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Abstract: This review explores the integration of Artificial Intelligence (AI) with Sentinel-2 satel-
lite data in the context of precision agriculture, specifically for crop yield estimation. The rapid
advancements in remote sensing technology, particularly through Sentinel-2’s high-resolution mul-
tispectral imagery, have transformed agricultural monitoring by providing critical data on plant
health, soil moisture, and growth patterns. By leveraging Vegetation Indices (VIs) derived from
these images, AI algorithms, including Machine Learning (ML) and Deep Learning (DL) models,
can now predict crop yields with high accuracy. This paper reviews studies from the past five years
that utilize Sentinel-2 and AI techniques to estimate yields for crops like wheat, maize, rice, and
others. Various AI approaches are discussed, including Random Forests, Support Vector Machines
(SVM), Convolutional Neural Networks (CNNs), and ensemble methods, all contributing to refined
yield forecasts. The review identifies a notable gap in the standardization of methodologies, with
researchers using different VIs and AI techniques for similar crops, leading to varied results. As such,
this study emphasizes the need for comprehensive comparisons and more consistent methodologies
in future research. The work underscores the significant role of Sentinel-2 and AI in advancing
precision agriculture, offering valuable insights for future studies that aim to enhance sustainability
and efficiency in crop management through advanced predictive models.

Keywords: AI; crop yield estimation; precision agriculture; Sentinel-2; VI

1. Introduction

As the global human population continues to rise, the demand for food and agricul-
tural products is also increasing at a comparable rate. However, this surge in demand exerts
additional pressure on natural resources. To address this challenge, precision agriculture
(PA) has emerged as a viable solution. The idea of precision agriculture has a relatively long
history, starting in 1988. PA involves the optimization of agricultural inputs to enhance
crop production while minimizing losses [1]. The growing need for increased crop yields
has raised concerns about the production of safe and healthy food. On a global scale,
the monitoring of food products by national governments and consumers is becoming
increasingly difficult. Consequently, traceability and verification have recently gained
significant importance in ensuring safe agricultural practices, with a strong demand for
spatial information to achieve these goals [2]. Spatial information plays a crucial role in
modern agriculture by enabling precise resource management, optimizing yields, and
supporting sustainable practices. It provides detailed data on various factors, such as
soil conditions, moisture levels, crop health, and terrain, allowing farmers to make in-
formed decisions. By utilizing spatial information, farmers can implement site-specific
management practices, reduce waste, and increase productivity. This data-driven approach
contributes to enhanced agricultural productivity and sustainability by facilitating efficient
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water use, proper application of fertilizers and pesticides, and timely interventions for pest
and disease control [3].

2. Remote Sensing and Technologies in PA

Remote sensing (RS), a key technology in acquiring spatial information, has recently
revolutionized agricultural monitoring and management. RS involves the detection and
monitoring of an area’s physical characteristics through reflection or imaging without
direct contact. Measurements, estimations, and other activities conducted without direct
physical interaction fall within the scope of RS [4]. RS has become increasingly significant
and practical, particularly with advancements in satellite and aircraft technology, and
provides accurate and timely data on crop conditions, growth patterns, and environmental
changes [5]. It allows for continuous monitoring of extensive agricultural areas, offering
insights into crop health, phenology, and stress factors. RS also facilitates the mapping of
crop patterns, detection of anomalies, and assessment of the impacts of climate change on
agriculture [6]. This technology supports PA by enabling farmers to optimize their practices,
reduce costs, and minimize environmental impacts, thereby ensuring food security and
promoting sustainable agricultural development.

In agriculture, RS technologies such as aerial vehicles (airplanes, helicopters, Un-
manned Aerial Vehicles (UAVs)), sensors, and satellites play a crucial role in modern
farming practices by providing detailed and timely information on crop health, soil con-
ditions, and field variability [7]. Over the past 10 years, UAVs, commonly known as
drones, have provided revolutionary benefits to agriculture [8]. Equipped with cameras
and sensors that capture high-resolution images and data from above, they allow farmers
to monitor crop growth, detect diseases, and optimize irrigation [9]. Ground-based sensors
(ex. soil moisture sensors, soil temperature sensors, soil nutrient sensors, etc.) measure
soil moisture, temperature, and nutrient levels, providing real-time data that supports
precise irrigation and fertilization. Satellites, with their extensive coverage and advanced
imaging capabilities, facilitate large-scale monitoring and analysis of agricultural lands,
assisting in tracking crop development, assessing damage from pests or weather events,
and predicting yields [10,11]. By leveraging data from these technologies, farmers can
make informed decisions that enhance productivity, reduce resource use, and minimize
environmental impact. The choice of technology for data collection depends on the spe-
cific application. For instance, satellite imagery can identify underperforming areas in a
field, encouraging targeted interventions, while UAVs can conduct detailed inspections
of specific crops. Ground sensors contribute to PA by providing accurate, site-specific
information that optimizes input applications [12].

RS technologies provide a wide range of valuable data for agriculture, and the inter-
pretation of these data is of significant importance. Traditional techniques used in data
interpretation primarily rely on manual and semi-automated methods to analyze satellite
and aerial imagery. These techniques include visual interpretation, where experts analyze
images to identify crop types, assess their health, and predict yields based on color, texture,
and patterns. Other common methods involve the use of Vegetation Indices (VI), such as
the Normalized Difference Vegetation Index (NDVI), which measures plant health by com-
paring the reflectance of red and near-infrared light, as well as statistical analysis. Ground
truthing, which involves collecting real-world data to validate remote sensing information,
is a critical component of these traditional approaches. While effective, these methods can
be time-consuming and labor-intensive and may be limited by the subjective nature of
human interpretation and the complexity of data analysis [7]. However, Artificial Intelli-
gence (AI) techniques, particularly Machine Learning (ML) and Deep Learning (DL), have
recently had a significant impact on the evaluation of RS data. AI is a broad field of science
that enables machines to perform tasks with human-like intelligence. ML, as a sub-branch
of AI, includes methods that allow machines to learn from data. In this process, machines
learn from examples and make predictions without writing specific rules. DL, on the other
hand, is a sub-branch of ML and works especially with large datasets and multi-layered
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neural networks. DL has the capacity to learn more complex data patterns using structures
similar to how neurons in the human brain work. These three areas are interconnected; AI
provides a general framework, while ML represents the learning process of this framework,
and DL represents the deeper and more complex learning structure. DL, in particular, is
capable of predicting complex relationships between environmental parameters through
its advanced learning capabilities [13,14]. AI techniques enable the analysis of complex
datasets from various sources, such as satellite imagery, drones, and sensors, facilitating
precision crop monitoring, yield prediction, and disease detection. These methods can
identify patterns and anomalies that traditional approaches may overlook, leading to more
informed decision-making and optimized resource management. Additionally, AI models
can continuously learn and improve from new data, enhancing their predictive capabilities
and adaptability to changing agricultural conditions [15].

3. Yield Estimation and AI in PA

The success and impartiality of AI in interpreting agricultural data have recently
made it a focal point for researchers, particularly in the area of crop yield estimation and
forecasting. Yield estimation is a critical aspect of agriculture for farmers and agricultural
planners alike. Accurate yield forecasts enable farmers to make informed decisions regard-
ing resource allocation, crop management, and market strategies. By predicting potential
crop output, farmers can optimize the use of fertilizers, water, and pesticides, which not
only enhances productivity but also minimizes environmental impact. Additionally, yield
prediction assists in financial planning, allowing farmers to estimate income and manage
risks associated with crop failures or market fluctuations [16]. This foresight contributes to
ensuring food security and stability within the agricultural sector. In this context, many
countries around the world are making significant investments to obtain yield data [17].
The use of RS technologies to predict field and yield variability is becoming increasingly
prevalent in PA due to their relatively low costs and non-invasive approaches [18]. AI appli-
cations can provide precise and real-time yield predictions by utilizing large datasets from
various sources, such as satellite imagery, soil conditions, and crop health indicators. ML
algorithms can analyze these datasets to identify patterns and correlations that traditional
methods may overlook.

Recent studies in the literature have demonstrated that satellite data can be utilized
for yield estimation at both the field and farm scales. Earth observation data obtained
through satellites, with high spatial (~10 m) and temporal (every 5 days) resolutions, allow
for effective monitoring of crop growth on a regional scale Franch, et al. [19]. In this
context, Sentinel satellites (Sentinel-2A (2015), Sentinel-2B (2017)) have been frequently
studied by researchers in yield prediction applications. These satellites were launched
under the Copernicus Program to obtain high spatial resolution optical images. Due to
their high-resolution multispectral imaging capabilities, they have recently become vital
tools in predicting crop yield at the field level. The satellites’ ability to capture data across
13 spectral bands, ranging from visible to shortwave infrared, allows for detailed analysis
of vegetation health, soil properties, and water content [20]. These attributes are crucial
for accurately monitoring crop growth stages, detecting stress factors, and forecasting
yield. The high temporal resolution, with a revisit time of approximately five days, enables
the prompt detection of changes in crop conditions, allowing for timely interventions.
This frequent monitoring aids farmers in optimizing resource use, improving agricultural
practices, and ultimately enhancing food security [21].

