The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA
Abstract
:1. Introduction
The Study Scope
2. Materials and Methods
2.1. Characteristics of the Studied Regions and Sub-Reaches of the Streams
2.2. Streambank Erosion Pins
2.3. Severely and Very Severely Eroded Streambank Areas and Soil Bulk Densities of Stream Banks
2.4. Soil and Soil Total-P Losses from Streambanks
2.5. Precipitation Data
2.6. Data Analysis
3. Results and Discussion
3.1. Precipitation and Streambank Erosion Relationships and Erosion Rate Differences between Riparian Practices
3.2. Riparian Practices Streambank Soil and Soil Total-P Losses
3.3. Regional Streambank Soil and Soil Total-P Losses from Riparian Practices
3.4. Streambank Soil and Soil Total-P Losses from Riparian Practices across the Study Regions
3.5. Yearly Streambank Soil and Soil Total-P Losses from the Riparian Practices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stryker, J.; Wemple, B.; Bomblies, A. Modeling the impact of changing climatic extremes on streamflow and sediment yield in a northeastern US watershed. J. Hydrol. Reg. Stud. 2018, 17, 83–94. [Google Scholar] [CrossRef]
- Neverman, A.J.; Donovan, M.; Smith, H.G.; Ausseil, A.; Zammit, C. Climate change impacts on erosion and suspended sediment loads in New Zealand. Geomorphlogy 2023, 427, 108607. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Nearing, M.A.; Liu, B.Y.; Van Pelt, R.S.; Stone, J.J.; Wei, H.; Scott, R.L. Comparative rates of wind versus water erosion from a small semiarid watershed in southern Arizona, USA. Aeolian Res. 2011, 3, 197–204. [Google Scholar] [CrossRef]
- Lammers, R.W.; Bledsoe, B.P. Quantifying pollutant loading from channel sources: Watershed-scale application of the River Erosion Model. J. Environ. Manag. 2019, 234, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.S.; Wemple, B.C.; Willson, L.J.; Balling, C.M.; Underwood, K.L.; Hamshaw, S.D. Impact of an extreme storm event on river corridor bank erosion and phosphorus mobilization in a mountainous watershed in the northeastern United States. JGR Biogeosci. 2019, 124, 18–32. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Isenhart, T.M.; Schultz, R.C.; Bear, D.A.; Kovar, J.L.; Russell, J.R. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in Southern Iowa, United States. J. Soil Water Conserv. 2012, 67, 545–555. [Google Scholar] [CrossRef]
- Packett, R. Riparian erosion from cattle traffic may contribute up to 50% of the modelled streambank sediment supply in a large Great Barrier Reef river basin. Mar. Pollut. Bull. 2020, 158, 111388. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank erosion as a desirable attribute of rivers. BioScience 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Henderson, J.E. Environmental designs for streambank protection projects. Water Resour. Bull. 1986, 22, 549–558. [Google Scholar] [CrossRef]
- Fox, G.A.; Purvis, R.A.; Penn, C.J. Streambanks: A net source of sediment and phosphorus to streams and rivers. J. Environ. Manag. 2016, 181, 602–614. [Google Scholar] [CrossRef]
- Midgley, T.L.; Fox, G.A.; Heeren, D.M. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Geomorphology 2012, 145–146, 107–114. [Google Scholar] [CrossRef]
- Kessler, A.C.; Gupta, S.C.; Brown, M.K. Assessment of river bank erosion in Southern Minnesota rivers post European settlement. Geomorphology 2013, 201, 312–322. [Google Scholar] [CrossRef]
- Iakovoglou, V.; Zaimes, G.N.; Gounaridis, D. Riparian areas in urban settings: Two case studies from Greece. Int. J. Innov. Sustain. Dev. 2013, 7, 271–288. [Google Scholar] [CrossRef]
- Kesel, R.H. Human modifications to the sediment regime of the Lower Mississippi River flood plain. Geomorphology 2003, 56, 325–334. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Batalla, R.J.; Gomez, C.M.; Kondolf, G.M. Reservoir-induced hydrological changes in the Ebro River basin (NE Spain). J. Hydrol. 2004, 290, 117–136. [Google Scholar] [CrossRef]
