrained transmis-
sion switching problem formulation is proposed to guarantee enough voltage security and
stability for each period using a rolling horizon. The proposed model considers the exact
AC power flow equations and AC continual power flow equations of each time period. The
distinguishing feature of the proposed MP-VSTS problem is that the requirements of both
voltage security and voltage stability are considered in this paper. To solve the large-scale
MINLP problem, a two-stage approach is developed, which can be decomposed into an
NLP subproblem and a MILP subproblem. In addition, the TS solutions from the presented
MP-VSTS method are not just the optimal solutions for a fixed time period. The effects
of the TS solutions on the three future time periods are considered. The proposed model
can provide a minimum number of switching actions to improve the static security and
stability of power system operations. Numerical studies show the effective performance of
the proposed MP-VSTS solution approach.
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In this paper, the multi-period transmission switching problem is discussed. Future
directions may include the co-optimization of generation redispatches, reactive power
compensation, tap ratio adjustment of the transformer, and other controls. The time
resolutions for the above controls may be varied and should be designed according to the
characteristics of the types of controls. Hence, the topic of co-optimization of the available
resources in power systems is an important future work.
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