4. Sentinel-2 in Yield Estimation

Sentinel-2 stands out in crop yield estimation due to its superior combination of spatial,
spectral, and temporal resolution compared to other satellite systems such as MODIS, Land-
sat, and EnMAP. While MODIS offers frequent revisit times, its coarse spatial resolution
(250–500 m) limits its effectiveness for detailed field-level analysis. Landsat provides good
spatial resolution (30 m) but has a longer 16-day revisit cycle, making it less effective for
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timely monitoring. EnMAP, with its advanced hyperspectral imaging capabilities, offers
rich spectral data but is constrained by lower spatial resolution and longer revisit times.
In contrast, Sentinel-2 offers high spatial resolution (10 m), a comprehensive range of
13 spectral bands, and a frequent five-day revisit period, enabling precise, detailed, and
timely crop monitoring. These features make Sentinel-2 particularly advantageous for PA,
as it allows for accurate assessment of crop health and yield prediction [22,23].

In the literature, Sentinel-2 satellite data have been widely used in recent years to
improve crop yield prediction models. Studies have demonstrated the effectiveness of
Sentinel-2 data in mapping crop types, assessing biomass, and predicting yields for various
crops, including wheat, corn, and rice. For instance, researchers have used Sentinel-2 data
to develop ML models that incorporate spectral indices such as NDVI and EVI (Enhanced
Vegetation Index) to predict yields with high accuracy [24] (For a more complete list, see
Appendix A or https://www.indexdatabase.de/ (accessed on 22 September 2024)). These
vegetation indices (VIs) provide quantitative measures of crop health, vigor, and stress—key
indicators that correlate directly with potential yield.

However, the methods for utilizing Sentinel-2 data can vary. Some studies rely solely
on VIs such as NDVI and EVI, which are standard metrics for monitoring vegetation
health. Others incorporate additional indices, such as the Normalized Difference Red
Edge Index (NDRE) and the Canopy Chlorophyll Content Index (CCCI), which offer more
nuanced insights into crop conditions, particularly in terms of chlorophyll content and
photosynthetic activity. These indices, while related, measure different aspects of crop
performance, which can lead to variations in yield predictions depending on the crops
being analyzed and the agricultural practices involved. The high-resolution, multispectral
capabilities of Sentinel-2 allow for the calculation of these indices, making it possible to
track changes in crop conditions over time. This enables the detection of early indicators
of crop performance, providing the basis for more accurate yield predictions [25,26]. In
comparison to other methods that utilize different RS platforms or rely on ground-based
observations alone, Sentinel-2-based models tend to offer higher spatial resolution and
more detailed spectral data.

Another key difference lies in the timing and application of these methods. For
instance, some studies utilize Sentinel-2 data only during specific growth stages, conducting
seasonal analyses, while others adopt a continuous monitoring approach that covers the
entire growing cycle, leading to more dynamic models. Seasonal analyses often yield
quicker results and are favored when time and resources are limited. In contrast, continuous
monitoring provides a more comprehensive dataset by capturing long-term changes in
crop conditions. Additionally, the ML models applied also vary between studies. Some
employ regression-based models, which are more interpretable and explainable, while
others use DL algorithms that can process larger datasets, potentially yielding higher
accuracy. These differences in approach are significant as they reflect the varying research
goals and available resources, directly influencing the choice of methodology.

Additionally, researchers often integrate Sentinel-2 data with other RS platforms or
ground-based observations to create comprehensive agricultural monitoring systems. This
integration approach varies between studies, with some focusing on multisource data
fusion for enhanced accuracy, while others prioritize ease of implementation and cost-
efficiency [27]. These differences highlight the need for a tailored approach to agricultural
monitoring based on the specific crops, environments, and resources available. The contin-
ued integration of Sentinel-2 data into Precision Agriculture (PA) has played a pivotal role
in promoting sustainable and efficient farming practices, leading to improvements in crop
management and yield predictions.

5. Previous Review Studies and Contribution of the Study

Given the significance of yield prediction in agriculture and the advantages of AI
methods in this area, a substantial body of research has emerged focused on AI-based yield
prediction. Numerous review studies have examined these efforts. For instance, Oikono-

https://www.indexdatabase.de/
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midis, et al. [28] provided a comprehensive analysis of the application of DL techniques
in crop yield prediction, emphasizing the importance of various data sources such as RS
imagery, weather data, and soil information. The authors particularly highlighted the
significant advantages of DL models, including Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) networks, due to their ability to capture complex,
non-linear relationships within large datasets, thereby improving the accuracy of yield
predictions. Similarly, Van Klompenburg, et al. [29] investigated ML algorithms used for
crop yield prediction, identifying Random Forests (RF) and neural networks as the most
commonly employed methods across 50 analyzed studies. Desloires, Ienco and Botrel [21]
also identified RFs, Artificial Neural Networks (ANNs), and ensemble learning approaches
as frequently applied ML algorithms in crop yield prediction. Another review by Luo,
et al. [30] examined the applications of ML techniques such as Support Vector Machines
(SVM), Decision Trees (DT), and neural networks in improving crop yield and nitrogen
status prediction, discussing the potential of ML to optimize nitrogen management prac-
tices through accurate nitrogen level predictions. Khairunniza-Bejo, et al. [31] explored the
use of ANNs in crop yield prediction, highlighting their strengths in processing non-linear
and multidimensional data to analyze complex patterns and relationships related to crop
growth, environmental conditions, and management practices. Dharani, et al. [32], focused
on the application of DL techniques for crop yield prediction, emphasizing the advance-
ments and effectiveness of these methods in agricultural forecasting. They summarized
past studies on various DL models, including CNNs and Recurrent Neural Networks
(RNNs), used to analyze and predict crop yields based on complex datasets such as satellite
imagery and climate data.

The number of studies mentioned in the previous paragraph can be extended. These
summarized review studies have addressed AI-supported yield prediction research. How-
ever, despite the evident importance and effectiveness of Sentinel-2 in agricultural yield
prediction, there has yet to be a review study specifically focused on Sentinel-2. Particularly
in the past five years, research involving Sentinel-2-based yield prediction has gained
significant momentum. For various crop yield predictions, different vegetation indices
(VIs) and ML techniques have been explored by researchers. The following section will
extensively cover yield studies conducted over the past five years that utilized Sentinel-2
data with AI models. These studies demonstrate the importance of Sentinel-2 in yield
prediction and its compatibility with AI techniques. Given the novelty of these studies,
there is a growing need for research that can guide future efforts by addressing questions
such as which VIs are used, which AI models are most effective, and for which crops they
have been applied. This need arises because, despite similar methodologies across most
previous studies, the specific VIs, ML techniques, and application steps often vary, even for
the same crops like rice and wheat. This review will broadly examine such past studies,
considering the methodological differences and variations in the VIs used. In this sense, this
study aims to serve as a guide for future AI-supported yield prediction research utilizing
Sentinel-2 data. In summary, the fundamental features of this study are as follows:

• No previous review articles have examined Sentinel-2-based yield prediction studies.
Therefore, this study is significant.

• The reviewed studies are recent (2019–2024).
• The crops used in previous yield studies and the types of VIs calculated are presented

in a simple overview with a table.

6. Previous Sentinel-2 and Crop Yield Estimation Works

Previous crop yield estimation studies developed using Sentinel-2 data and AI tech-
niques have increased significantly in the last 5 years (2019–2024). These studies calculate
various VIs (such as NDVI, EVI, NDRE) that monitor plant health and development
processes using Sentinel-2’s high-resolution and multispectral imaging capabilities. AI
algorithms analyze these data, learn complex and non-linear relationships affecting crop
yields, and create prediction models. Studies usually make more precise and localized
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predictions by monitoring within-field variability and changes over time, which provides
significant advantages in agricultural management and decision-making processes. Such
case studies can be explained as follows. (Since there are many abbreviations, especially
those originating from VIs, abbreviation explanations are shared in Appendices A and B
Section).

6.1. Studies Using Only ML Techniques

ML techniques are commonly used methods in agricultural yield prediction. These
techniques provide high accuracy in predicting agricultural yields by learning complex
relationships within large datasets. Algorithms frequently used in agriculture, such as
RF and SVM, have shown successful results, particularly when combined with satellite
imagery and vegetation indices (e.g., NDVI, EVI). By processing agricultural data, ML
helps in understanding the relationship between crop growth processes and environmental
factors, leading to better decision-making.