- Vanacker, V.; Molina, A.; Govers, G.; Poesen, J.; Dercon, G.; Deckers, S. River channel response to short-term human-induced change in landscape connectivity in Andean ecosystems. Geomorphology 2005, 72, 340–353. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Gounarids, D.; Iakovoglou, V.; Emmanouloudis, D. Riparian area studies in Greece: A Literature review. Fresenius Environ. Bull. 2011, 20, 1470–1477. [Google Scholar]
- Caitcheon, G.G.; Olley, J.M.; Pantus, F.; Hancock, G.; Leslie, C. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers. Geomorphology 2012, 151–152, 188–195. [Google Scholar] [CrossRef]
- Kronvang, B.; Andersen, H.E.; Larsen, S.E.; Audet, J. Importance of bank erosion for sediment input, storage and export at the catchment scale. J. Soils Sediments 2013, 13, 230–241. [Google Scholar] [CrossRef]
- Olley, J.; Brooks, A.; Spencer, J.; Pietsch, T.; Borombovits, D. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. J. Environ. Radioact. 2013, 124, 121–129. [Google Scholar] [CrossRef]
- Kelley, D.W.; Nater, E.A. Historical sediment flux from three watersheds into Lake Pepin, Minnesota, USA. J. Environ. Qual. 2000, 29, 561–568. [Google Scholar] [CrossRef]
- Sekely, A.C.; Mulla, D.J.; Bauer, D.W. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J. Soil Water Conserv. 2002, 57, 243–250. [Google Scholar]
- Thoma, D.P.; Gupta, S.C.; Bauer, M.E.; Kirchoff, C.E. Airborne laser scanning for riverbank erosion assessment. Remote Sens. Environ. 2005, 95, 493–501. [Google Scholar] [CrossRef]
- Kessler, A.C.; Gupta, S.C.; Dolliver, H.A.S.; Thoma, D.P. Lidar quantification of bank erosion in Blue Earth County, Minnesota. J. Environ. Qual. 2012, 41, 197–207. [Google Scholar] [CrossRef]
- Hamlett, J.M.; Baker, J.L.; Johnson, H.P. Channel morphology changes and sediment yield for a small agricultural watershed in Iowa. Tran. ASAE 1983, 26, 1390–1396. [Google Scholar] [CrossRef]
- Odgaard, A.J. Streambank erosion along two rivers in Iowa. Water Resour. Res. 1987, 23, 1225–1236. [Google Scholar] [CrossRef]
- Palmer, J.A.; Schilling, K.E.; Isenhart, T.M.; Schultz, R.C.; Tomer, M.D. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 2014, 209, 66–78. [Google Scholar] [CrossRef]
- Schilling, K.E.; Isenhart, T.M.; Palmer, J.A.; Wolter, C.F.; Spooner, J. Impacts of landcover change on suspended sediment transport in two agricultural watersheds. J. Am. Water Resour. Assoc. 2011, 47, 672–686. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F. Applications of GPS and GIS to map channel features in Walnut Creek, Iowa. J. Am. Water Resour. Assoc. 2000, 36, 1423–1434. [Google Scholar] [CrossRef]
- Kotak, B.G.; Prepas, E.E.; Hrudey, S.E. Blue green algal toxins in drinking water supplies: Research in Alberta. Lake Line 1994, 14, 37–40. [Google Scholar]
- Martin, A.; Cooke, G.D. Health risks in eutrophic water supplies. Lake Line 1994, 14, 24–26. [Google Scholar]
- Newcombe, C.P.; Jensen, J.O.T. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. N. Am. J. Fish. Manag. 1996, 16, 693–727. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soil phosphorus and environmental quality. In Soils and Environmental Quality; CRC Press: Boca Raton, FL, USA, 2000; pp. 155–207. [Google Scholar]
- Bashagaluke, J.B.; Logah, V.; Opoku, A.; Sarkodie-Addo, J.; Quansah, C. Soil nutrient loss through erosion: Impact of different cropping systems and soil amendments in Ghana. PLoS ONE 2018, 13, e0208250. [Google Scholar] [CrossRef]
- Grenon, G.; Singh, B.; Sena, A.D.; Madramootoo, C.A.; Sperber, C.; Goyal, M.K.; Zhang, T. Phosphorus fate, transport and management on subsurface drained agricultural organic soils: A review. Environ. Res. Lett. 2021, 16, 013004. [Google Scholar] [CrossRef]
- Lin, S.S.; Shen, S.L.; Zhou, A.; Lyu, H.M. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Sci. Total Environ. 2020, 751, 2021. [Google Scholar] [CrossRef]
- USEPA. Clean Water Act Section 303(d): Impaired Waters and Total Maximum Daily Loads (TMDLs). 2020. Available online: https://www.epa.gov/tmdl/impaired-waters-and-tmdls-region-7 (accessed on 3 May 2024).
- Henshaw, A.J.; Thorne, C.R.; Clifford, N.J. Identifying causes and controls of river bank erosion in a British upland catchment. Catena 2012, 100, 107–119. [Google Scholar] [CrossRef]
- Lamba, J.; Karthikeyan, K.G.; Thompson, A.M. Apportionment of suspended sediment sources in an agricultural watershed using sediment fingerprinting. Geoderma 2015, 239–240, 25–33. [Google Scholar] [CrossRef]
- Hooke, J. River meander behavior and instability: A framework for analysis. Trans. Inst. Br. Geogr. NS 2003, 28, 238–253. [Google Scholar] [CrossRef]
- Hughes, A.O. Riparian management and stream bank erosion in New Zealand. N. Z. J. Mar. Freshw. Res. 2016, 50, 277–290. [Google Scholar] [CrossRef]
- Thorne, C.R. Processes and mechanisms of river bank erosion. In Gravel-Bed Rivers; Hey, R.D., Bathurst, J.C., Thorne, C.R., Eds.; Wiley: Chichester, UK, 1982; pp. 227–259. [Google Scholar]
- Schumm, S.A. Causes and controls of channel incision. In Incised Rivers; Darby, S.E., Simon, A., Eds.; John Wiley and Sons: Chichester, UK, 1999; pp. 19–33. [Google Scholar]
- Davis, R.J.; Gregory, K.J. A new distinct method of river bank erosion in a forested catchment. J. Hydrol. 1994, 157, 1–11. [Google Scholar] [CrossRef]
- Lawler, D.M.; Grove, J.R.; Couperwaite, J.S.; Leeks, G.J.L. Downstream change in river bank erosion rates in the Swale-Ouse system, northern England. Hydrol. Process. 1999, 13, 977–992. [Google Scholar] [CrossRef]
- Geyer, W.A.; Neppl, T.; Brooks, K.; Carlisle, J. Woody vegetation protects streambank stability during the 1993 flood in Central Kansas. J. Soil Water Conserv. 2002, 55, 483–486. [Google Scholar]
- Starkel, L. Change in the frequency of extreme events as the indicator of climatic change in the Holocene (in fluvial systems). Quat. Int. 2002, 91, 25–32. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Streambank soil and phosphorus losses under different riparian land-uses in Iowa. J. Am. Water Resour. Assoc. 2008, 44, 935–947. [Google Scholar] [CrossRef]
- Güneralp, I.; Rhoads, B.L. Empirical analysis of the planform curvature-migration relation of meandering rivers. Water Resour. Res. 2009, 45, W09424. [Google Scholar] [CrossRef]
- Krishna Prasad, S.; Indulekha, K.P.; Balan, K. Analysis of groyne placement on minimizing river bank erosion. Proc. Technol. 2016, 24, 47–53. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Isenhart, T.M.; Schultz, R.C. High stage events and stream bank erosion on small grazed pasture stream reaches in the Rathbun Lake Watershed, Southern Iowa, USA. Int. J. Ecosyst. Ecol. Sci. 2019, 9, 775–786. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Schultz, R.C.; Isenhart, T.M.; Kovar, J.L.; Russell, J.R. Riparian land-use, stream morphology and streambank erosion within grazed pastures in Southern Iowa, USA: A Catchment-wide perspective. Sustainability 2020, 12, 6461. [Google Scholar] [CrossRef]
- Konsoer, K.M.; Rhoads, B.L.; Langendoen, E.J.; Best, J.L.; Ursic, M.E.; Abad, J.D.; Garcia, M.H. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology 2016, 252, 80–97. [Google Scholar] [CrossRef]
- Janes, V.J.J.; Nicholas, A.P.; Collins, A.L.; Quine, T.A. Analysis of fundamental physical factors influencing channel bank erosion: Results for contrasting catchments in England and Wales. Environ. Earth Sci. 2017, 76, 307. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C.; Isenhart, T.M. Total phosphorus concentrations and compaction in riparian areas under different riparian land-uses of Iowa. Agric. Ecosyst. Environ. 2008, 127, 22–30. [Google Scholar] [CrossRef]