Hunt, et al. [33] utilized Sentinel-2 data to map the yield variability within a wheat
field at a 10-m resolution over the course of a year. They presented a model calibrated
with combined harvester yield monitor data. Wheat yield data were collected during
the 2016 harvest season, from 6 August to 9 September, using combines equipped with
a Global Positioning System (GPS) and an optical yield monitor. Over 8000 points from
39 wheat fields were used for training and validation. The yield data underwent several
preprocessing steps, including resampling to 10 m and 20 m resolutions using an Inverse
Distance Weighting function. This resampling allowed the yield to be aligned with the
Sentinel-2 data used in the study, facilitating the evaluation of the optimal resolution for
yield prediction. The study utilized only the 10 m or 20 m resolution bands of Sentinel-2
(i.e., B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12). Five different Vis, GCVI, GNDVI, NDVI,
SRI, and WDRVI, were calculated using these bands. Yield prediction was performed
with various combinations of data, integrating Sentinel-2 data from different periods
of the growing season with environmental data (including meteorological, topographic,
and soil moisture data). The highest performance, using RF and normalized two-band
ratios, occurred during the maturity stage. The results demonstrated that it is possible to
produce accurate intra-field yield variability maps at a 10 m resolution using Sentinel-2
data (RMSE = 0.66 t/ha). Accuracy increased when environmental data were incorporated
(RMSE = 0.61 t/ha).

Kayad, et al. [34] conducted a study to predict the spatial variability of maize yield.
Yield data were monitored using a grain yield monitor mounted on a harvester across
a 22-hectare study area in Italy between 2016 and 2018. Sentinel-2-derived VIs and ML
techniques (RF, SVM, and MLR) were employed for yield prediction. After all Sentinel-2
bands were resampled to 10 m, nine different VIs (NDVI, NDRE1, NDRE2, GNDVI, GARVI,
EVI, WDRVI, mWDRVI, and GCVI) were extracted from the Sentinel-2 imagery. Among
these, GNDVI was identified as the best parameter for monitoring the intra-field variability
of maize grain yield. Additionally, RF was found to be the most accurate ML technique for
maize yield monitoring, with R2 values reaching up to 0.6.

Gómez, et al. [35] conducted a potato yield prediction study using images from
Sentinel-2 satellites over three growing seasons, applying nine different ML models. They
focused on the learning models that showed the best performance for the months of July,
August, and September, continuing their experiments with these top-performing models.
The models were evaluated based on test data from 33 different sites in Spain collected
over three years. The minimum yield sample across all three years was 17.547 tons/ha, the
maximum was 85.678 tons/ha, and the average potato yield was 57.950 tons/ha with a
standard deviation of 16.747. Potatoes exhibiting green areas, measuring less than 28 mm
in diameter, showing deformities, or having physical damage were excluded from the
harvest and not considered in the crop yield calculations. Field assessments indicated that
around 3–5% of the overall production had some form of defect, resulting in those potatoes
being left unharvested. A total of 44 Sentinel-2 band images were resampled to 10-m
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resolution for the years 2016, 2017, and 2018, with cloud cover removed through masking.
Seven different VIs were calculated from these images: ARI2, CRI2, IRECI2, LCC, NDVI,
PSRI, and WDVI. The authors emphasized the critical importance of feature selection in
the application. Successful predictions were achieved using models such as Regression
Quantile Lasso, RF, SVM Radial, and Leap Backwards. After removing data with a high
correlation (0.5 or above), the Leap Backwards model achieved RMSE = 10.94%, R2 = 0.89,
and MAE = 8.95%. The SVM method, however, provided better predictions without feature
selection, with prediction values of RMSE = 11.7%, R2 = 0.93, and MAE = 8.64%.

Zhao, et al. [36] utilized observations from 103 study sites during the 2016 and 2017
harvest seasons in northeastern Australia. They incorporated indices derived from Sentinel-
2 (S2) data and a modeled crop water stress index (SI) to predict drought-prone wheat
yields at the field scale. To determine wheat yield variability among fields, they employed
a total of 14 spectral VIs, including NDVI, OSAVI, EVI, CCCI, SR, and DVI. Predictive
models were developed using data from 89 fields, while data from 14 fields were used for
performance testing. A linear regression (LR) model was applied to the yield values. The
study compared the predicted yields based on vegetation indices with the actual values.
The VIs derived from S2 demonstrated moderately high accuracy in yield prediction,
explaining more than 70% of yield variability. Specifically, CIRed (RMSE = 0.88 t/ha) and
OSAVI (RMSE = 0.91 t/ha) provided the best correlation with field yields. Additionally,
combining the SI derived from the crop model with both structural and chlorophyll indices
significantly improved predictability.

Franch, Bautista, Fita, Rubio, Tarrazó-Serrano, Sánchez, Skakun, Vermote, Becker-
Reshef and Uris [19] used Sentinel-2 spectral reflectance bands and VI data to monitor
within-field yield variability in a field in Valencia during the 2020 season. Yield measure-
ments were conducted using harvesters equipped with sensors, covering a total of 52 fields
and 66 hectares. The authors utilized Sentinel-2 spectral bands with spatial resolutions of
10 m and 20 m (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12). They combined these spectral
bands to achieve the best correlation with yield values. The derived VIs included WDRVI,
SAVI, RVI, LSWI, NDBI, TVI, IPVI, RGVI, CIred, NDRE1, and NDRE2. Equation combi-
nations were developed separately for the 10 m and 20 m spatial resolution bands based
on LR. The study produced numerous results for different equations at both 10 m and
20 m resolutions. The findings demonstrated a strong relationship between rice yield and
spectral bands using various combinations.

Nazir, et al. [37] aimed to measure rice yield at various phenological stages using VIs
calculated from 2016 Sentinel-2 time series images. The study focused on 137 plots in the
Sheikhupura region of Pakistan, where the average annual rice production is approximately
2.5 million tons. These plots were closely monitored until the harvest period, and rice yield
values were measured with precision. The researchers used NDVI, EVI, SAVI, and REP
vegetation indices to estimate rice yield. To analyze the relationship between these VIs and
yield, they applied the Partial Least Squares Regression (PLSR) technique. The authors
reported that the integration of PLSR and VIs successfully predicted rice yield with an
RMSE of 0.12 t/ha. Additionally, they identified the late vegetative and flowering stages as
the most suitable times for rice yield prediction.

Son, et al. [38] utilized Sentinel-2 images to predict rice yield across 671,772 hectares in
Taiwan. They analyzed these images using ML techniques. Crop yield data were obtained
from the Taiwan Agricultural Research Institute. Data from the 2019 to 2020 crop seasons
were processed using ML algorithms (RF, SVM, ANN). Monthly EVI data were used for
rice yield prediction, and the results were validated against the 2019–2020 season data
from planting to maturity. The SVM model, which used EVI data, outperformed the other
models (RF and ANN) in field-level rice yield prediction, with MAPE values of 4.5% and
3.5% for the two respective seasons. The authors concluded that rice crop yields could be
predicted one month before harvest using ML models.

Marshall, et al. [39] compared the performance of PRISMA and Sentinel-2 spectral
bands in predicting biomass and yield for maize, rice, soybeans, and wheat. Experimental
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analyses were conducted on fields totaling 3800 hectares. The comparison considered
key crop development stages, including vegetative, reproductive, and maturity phases.
Three data-driven methods were selected: TBVIs, PLSR, and RF. PRISMA and Sentinel-2
data were preprocessed (e.g., outlier removal, gap-filling with a smoothing-spline filter).
Sentinel-2 bands 1, 9, and 10, which are necessary for coastal/atmospheric studies, were
excluded from the analysis. Band 2 was also excluded due to significant atmospheric
scattering. The PRISMA and Sentinel-2 models explained approximately 20% more spectral
variability in biomass and yield when using RF compared to TBVI and PLSR.

Crusiol, et al. [40] collected within-field soybean yield data using a yield monitor-
equipped harvester across 15 different fields, each over 500 hectares, in Brazil. To monitor
these yield data using RS, they utilized Sentinel-2 spectral bands and eight different VIs:
BNDVI, GNDVI, NDVI, NDRE, NDII, NDII 2, EVI1, and EVI2. They applied PLSR and
SVR algorithms to correlate the actual measurements with the Sentinel-2 observations. A
10-fold cross-validation method was used to evaluate the performance of the PLSR and
SVR models. The spectral bands and VIs were fed into these regression models individually
and in combination. SVR outperformed PLSR, showing a stronger correlation between
observed and predicted yields. While the performance of individual VIs was inferior to that
of the Sentinel-2 bands, combining all VI images reduced the prediction error. Moreover,
the highest performance was achieved when all VI images were used in conjunction with
VIS/NIR/SWIR spectral bands.

Ashourloo, et al. [41] conducted measurements for wheat yield in 2020, sampling
across 6285.8 hectares in the Hamedan province of Iran. To monitor wheat yield prediction,
they used Sentinel-2 bands and VIs. They employed the B3 (Green), B4 (Red), and B8 (VIR)
bands along with various VIs derived from these bands (NDVI, SR, GCVI, GNDVI, WDRVI,
DVI, EVI, SAVI, GRRI, NGBDI). Subsequently, they applied feature selection based on
correlation coefficients between the bands and VIs, observing that the VIs provided higher
correlations than the spectral bands. The most correlated features were also used to remove
outliers. In the final step, they used multiple regression models, including KNN, NN, DT,
SVR, GPR, RF, LR, and SR, to predict wheat yield. The regression results indicated that the
GPR model outperformed the others, with an RMSE of 228.56 kg/ha.