- Parker, C.; Simon, A.; Thorne, C.R. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology 2008, 101, 533–543. [Google Scholar] [CrossRef]
- Zaimes, G.Ν.; Tamparopoulos, A.E.; Tufekcioglu, M.; Schultz, R.C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 2021, 287, 112352. [Google Scholar] [CrossRef]
- Prior, J.C. Landforms of Iowa; Iowa Department of Natural Resources University of Iowa Press: Iowa City, IA, USA, 1991. [Google Scholar]
- Schumm, S.A.; Harvey, M.D.; Watson, C.C. Incised Channels: Morphology, Dynamics and Control; Water Resource Publication: Littleton, CO, USA, 1984; p. 100. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar]
- Wolman, M.G. Factors influencing erosion of a cohesive river bank. Am. J. Sci. 1959, 257, 204–216. [Google Scholar] [CrossRef]
- Lawler, D.M. The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Iowa Environmental Mesonet (IEM). Available online: https://mesonet.agron.iastate.edu/ (accessed on 10 December 2009).
- SPSS Institute Inc. IBM SPSS statistics 19 core system user’s guide, SPSS Programming and Data Management 2010; p. 426. Available online: http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/SPSS_SC/Manuals/v19/IBM%20SPSS%20Statistics%2019%20Core%20System%20User%27s%20Guide.pdf (accessed on 3 November 2014).
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Willett, C.D.; Lerch, R.N.; Schultz, R.C.; Berges, S.A.; Peacher, R.D.; Isenhart, T.M. Streambank erosion in two watersheds of the Central Claypan Region of Missouri, United States. J. Soil Water Conserv. 2012, 67, 249–263. [Google Scholar] [CrossRef]
- Michalik, A.; Tekielak, T. The relationship between bank erosion, local aggradation and sediment transport in a small Carpathian stream. Geomorphology 2013, 191, 51–63. [Google Scholar]
- Casagli, N.; Rinaldi, M.; Gargini, A.; Currini, A. Pore water pressure and stream bank stability: Results from a monitoring site on the Sieve River, Italy. Earth Surf. Process. Landf. 1999, 24, 1095–1114. [Google Scholar] [CrossRef]
- Simon, A.; Curini, A.; Darby, S.E.; Langendoen, E.J. Bank and near-bank processes in an incised channel. Geomorphology 2000, 35, 193–217. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Tufekcioglu, M.; Schultz, R.C. Riparian land-use impacts on bank and gully erosion in agricultural watersheds: What we have learned. Water 2019, 11, 1343. [Google Scholar] [CrossRef]
- Larsen, E.W.; Fremier, A.K.; Greco, S.E. Cumulative effective stream power and bank erosion on the Sacramento River, California, USA. J. Am. Water Resour. Assoc. 2006, 42, 1077–1097. [Google Scholar] [CrossRef]
- Schilling, K.E.; Wolter, C.F.; Palmer, J.A.; Beck, W.J.; Williams, F.F.; Moore, P.L.; Isenhart, T.M. An assessment of streambank erosion rates in Iowa. Environments 2023, 10, 84. [Google Scholar] [CrossRef]
- Laubel, A.; Kronvang, B.; Hald, A.B.; Jensen, C. Hydro-morphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrol. Process. 2003, 17, 3443–3463. [Google Scholar] [CrossRef]