Bebie, et al. [42] conducted an experimental study from 2017 to 2020 across 66 fields
in Greece to analyze durum wheat yield. The actual yield data were collected using a
yield mapping system on a combine harvester. To relate the actual yield values to RS data,
they applied two different models. First, they employed an MLR model based on VIs,
specifically EVI and NMDI, derived from Sentinel-2 bands. Secondly, they used Sentinel-2
spectral bands as inputs to ML algorithms, including RF, k-Nearest Neighbors KNN, and
BR. The study emphasized the superior predictive accuracy of RF and KNN, with an RMSE
of less than 360 kg/ha.

Segarra, et al. [43] collected wheat grain data over three seasons (2017–2019) from
eight different fields in the Burgos province of Spain using a combine harvester. To develop
a model for predicting these actual yield values, they calculated the LAI derived from radia-
tive transfer models, along with seven different VIs (GNDVI, NDVI, RVI, EVI, TGI, NGRDI,
and CVI) derived from Sentinel-2 bands. The ML algorithms used for modeling were RF,
SVM, and BR. The results indicated that LAI was more successful in yield prediction than
the indices derived from Sentinel-2 bands. Among the algorithms, RF outperformed the
others with an R2 value of 0.89.

Abebe, et al. [44] adopted an approach that combined Sentinel-2 and Landsat 8 data to
predict sugarcane (Saccharum officinarum L.) yield across a 12,000-hectare area in Ethiopia.
They collected actual yield data in ‘t/ha’ units from the Wonji Sugarcane Research and
Development Center for the 2016/2017 to 2018/2019 seasons. The authors investigated the
performance of integrating Landsat 8 and Sentinel-2 data compared to using Sentinel-2
data alone. To achieve this, they registered the Landsat 8 images to the corresponding
Sentinel-2 images using image registration techniques, utilizing similar bands from both
sensors (Sentinel-2: B2, B3, B4, B8, B11, B12; Landsat 8: B2, B3, B4, B5, B6, B7). They used
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these bands to calculate VIs such as NDVI, EVI, SAVI, MSAVI, SR, GNDVI, and SIRI from
both Landsat 8 and Sentinel-2. These data were then input into SVR, MLPNN, and MLR
methods to predict sugarcane yield. The performance of these ML methods was compared
using ten-fold cross-validation. The authors concluded that the Sentinel-2 and Landsat
8 predictions (RMSE = 12.95 t/ha) outperformed predictions using only Sentinel-2 data
(RMSE = 14.71 t/ha).

Bhumiphan, Nontapon, Kaewplang, Srihanu, Koedsin and Huete [17] aimed to predict
rubber yield using Sentinel-2 satellite imagery for 213 fields between December 2020 and
November 2021. They used VIs such as GSAVI, MSRI, NBR, NDVI, NR, and RVI to estimate
monthly rubber yield. These index values were input into LR and MLR models to predict
yield. The actual yield data from agricultural areas were obtained from farmers’ sales
invoices, which provided weight data (in kilograms). The prediction results indicated that
the red edge spectral band (band 5) outperformed all other spectral bands and VIs (R2 =
0.79, RMSE = 29.63 kg/ha). The MSRI index was the highest-performing VI with an R2 of
0.62 and RMSE of 39.25 kg/ha. Combining band 5 and MSRI data further improved the
results slightly (R2 = 0.8, RMSE = 29.42 kg/ha).

Faqe Ibrahim, et al. [45] developed a wheat yield prediction model for a region in
northeastern Iraq. They divided the total area into 11 plots and collected yield data through
field visits. To predict the collected yield values, they created a LR model using VIs derived
from Landsat 8 and Sentinel-2 (EVI, NDVI, NDWI, SAVI, SRI, RVI, GRVI, NDRE, CMFI,
chlorophyll, LAI). The LR model results highlighted the superiority of Sentinel-2 over
Landsat 8. Among the Sentinel-2 indices, LAI exhibited the highest correlation with the
actual yield values (RMSE = 0.57).

Amankulova, et al. [46] conducted a study based on Sentinel-2 data to predict sun-
flower crop yield at the pixel or field level. Yield data were obtained from 20 different
sunflower fields in Hungary in 2020. The authors employed the RF algorithm to correlate
yield values obtained from a yield monitoring system, which is equipped with a combine
harvester, with NDVI index values derived from Sentinel-2 spectral bands. The data from
10 fields were used for training, while the remaining 10 fields were reserved for testing.
The authors concluded that the RMSE values ranging between 121.9 and 284.5 kg/ha were
promising, indicating that sunflower seed yield could be predicted 3–4 months before
harvest. The study identified the optimal period for yield prediction to be between 85 and
105 days into the growing season, which corresponded to the flowering stage of sunflowers.

Nuraeni and Manessa [47] examined the effectiveness of spatial ML methods to
monitor tea leaf conditions and estimate crop yield at the Gunung Mas plantation in Bogor,
Indonesia. The research utilized Sentinel-2 satellite data, which provided high-resolution
multispectral imagery for the study area. ML algorithms (SVM, RF) were applied to process
the satellite images and extract VIs, such as NDVI (Normalized Difference Vegetation
Index), which are indicators of plant health. These indices were used to predict the tea yield
by correlating them with ground truth data collected from the plantation. The study found
that using spatial ML with Sentinel-2 imagery could accurately predict tea yields, offering
a non-invasive and efficient method for agricultural monitoring. The results demonstrated
that integrating RS data with ML techniques holds significant potential for optimizing
resource use and improving crop management practices in PA.

Madugundu, et al. [48] investigated the best times for monitoring carrot crops and
assessing yield using Sentinel-2 satellite data. The research employed various ML models
to analyze the spectral and temporal data provided by Sentinel-2 imagery. By identifying
key growth stages of the carrot crop, the study aimed to determine the optimal periods
for collecting data that would most accurately predict yield outcomes. Sentinel-2’s high-
resolution images were processed to calculate VIs such as the NDVI, GNDVI, RDVI, GLI,
and SIPI which were correlated with field-based yield data. The RF model was trained and
validated using this combined satellite and ground data. Five scenarios adopting the RF
algorithm were conducted. Among the five scenarios examined, the algorithm with the
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highest predictive accuracy was achieved through the combination of individual S2 bands,
VIs, and SPAD values (RMSE = 7.8 t/ha).

Kamenova, et al. [49] focused on mapping crop types and predicting winter wheat
yield in the Upper Thracian Lowland, Bulgaria, using Sentinel-2 satellite imagery. The
primary crops in this region include winter wheat, rapeseed, sunflower, and maize. Re-
searchers employed ML techniques, specifically SVM and RF, to classify crop types accu-
rately. They created temporal image composites to identify the best times to distinguish
between different crops. Ground truth data from the Integrated Administration and Control
System (IACS) were used to train the classifiers and validate the accuracy of the crop maps.
The study found that both SVM and RF classifiers performed well, with SVM showing a
slight edge in accuracy. The researchers masked winter wheat fields using the most accurate
classification algorithm and then predicted yields using regression models calibrated with
in situ data. The GNDVI from the April composite image emerged as the best predictor
of winter wheat yield. This approach demonstrated the potential of combining Sentinel-2
data with ML techniques to enhance agricultural monitoring and yield prediction.

de Freitas, et al. [50] thoroughly investigated the potential of using texture measures
derived from Sentinel-2 imagery to predict soybean yield variability. The researchers
employed an RF model, leveraging unique Grey Level Co-occurrence Matrix (GLCM)
texture measures as an alternative to traditional empirical models. They meticulously
evaluated eleven different GLCM texture models, each based on eight texture measures of a
single spectral layer, to represent soybean field yield variation across two distinct sites and
seasons. The findings revealed that several models achieved high accuracy, with R2 values
ranging from 0.90 to 0.95 and RMSE values between 0.06 and 0.26 tons per hectare. The
study highlighted that models with window sizes larger than 15 pixels were particularly
effective for predicting soybean yield, as the window size significantly influenced the
performance of the GLCM texture measures. Furthermore, the research indicated that
models derived from individual spectral bands (EVI, GNDVI, GRNDVI, NDMI, NDRE,
NDVI, SFDVI), such as red, red-edge, near-infrared, and short wavelength infrared, were
more sensitive to changes in window size compared to those derived from vegetation
indices. Ultimately, the study concluded that aggregating data using texture measures
enhanced the predictive power of individual spectral responses, offering a viable and
improved method for predicting within-field soybean yield variation using RF models.
This approach provided a promising alternative to traditional methods, potentially leading
to more accurate and efficient agricultural yield predictions.

6.2. Studies Using DL Techniques

DL is an artificial intelligence technique particularly successful with complex and
multidimensional datasets. In agricultural yield prediction, DL models like CNN and
RNN provide high accuracy, especially by processing satellite imagery and time series
data. DL models have the capacity to learn complex and non-linear relationships in large
datasets, making them a powerful tool for better understanding agricultural processes and
predicting future crop yields.

Fernandez-Beltran, et al. [51] utilized Sentinel-2 data to predict rice crop yield. They
developed a large-scale rice crop database for Nepal (RicePAL), comprising Sentinel-2 data
and actual rice yield records from 2016 to 2018. For yield prediction, a 3D CNN was devel-
oped. The study analyzed the impact of using different temporal and climatic/soil data
settings with the proposed approach. The Sentinel-2 data included four bands resampled to
20 m (B02–B04 and B08) and bands with a nominal spatial resolution of 20 m (B05–B07, B8A,
B11, and B12). NDVI images derived from these bands were used. Given the significant
influence of climatic and soil variables on rice crop production, these data were also consid-
ered. The proposed CNN model was compared with different ML methods (LR, RID, SVR,
GPR) across four different scenarios. The results demonstrated that the proposed CNN
consistently outperformed other methods across all tested scenarios. Furthermore, the
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incorporation of auxiliary climatic and soil data were found to enhance the yield prediction
process.

Narin, et al. [52] conducted a study to monitor sunflower yield values. In 2018, they
collected yield data from 48 sunflower parcels in Tokat, Türkiye, based on information
obtained from farmers. They correlated these data with NDVI and NDVIred indices derived
from Sentinel-2 bands. To predict actual yield values based on the VIs, they employed
three different learning algorithms. For the first algorithm, they created LR functions. The
second and third algorithms involved implementing ANN and 1D-CNN models. The
results indicated that the 1D-CNN model, fed with NDVI data, outperformed the other
algorithms, achieving an RMSE value of 20.874 kg/da.

Perich, et al. [53] aimed to model crop yield using AI-based techniques by utilizing
five years of small grain crop yield data (2017–2021) collected from combine harvesters.
These data, representing various crops over five years, was obtained from farms in Western
Switzerland. High-resolution Sentinel-2 time series data were used for modeling crop yields
at a spatial scale corresponding to the Sentinel-2-pixel level. Four different methods were
applied and compared for modeling crop yield at the Sentinel-2 level, including ‘Partial
integral at peak’ and ‘Smoothed NDVI’ based on spectral indices, ‘Four S2 scenes’ based on
all spectral bands of Sentinel-2, and pixel-based crop yield modeling using an RNN. The
RNN method produced superior results compared to the others, offering advantages in
preprocessing and feature extraction while also performing well with cloudy data. When
using data from all years, the models achieved higher accuracy. For winter wheat, the ‘Four
S2 scenes’ method achieved an R2 of 0.88 and an RMSE of 10.49%.

Xiao, et al. [54] conducted an AI-based yield prediction study using winter wheat yield
data collected from Henan Province, China, between 2019 and 2020. The data consisted
of 2885 field yield samples and 3500 processed Sentinel-2 image scenes. They developed
an attention-based algorithm for yield prediction, which was fed with VIs derived from
Sentinel-2, including LSWI, IRECI, GCVI, and NDVI. The proposed algorithm design
combined a 1D-CNN model with a multi-channel attention mechanism. For comparison,
1D-CNN and RF models were also employed. The developed ACNN model outperformed
the others, achieving an RMSE of 1460 kg/ha and an R2 of 0.44.

Mancini, et al. [55] explored advanced methodologies for predicting durum wheat
yield by leveraging Sentinel-2 satellite time series data. The researchers employed Func-
tional Data Analysis (FDA) and DL models, focusing on developing a yield prediction
system using both temporal and spectral domains of the data. By analyzing pixels from
Sentinel-2 imagery and removing irrelevant data affected by clouds or shadows, they
generated continuous spectral time series for each pixel. Functional Principal Component
Analysis was applied to create NDVI and NDRE curves, which were then used to predict
wheat yield through classical PLSR. Additionally, DL models such as CNNs, including
VGG16, VGG19, and MobileNetv2, were tested. The results showed that image-based
predictions, particularly using the VGG16 model, achieved the highest accuracy, with a
RMSE of 0.047 kg/ha. This study demonstrated the potential of combining spectral indices
with DL models for precise crop yield forecasting, thus providing valuable insights for
organic durum wheat yield prediction and its applications in PA.

Amankulova, et al. [56] focused on developing an innovative approach to predict
soybean yields by combining data from Sentinel-2 and PlanetScope satellites. Researchers
collected normalized difference vegetation indices (NDVI, GNDVI, NDRE, EVI, SAVI) data
from the S2 Level-2A and PS Level-3 surface reflectance during the soybean growing season.
They applied the pyDMS algorithm, a decision tree-based technique, to enhance both low
and high-resolution images with information from large-scale images. The study analyzed
the robustness and flexibility of a multidimensional data fusion, DNN, and ML-based yield
estimation model, considering the within-field variability in soybean yield. The fusion of
data from both satellites significantly outperformed individual predictions, demonstrating
higher accuracy and fewer errors. The study utilized various VIs and, during validation,
compared crop forecasts using NDVI maps. The effectiveness of ANNs in predicting crop
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yields was highlighted, showing superior performance across diverse datasets compared
to other algorithms. The research underscored the potential of combining different satellite
data sources to improve agricultural yield predictions, offering a more reliable and precise
method for farmers and agricultural planners.

6.3. Studies Using Ensemble Methods

Ensemble methods aim to achieve stronger and more accurate predictions by using
multiple models together. XGBoost, Stacked Models, and other ensemble approaches work
by combining models composed of weak learners. Ensemble methods used in agricultural
yield prediction reduce error margins and produce more precise results by bringing together
the strengths of different ML algorithms. These methods have been particularly successful
with large and complex datasets.

Pejak, et al. [57] utilized Sentinel-2 multispectral images and soil parameters to predict
soybean yields over a total area of 411 hectares across 142 fields in Austria during the
2018–2020 growing seasons. They introduced the Polygon-Pixel Interpolation method,
which optimizes yield values with satellite imagery. From the 12 bands of the Sentinel-2
multispectral image, they calculated 20 different VIs, including NDVI, EVI, ARVI, SAVI,
NDVIRed, VARI, NDWI, MNDWI, VDVI, NLI, MNLI, NMDI, GLI, ExG, CIVE, AWEI, GRVI,
GARI, DVI, and LAI. These VIs were tested and compared using ML models such as MLR,
SVM, XGBoost, SGD, and RF. The study concluded that the SGD algorithm outperformed
the others, with an MAE of 0.436 t/ha.

Desloires, Ienco and Botrel [21] conducted a study to predict end-of-season maize
yields at the field scale, using yield data collected from 1164 fields across two U.S. states
between 2017 and 2021. They utilized satellite and environmental data, including spectral
time series images derived from Sentinel-2 and temperature data obtained from ERA-5
climate reanalysis. Bands B1, B2, B9, and B10 were excluded from the analysis. All other
raw band pixels were resampled to a 10-m resolution using nearest-neighbor interpolation.
Cloud and shadow-classified pixels were disregarded using the SCL map, and images
with more than 50% valid pixels were included in the study. From these images, three VIs
(GNDVI, NDRE, NDWI) were calculated. Additionally, the LAI and LCC parameters were
estimated using an ANN trained with Sentinel-2 data. To predict yield, they employed ML
algorithms such as RR, RF, SVR, MLP, XGBoost, and STACK. Hyperparameters for each
algorithm were determined using the Grid Search method. To observe yield predictions
under different scenarios, they developed a resampling strategy based on calendar time
and thermal time. They also conducted yield predictions under four scenarios: using
bands, VIs, bands + VIs, and biophysical parameters. The study concluded that the STACK
algorithm performed relatively better and that the use of thermal time was beneficial.

Zhang, Zhang, Liu, Lan, Gao and Li [16] collected winter wheat yield data using
combined harvesters from 117 different fields in Henan Province, China, between 2019 and
2021. To automate pre-harvest yield predictions, they employed VI time series data from
Landsat 8 and Sentinel-2. A comparison was made using common bands from both sensors,
and the BRDF correction model was applied to the images to facilitate more accurate
comparisons. The study found a strong correlation between the bands of Sentinel-2 and
Landsat 8. The VIs derived from both sensors were integrated using bands B2, B3, B4,
B8, B8A, B11, and B12 for Sentinel-2. All bands were resampled to a 10-m resolution, and
five different VIs (NDVI, GNDVI, RVI, EVI2, and WDRVI) were calculated. The study
identified WDRVI as the most suitable VI for integrating Landsat 8 and Sentinel-2 data.
Subsequently, different ML methods, including Bayesian Optimization with CatBoost (BO-
CatBoost), LASSO, SVM, and RF, were used to predict winter wheat yield. The study
concluded that the BO-CatBoost model provided the best performance for yield prediction
(RMSE = 0.62 t/ha). The authors suggested that the proposed method could predict winter
wheat yield 40 days before harvest.