- Beck, W.J.; Moore, P.L.; Schilling, K.E.; Wolter, C.F.; Isenhart, T.M.; Cole, K.J.; Tomer, M.D. Changes in lateral floodplain connectivity accompanying stream channel evolution: Implications for sediment and nutrient budgets. Sci. Total Environ. 2019, 660, 1015–1028. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. Characterizing land use impacts on channel geomorphology and streambed sedimentological characteristics. Water 2019, 11, 1088. [Google Scholar] [CrossRef]
- Abbas, G.; Jomaa, S.; Bronstert, A.; Rode, M. Downstream changes in riverbank sediment sources and the effect of catchment size. J. Hydrol. Reg. Stud. 2023, 46, 101340. [Google Scholar] [CrossRef]
- Trimble, S.W. Erosional effects of cattle on streambanks in Tennessee, U.S.A. Earth Surf. Process. Landf. 1994, 19, 451–464. [Google Scholar] [CrossRef]
- Lyons, J.; Weasel, B.M.; Paine, L.K.; Undersander, D.J. Influence of intensive rotational grazing on bank erosion, fish habitat quality, and fish communities in Southwestern Wisconsin trout streams. J. Soil Water Conserv. 2000, 55, 271–276. [Google Scholar]
- Magner, J.M.; Vondracek, B.; Brooks, K.N. Grazed riparian management and stream channel response in Southeastern Minnesota (USA) streams. Environ. Manag. 2008, 42, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Bear, D.A.; Russell, J.R.; Tufekcioglu, M.; Isenhart, T.M.; Morrical, D.G.; Kovar, J.L. Stocking rate and riparian vegetation effects on physical characteristics of riparian zones of Midwestern pastures. J. Rangel. Ecol. Manag. 2012, 65, 119–128. [Google Scholar] [CrossRef]
- Wohl, N.E.; Carline, R.F. Relations among riparian grazing, sediment loads, macroinvertebrates, and fishes in three central Pennsylvania streams. Can. J. Fish. Aquat. Sci. 1996, 53, 260–266. [Google Scholar] [CrossRef]
- Agouridis, C.T.; Edwards, D.R.; Workman, S.R.; Bicudo, J.R.; Koostra, B.K.; Vanzant, E.S.; Taraba, J.L. Stream bank erosion associated with grazing practices in the humid region. Trans. Am. Soc. Agric. Eng. 2005, 48, 181–190. [Google Scholar] [CrossRef]
- Nakhle, P.; Ribolzi, O.; Boithias, L.; Rattanavong, S.; Auda, Y.; Sayavong, S.; Zimmermann, R.; Soulileuth, B.; Pando, A.; Thammahacksa, C.; et al. Effects of hydrological regime and land use on in-stream Escherichia coli concentration in the Mekong basin, Lao PDR. Sci. Rep. 2021, 11, 3460. [Google Scholar] [CrossRef]
- Simon, A.; Klimetz, L. Relative magnitudes and sources of sediment in benchmark watersheds of the Conservation Effects Assessment Project. J. Soil Water Conserv. 2008, 63, 504–522. [Google Scholar] [CrossRef]
- Yan, B.; Tomer, M.D.; James, D.E. Historical channel movement and sediment accretion along the South Fork of the Iowa River. J. Soil Water Conserv. 2010, 65, 1. [Google Scholar] [CrossRef]
- Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-mechanical effects of several riparian vegetation combinations on the streambank stability—A benchmark case in southeastern Norway. Sustainability 2021, 13, 4046. [Google Scholar] [CrossRef]
- Okeke, C.A.; Uno, J.; Academe, S.; Emenike, P.C.; Abam, T.K.; Omole, D.O. An integrated assessment of land use impact, riparian vegetation and lithologic variation on streambank stability in a peri-urban watershed (Nigeria). Sci. Rep. 2022, 12, 10989. [Google Scholar] [CrossRef]
- Beeson, C.E.; Doyle, P.F. Comparison of bank erosion at vegetated and non-vegetated channel bends. Water Resour. Bull. 1995, 31, 983–990. [Google Scholar] [CrossRef]
- Miller, R.B.; Fox, G.A.; Penn, C.; Wilson, S.; Parnell, A.; Purvis, R.A.; Criswell, K. Estimating sediment and phosphorus loads from streambanks with and without riparian protection. Agric. Ecosyst. Environ. 2014, 189, 70–81. [Google Scholar] [CrossRef]