Darra, Espejo-Garcia, Kasimati, Kriezi, Psomiadis and Fountas [18] focused on pre-
dicting the yield of three different tomato varieties using vegetation indices derived from
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Sentinel-2. The study was conducted over an area of 410.10 hectares in Greece, where yield
data for 108 different fields with three tomato varieties were collected by farmers under the
supervision of agricultural experts in 2021. To model the yield of these fields, five different
types of vegetation indices (NDVI, WDVI, PVI, RVI, SAVI) were calculated from Sentinel-2
spectral bands. The relationship between these VIs and yield values was modeled using
an AutoML technique. This approach automates the selection of the most suitable ML
methods from a wide range of options, forming ensembles to enhance performance by
combining several ML methods. The study concluded that the AutoML technique suc-
cessfully predicted yield values both individually and as ensembles. The combination of
ARD regression and SVR was identified as the best-performing model (R2 = 0.67 ± 0.02).
Additionally, the study observed that RVI and SAVI were the most effective VIs for yield
prediction.

7. Interpretation of Previous Studies

In the previous section, summaries of studies that employed Sentinel-2 bands and VIs
derived from these bands for yield prediction using various AI models were presented.
Before discussing these studies, this section first provides a quantitative analysis of Sentinel-
2’s usage based on Web of Science (WOS) data. The bar chart shown in Figure 1 illustrates
the number of studies, which are categorized into three distinct groups, over the years 2017
to 2024. These categories include studies using Sentinel-2, studies involving Sentinel-2 and
yield prediction, and studies incorporating Sentinel-2, yield prediction, and AI. The studies
discussed in Section 2 fall into the third category.
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According to the graph in Figure 1, there is a noticeable and continuous increase in
the number of studies utilizing Sentinel-2. While there were relatively few studies in 2017,
this number peaked in 2022, surpassing 700. This trend can be attributed to the growing
prevalence and importance of Sentinel-2 satellite imaging technology in scientific research.
Secondly, there has also been a moderate increase in studies involving both Sentinel-2
and yield prediction. Such studies began to emerge in 2017 and have gradually increased
each year, indicating a growing utilization of Sentinel-2 satellite data for yield prediction
in agriculture. Thirdly, although the number of studies incorporating Sentinel-2, yield
prediction, and AI has increased over the years, this growth has been more limited and less
pronounced. This suggests that this area remains relatively new and is still an emerging
field of research. The limited widespread integration of AI and yield prediction with
Sentinel-2 indicates that this field is still in the early stages of development. In summary,
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the graph demonstrates that Sentinel-2 has become a critical tool in scientific research,
particularly in the context of yield prediction and AI integration in agriculture.

Table 1 presents the studies summarized in Section 2, categorized by year, crop type,
the VIs used, and the learning methods employed. This table facilitates easier observation
and comparison of the studies. The selection of these 30 studies was made with attention
to the quality of the journals in their respective fields. The studies encompass various crop
types and employ diverse VIs and learning methods.

Table 1. AI-based yield estimation studies using Sentinel-2 data conducted in the last 5 years.

No Study Publication Year Crop Type VI Learning Method

1 Hunt, Blackburn, Carrasco,
Redhead and Rowland [33] 2019 Wheat GCVI, GNDVI, NDVI,

SRI RF

2 Kayad, Sozzi, Gatto,
Marinello and Pirotti [34] 2019 Corn

NDVI, NDRE1, NDRE2,
GNDVI, GARVI, EVI,

WDRVI, mWDRVI, GCVI
RF, SVM, MLR

3 Gómez, Salvador, Sanz and
Casanova [35] 2019 Potato ARI2, CRI2, IRECI2, LCC,

NDVI, PSRI, WDVI RF, SVM, LR

4 Zhao, Potgieter, Zhang, Wu
and Hammer [36] 2020 Wheat

NDVI, OSAVI, SR, DVI,
EVI, EVI2, CIred, TCARI,
TO, GCVI, GDVI, NDRE1,

NDRE2, CCCI

LR

5 Fernandez-Beltran, Baidar,
Kang and Pla [51] 2021 Rice NDVI CNN, LR, RID, SVR,

GPR

6 Narin, Sekertekin, Saygin,
Balik Sanli and Gullu [52], 2021 Sunflower NDVI, NDVIRed LR, ANN, CNN

7

Franch, Bautista, Fita, Rubio,
Tarrazó-Serrano, Sánchez,

Skakun, Vermote,
Becker-Reshef and Uris [19]

2021 Rice
WDRVI, SAVI, RVI, LSWI,
NDBI, TVI, IPVI, RGVI,
CIred, NDRE1, NDRE2

LR

8
Nazir, Ullah, Saqib, Abbas,
Ali, Iqbal, Hussain, Shakir,

Shah and Butt [37]
2021 Rice NDVI, EVI, SAVI, REP PLSR

9
Son, Chen, Cheng, Toscano,

Chen, Chen, Tseng, Syu, Guo
and Zhang [38],

2022 Rice EVI RF, SVM, ANN

10 Marshall, Belgiu, Boschetti,
Pepe, Stein and Nelson [39] 2022 Corn, rice, soybean,

wheat NDVI PLSR, RF

11

Crusiol, Sun, Sibaldelli,
Junior, Furlaneti, Chen, Sun,

Wuyun, Chen, Nanni,
Furlanetto, Cezar,

Nepomuceno and Farias [40]

2022 Soybean
BNDVI, GNDVI, NDVI,

NDRE, NDII, NDII 2,
EVI1, EVI2

PLSR, SVR

12 Ashourloo, Manafifard,
Behifar and Kohandel [41] 2022 Wheat

NDVI, SR, GCVI, GNDVI,
WDRVI, DVI, EVI, SAVI,

GRRI, NGBDI

KNN, NN, DT, SVR,
GPR, RF, LR, SR

13 Bebie, Cavalaris and
Kyparissis [42] 2022 Wheat EVI, NMDI RF, KNN, BR

14 Segarra, Araus and
Kefauver [43] 2022 Wheat GNDVI, NDVI, RVI, EVI,

TGI, NGRDI, CVI RF, SVM, BR

15 Abebe, Tadesse and
Gessesse [44] 2022 Sugarcane NDVI, EVI, SAVI, MSAVI,

SR, GNDVI, SIRI SVR, MLPNN, MLR

16

Pejak, Lugonja, Antić, Panić,
Pandžić, Alexakis, Mavrepis,

Zhou, Marko and
Crnojević [57]

2022 Soya

NDVI, EVI, ARVI, SAVI,
NDVIRed, VARI, NDWI,

MNDWI, VDVI, NLI,
MNLI, NMDI, GLI, ExG,

CIVE, AWEI, GRVI,
GARI, DVI, LAI

MLR, SVM, XGBoost,
SGD
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Table 1. Cont.

No Study Publication Year Crop Type VI Learning Method

17
Perich, Turkoglu, Graf,

Wegner, Aasen, Walter and
Liebisch [53]

2023 Winter Wheat NDVI, GCVI Four S2 scenes, RNN

18
Bhumiphan, Nontapon,

Kaewplang, Srihanu, Koedsin
and Huete [17]

2023 Rubber GSAVI, MSRI, NBR,
NDVI, NR, and RVI LR, MLR

19 Faqe Ibrahim, Rasul and
Abdullah [45] 2023 Wheat

EVI, NDVI, NDWI, SAVI,
SRI, RVI, GRVI, NDRE,
CMFI, chlorophyll, LAI

LR

20 Desloires, Ienco and
Botrel [21] 2023 Corn GNDVI, NDRE, NDWI,

LAI, LCC
RR, RF, SVR, MLP,
XGBoost, STACK

21 Zhang, Zhang, Liu, Lan, Gao
and Li [16] 2023 Wheat NDVI, GNDVI, RVI,

EVI2, WDRVI
BO-CatBoost, LASSO,

SVM, RF

22
Darra, Espejo-Garcia,

Kasimati, Kriezi, Psomiadis
and Fountas [18]

2023 Tomato NDVI, WDVI, PVI, RVI,
SAVI

ARD&SVR
(Ensemble)

23 Amankulova, Farmonov and
Mucsi [46] 2023 Sunflower NDVI RF

24 Nuraeni and Manessa [46] 2023 Tea Leaves NDVI RF, SVM

25 Xiao, Zhang, Niu, Li, Li,
Zhong and Huang [54] 2024 Wheat LSWI, IRECI, GCVI,

NDVI ACNN, RF

26
Mancini, Solfanelli, Coviello,

Martini, Mandolesi and
Zanoli [55]

2024 Wheat NDVI, NDRE PLSR, VGG16,
VGG19, MobileNetv2

27
Madugundu, Al-Gaadi, Tola,

Edrris, Edrees and
Alameen [48]

2024 Carrot NDVI, RDVI, GNDVI,
SIPI, GLI RF

28
Kamenova, Chanev, Dimitrov,

Filchev, Bonchev, Zhu and
Dong [49]

2024 Winter Wheat GNDVI RF, SVM

29

Amankulova, Farmonov,
Abdelsamei, Szatmári, Khan,
Zhran, Rustamov, Akhmedov,

Sarimsakov and Mucsi [56]

2024 Soybean NDVI, GNDVI, NDRE,
EVI, SAVI

ANN, DNN, KNN,
RF, SVR, XGBoost

30 de Freitas, Oldoni, Joaquim,
Pozzuto and do Amaral [50] 2024 Soybean

EVI, GNDVI, GRNDVI,
NDMI, NDRE, NDVI,

SFDVI
RF

According to Table 1, when considering the types of crops used in these studies, it is
evident that the majority of research has focused on widely cultivated crops such as wheat,
maize, and rice. However, other crops like soybean, sunflower, sugarcane, tomato, and
potato have also been included. The studies exhibit a broad range of VIs, with NDVI being
the most commonly used. It has served as a primary data source in many studies, either
as a primary or secondary index. In addition, other indices such as EVI, GNDVI, GCVI,
and SAVI have also been widely utilized. It is noteworthy that some studies, despite using
the same crop (e.g., wheat), have employed entirely different indices for yield prediction.
Most of these indices are used to provide information about vegetation density and health,
which is critical for yield prediction. The widespread use of these indices underscores their
acceptance as practical tools for assessing plant health and yield potential.

In terms of learning methods, the RF algorithm emerges as one of the most commonly
employed techniques. Additionally, other ML methods such as SVM, LR, and PLSR have
also been frequently used. In recent years, there has been an increase in the use of more
complex DL approaches (e.g., CNN, RNN, Attention-based CNN (ACNN)) and modern
methods like XGBoost and VGG19. This trend indicates a new phase in the development of
AI-based prediction models. The variations in learning methods highlighted in the table
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are particularly striking. For instance, some studies aim to optimize model performance by
combining multiple ML techniques, while others focus on a specific algorithm. Additionally,
certain studies have concentrated on developing more complex prediction models using
advanced DL models (e.g., VGG16, VGG19). This demonstrates that researchers are actively
working to identify the most suitable combinations of algorithms and indices for specific
crop types and conditions.

Although the studies in Table 1 focus on agricultural yield prediction using Sentinel-2
satellite data and AI models, there are several important limitations and weaknesses in
these studies. First, methodological differences between studies using different VIs and
AI techniques for the same crop type make it difficult to compare results. For instance,
while Hunt, Blackburn, Carrasco, Redhead and Rowland [33] used indices such as NDVI,
GNDVI, and RF for wheat yield prediction, Zhao, Potgieter, Zhang, Wu and Hammer [36],
in their study on wheat, preferred indices like EVI and OSAVI along with an LR model.
These different approaches for the same crop reveal the lack of a standard methodology
and limit the comparability of the results. Furthermore, while most studies rely solely on
satellite data for yield prediction, important environmental factors such as soil moisture,
nutrients, and irrigation, which affect these predictions, are often overlooked. For example,
in the potato yield prediction study by Gómez, Salvador, Sanz and Casanova [35], it was
emphasized that integrating such additional data could improve prediction accuracy. This
suggests that existing models need to be approached more holistically without being limited
to only VIs. Lastly, while significant progress has been made in using AI and Sentinel-2
data for agricultural yield prediction, most studies have focused on ML methods (e.g.,
RF, SVM). The potential of DL techniques has not yet been fully explored. The success
of the CNN model in the rice yield prediction study by Fernandez-Beltran, Baidar, Kang
and Pla [51] compared to other methods indicates that DL methods could be used more in
the future. However, the high computational cost and data requirements of these models
limit their widespread use. In light of these critiques, future research should develop
more standardized methodologies and integrate more diverse datasets to enhance the
generalizability of these models.

8. Discussion

The integration of advanced ML algorithms with RS data has enabled researchers to
capture the complex patterns and relationships between VIs and crop yields. By incorporat-
ing diverse datasets, including weather conditions and soil properties, these models have
enhanced their accuracy and reliability. Such approaches have significantly improved the
precision of yield predictions, contributing to more informed decision-making in agricul-
tural management, resource allocation, and food security planning.

AI-based crop yield prediction using VIs derived from Sentinel-2 imagery has shown
remarkable potential in recent years. These studies have effectively leveraged Sentinel-
2’s high spatial, temporal, and spectral resolution to provide accurate and timely yield
forecasts. Meghraoui, et al. [58] highlight the efficacy of DL models in enhancing prediction
accuracy and address various challenges such as model generalizability and data quality.
The integration of advanced ML algorithms with RS data has enabled researchers to
capture the complex patterns and relationships between VIs and crop yields. However,
the study also emphasizes that many models are limited by their applicability to diverse
agricultural contexts and may not fully account for all relevant factors influencing crop
yield. To complement these efforts, effective nutrient management strategies are essential.
According to Pandey [59], optimizing nutrient delivery and water use in soilless cultures can
significantly impact crop productivity. Incorporating such nutrient management strategies
into AI-based models could enhance their predictive accuracy by integrating additional
agronomic data, thus addressing some of the limitations related to soil properties and
nutrient availability.

Although it has been proven that AI methods are highly effective in agricultural yield
prediction, several important limitations must be acknowledged. One of the main concerns
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is the generalizability of AI models. Many studies are often limited to specific geographical
regions or conducted under controlled conditions, which restricts the applicability of these
models in diverse agricultural environments. This issue worsens when models are trained
on historical yield data that do not accurately reflect current farming practices, climate
changes, or the evolution of environmental conditions. The heterogeneity between different
crop types, growth stages, and environmental factors creates additional challenges in terms
of the robustness of these models and leads to difficulties in accounting for the complex
and dynamic nature of agricultural systems.

Additionally, many AI models in this field are typically based on VIs derived from RS
data, such as Sentinel-2 imagery. While VIs are effective proxy indicators for plant health
and productivity, they only capture a subset of the factors affecting crop yield. Critical
variables, such as soil fertility, moisture levels, pest infestations, disease outbreaks, and
changes in agricultural practices, are often excluded from models, leading to biased or
incomplete yield predictions. Moreover, external factors like atmospheric conditions, sensor
errors, or changes in lighting can compromise the accuracy of VIs, introducing data noise
that could significantly impact the performance of AI models. The sensitivity of AI systems
to such data issues highlights the importance of rigorous preprocessing, data cleaning, and
validation for reliable predictions.

In response to these limitations, integrating various data sources, such as ground-based
observations, meteorological data, soil moisture sensors, and multispectral or hyperspectral
remote sensing from other satellites, could provide a more holistic view of the agricultural
environment. This multisource data fusion would likely enhance the robustness and
generalizability of AI models by capturing a broader range of factors that influence crop
yield. Moreover, improving model explainability remains a critical step toward the broader
adoption of AI in agriculture. Especially with DL approaches functioning as ‘black boxes’, it
becomes difficult for agricultural engineers and farmers to understand the rationale behind
these models’ predictions. The development of transparent and explainable models will
build trust and allow experts to make informed decisions based on model outputs.

Finally, ensuring the validation of these AI models under various geographical and
climatic conditions will help fine-tune the models for global applicability. Collaborations
between data scientists, agricultural engineers, and farmers will be crucial not only for
developing accurate AI-driven solutions but also for ensuring their practicality in real-
world agricultural settings. The continuous refinement of these techniques, improvement
in data quality, and integration of the latest sensor technologies will significantly contribute
to sustainable and efficient farming practices in the future.

9. Conclusions

In the context of sustainability, the integration of Sentinel-2 data with AI models holds
immense potential for fostering more environmentally responsible agricultural practices.
By enabling more accurate and timely yield predictions, these models can assist farmers in
optimizing resource use, reducing waste, and minimizing environmental impact. The ability
to predict yields with higher precision can lead to better water management, reduced use of
fertilizers and pesticides, and more efficient land use, all of which are critical components
of sustainable agriculture. Moreover, the growing use of advanced AI techniques such
as DL and ensemble methods paves the way for models that not only improve yield
forecasts but also account for climatic variations and other factors essential for long-term
agricultural resilience. As the agricultural sector faces increasing pressure to produce more
food with fewer resources, these advancements will play a vital role in ensuring food
security while adhering to sustainability principles. This makes AI-driven yield prediction
a key contributor to both the economic and environmental pillars of sustainable agriculture.

This review study has evaluated Sentinel-2-based yield prediction studies, which are
still new but effective in the field. It comprehensively analyzes 30 studies conducted over
the past five years, which employed AI for yield forecasting. Notably, our study features a
table summarizing these studies and a graph illustrating the utilization of Sentinel-2 data
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by researchers over the years, which are key highlights of our work. The graph in Figure 1
demonstrates the increasing significance of Sentinel-2 in academia. The studies presented
in Table 1 reveal that AI-based yield prediction using Sentinel-2 data is a highly diverse
and evolving area of research. These studies have developed various approaches using
different crop types, VIs, and AI techniques. Particularly noteworthy are the variations in
VIs and the extensive use of different types of vegetation indices in these studies. There is
significant diversity in the learning methods employed. While traditional methods like RF
remain popular, other techniques such as SVM and regression methods are also frequently
used. Additionally, the use of DL and ensemble techniques is seen as heralding a new
era in agricultural yield prediction. Earlier studies (2019–2020) focused on simpler ML
methods such as RF, LR, and SVM. More recent studies (2022–2024) indicate a shift toward
more advanced ML techniques, including CNNs, RNNs, attention networks, and complex
ensemble methods. This diversity allows researchers to select the most suitable model
based on different data types and problem definitions.

Overall, the studies reviewed demonstrate significant diversity and advancement in
AI-based yield prediction. In most studies, Sentinel-2 data and VIs were used as primary
inputs for yield prediction, and their integration with AI models has created substantial
potential in the agricultural field. Based on this information, it is evident that there is
a trend toward achieving more advanced and accurate predictions in agricultural yield
forecasting, a trend that is likely to continue in the coming years, with Sentinel-2 and
AI applications playing a crucial role. Progress in this field will contribute significantly
to agricultural production and management strategies. The fact that it is still a nascent
and developing area suggests that many new researchers will emerge in this field. In this
context, our study, as the first review in this domain, is intended to serve as an important
guide for researchers.
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Appendix A

The definitions and formulas of the VI abbreviations used in the studies shown in
Table 1 are presented in Table A1. The references for each formula are the studies provided
in Table 1 and https://www.indexdatabase.de/ (accessed on 22 September 2024).

Table A1. Explanations of VI abbreviations.

Abbreviation Definition Formula

ARI2 Anthocyanin Reflectance Index (1/550nm)− (1/700nm)

ARVI Atmospherically Resistant Vegetation Index (NIR−(RED−1.7×(BLUE−RED)))
(NIR+(RED−1.7×(BLUE−RED)))

AWEI Automated Water Extraction Index 4 × (Green − SWIR2)−
(0.25 × NIR + 2.75 × SWIR3)

BNDVI Blue Normalized Diference Vegetation Index (NIR − Blue)/(NIR + Blue)

CCCI Canopy Chlorophyll Content Index NDRE1/OSAVI

CIRed Chlorophyll Index red edge (NIR/RedEdge)− 1

CIVE Color Index of Vegetation Extraction 0.441 × Red − 0.881 × Green + 0.385 × Blue + 18.78745

https://www.indexdatabase.de/
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Table A1. Cont.

Abbreviation Definition Formula

CMFI Cropping Management Factor Index Red
NIR+Red

CRI2 Carotenoid Reflectance Index (1/510nm)− (1/700nm)

CVI Chlorophyll vegetation index NIR × (Red/(Green̂2))

DVI Difference Vegetation Index NIR − Red

EVI Enhanced Vegetation Index 2.5 × (NIR−Red)
(NIR+6×Red−7.5×Blue+1)

EVI2 Enhanced Vegetation Index 2 2.5 × (NIR−Red)
(NIR+2.4×Red+1)

ExG Excess Green 2 × Green − Red − Blue

GARI Green Atmospherically Resistant Index NIR−(Green−1.7×(Blue−Red))
NIR+(Green−1.7×(Blue−Red))

GCVI Green chlorophyll vegetation index NIR/Green − 1

GDVI Green Difference Vegetation Index NIR − Green

GLI Green Leaf Index (Green−Red)(Green−Blue)
(2×Green)+Red+Blue

GNDVI Green normalized difference vegetation index NIR−Green
NIR+Green

GRRI Green-red ratio Index Greed/Red

GRVI Green-Red Vegetation Index Green−Red
Green+Red

GSAVI Green Soil Adjusted Vegetation Index NIR−Green
(NIR+Green+0.5) × (1 + 0.5)

IPVI Infrared percentage vegetation index (NIR/(NIR + Red)/2)× (NDVI + 1)

IRECI Inverted Red-Edge Chlorophyll Index (RedEdge3−Red)
RedEdge1/ RedEdge2

LAI Leaf Area ındex 3.618 × EVI − 0.118

LSWI Land surface water index NIR−SWIR
NIR+SWIR

MNLI Modified Non-linear Index (NIR2−Red)(1+0.5)
NIR2+Red+0.5

MNDWI Modified Normalized Difference Vegetation Index Green−SWIR2
Green+SWIR2

MSAVI Modified soil adjusted vegetation index 2×NIR+1−sqrt(( 2×NIR+1)2−8×(NIR−Red))
2

MSRI Modified Simple Ratio Index 800nm−445nm
680nm−445nm

NBR Normalized Burn Ratio NIR−SWIR2
NIR+SWIR2

NDBI Normalized difference built-up index SWIR2−NIR
SWIR2+NIR

NDII Normalized Diference Infrared Index 1 NIR−SWIR2
NIR+SWIR2

NDII2 Normalized Diference Infrared Index 2 NIR−SWIR3
NIR+SWIR3

NDRE1 Normalized difference red edge1 NIR−RedEdge
NIR+RedEdge

NDRE2 Normalized difference red edge2 NIR−RedEdge2
NIR+RedEdge2

NDVI Normalized Difference Vegetation Index (NIR−Red)
(NIR+Red)

NDVIRE Normalized Difference Vegetation Index Red-edge (NIR−RedEdge)
(NIR+RedEdge)

NDWI Normalized Difference Water Index (NIR−SWIR2)
(NIR+SWIR2)

NGBDI Normalized green-blue difference Index Green−Blue
Green+Blue

NGRDI Normalized Green–Red Difference Index Green−Red
Green+Red
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Table A1. Cont.

Abbreviation Definition Formula

NLI Non-linear Index (NIR2−Red)
(NIR2+Red)

NMDI Normalized Multiband Drought Index NIR2−(SWIR2−SWIR3)
NIR2+(SWIR2−SWIR3)

OSAVI Optimized Soil Adjusted Vegetation Index 1.16 × NIR−Red
NIR+Red+0.16

PSRI Plant Senescence Reflectance Index Red−Blue
RedEdge2

PVI Perpendicular Vegetation Index NIR−a×Red−b√
(a2+1)

RDVI Renormalized Difference Vegetation Index NIR−Red√
NIR+Red)

REP Red Edge Position 704 + 35 ×
(

RedEdge−RedEdge1
RedEdge2−RedEdge3

)
RGVI Rice growth vegetation index 1 − Blue−Red

NIR+SWIR2+SWIR3

RVI Ratio vegetation index Red/NIR

SAVI Soil-adjusted vegetation index NIR−Red
(NIR+Red+0.5) × (1 + 0.5)

SIPI Structure Intensive Pigment Vegetation Index NIR−Blue
NIR−Red

SRI Simple ratio index NIR/Red

TCARI Transformed Chlorophyll Absorption in
Reflectance Index

3 × [(RedEdge1 − Red)− 0.2 × (RedEdge1 − Green)
×RedEdge1/Red]

TGI Triangular Greenness Index −0.5 × (190 × (Red − Green)− 120 × (Red − Blue))

TO TCARI/OSAVI TCARI/OSAVI

TVI Triangular vegetation index
√

NIR−Red
NIR+Red + 0.5

VARI Visible Atmospherically Resistant Index (Green−Red)
(Green+Red−Blue)

VDVI Visible-Band Difference Vegetation Index 2×Green−Red−Blue
2×Green+Red+Blue

WDRVI Wide Dynamic Range Vegetation Index 0.1×NIR−Red
0.1×NIR+Red

WDVI Weighted Difference Vegetation Index NIR − a × Red

Appendix B

Definitions of other abbreviations, except VI, are shown in Table A2.

Table A2. Other abbreviations.

Abbreviation Definition

ANN Artificial Neural Network

ARD Automatic relevance determination

ACNN Attention-Based One-Dimensional Convolutional Neural Network

BO-CatBoost Bayesian optimized CatBoost

BR Boosting regression

BRDF Bidirectional Reflectance Distribution Function

CNN Convolutional Neural Network

DT Decision Tree

DNN Deep Neural Network

GPR Gaussian process regression

KNN K-Nearest Neighbor
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Table A2. Cont.

Abbreviation Definition

LASSO Least Absolute Shrinkage and Selection Operator

LR Linear Regression

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MLPNN Multilayer perceptron neural network

MLR Multiple linear regression

MSE Mean Squared Error

PLSR Partial Least Squares Regression

RF Random Forest

RID Ridge Regression

RMSE Root Mean Squared Error

RR Ridge Regression

SCL Scene Classification

SGD Stochastic Gradient Descent

SPAD Soil Plant Analysis Development

SR Stepwise Regression

STACK Stacked Averaging Ensemble

SVM Support Vector Model

SVR Support Vector Regression

VI Vegetation indices

XGBoost Extreme Gradient Boosting
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