- Dunaway, D.; Swanson, S.R.; Wendel, J.; Clary, W. The effect of herbaceous plant communities and soil textures on particle erosion of alluvial streambanks. Geomorphology 1994, 9, 47–56. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Wynn, T.M.; Mostaghimi, S. The effects of vegetation and soil type on streambank erosion, Southwestern Virginia, USA. J. Am. Water Resour. Assoc. 2006, 42, 69–82. [Google Scholar] [CrossRef]
- Belsky, A.J.; Matzke, A.; Uselman, S. Survey of livestock influences on stream and riparian ecosystems in the Western United States. J. Soil Water Conserv. 1999, 54, 419–431. [Google Scholar]
- Collier, K.J.; Quinn, J.M. Land-use influences macroinvertebrate community response following a pulse disturbance. Freshw. Biol. 2003, 48, 1462–1481. [Google Scholar] [CrossRef]
- Trimble, S.W.; Mendel, A.C. The cow as a geomorphic agent—A critical review. Geomorphology 1995, 13, 233–253. [Google Scholar] [CrossRef]
- Hadrich, J.C.; Van Winkle, A. Awareness and pro-active adoption of surface water BMPs. J. Environ. Manag. 2013, 127, 221–227. [Google Scholar] [CrossRef]
- Zheng, M.; Song, J.; Ru, J.; Zhou, Z.; Zhong, M.; Jiang, L.; Hui, D.; Wan, S. Effects of grazing, wind erosion, and dust deposition on plant community composition and structure in a temperate steppe. Ecosystems 2021, 24, 403–420. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Ding, J.; Travers, S.K. A global synthesis of the effects of livestock activity on hydrological processes. Ecosystems 2022, 25, 1780–1791. [Google Scholar] [CrossRef]
- Scott, A.; Cassidy, R.; Arnscheidt, J.; Rogers, D.; Jordan, P. Quantifying nutrient and sediment erosion at riverbank cattle access points using fine-scale geo-spatial data. Ecol. Indic. 2023, 155, 111067. [Google Scholar] [CrossRef]
- Stott, T.A. Stream bank and forest ditch erosion: Responses to timber harvesting in mid-Wales. In Fluvial Processes and Environmental Change; Brown, A.G., Quine, T.A., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 1999; pp. 47–70. [Google Scholar]
Riparian Practices | Sample Size (N) | Groups of Land Use Practices (1–6) by Soil Loss Means (ton/km/yr) | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
SER_GFi | 70 | 13.6 | |||||
NER_FPa | 70 | 13.8 | |||||
NER_RFo | 70 | 19.8 | |||||
CR_RFo | 70 | 26.7 | |||||
CR_GFi | 70 | 48.4 | 48.4 | ||||
SER_FPa | 35 | 104.3 | 104.3 | ||||
CR_RPa | 70 | 137.3 | 137.3 | ||||
SER_RPa | 70 | 147.4 | 147.4 | ||||
NER_IPa | 105 | 150.8 | 150.8 | ||||
SER_CPa | 105 | 184.9 | |||||
NER_CPa | 105 | 262.2 | |||||
CR_CPa | 70 | 349.3 | |||||
CR_RCr | 70 | 352.9 | |||||
SER_IPa | 70 | 360.4 | |||||
Groups of land use practices (1–4) by total-P loss means (kg/km/yr) | |||||||
1 | 2 | 3 | 4 | ||||
SER_GFi | 70 | 5.4 | |||||
NER_FPa | 70 | 6.6 | |||||
CR_RFo | 70 | 9.1 | |||||
NER_RFo | 70 | 10.3 | |||||
CR_GFi | 70 | 14.2 | |||||
CR_RPa | 70 | 56.5 | |||||
SER_FPa | 35 | 57.8 | |||||
SER_RPa | 70 | 59.5 | |||||
SER_CPa | 105 | 63.3 | |||||
NER_IPa | 105 | 71.6 | |||||
CR_RCr | 70 | 118.9 | |||||
CR_CPa | 70 | 125.5 | |||||
NER_CPa | 105 | 133.2 | |||||
SER_IPa | 70 | 199.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tufekcioglu, M.; Zaimes, G.N.; Kahriman, A.; Schultz, R.C. The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA. Sustainability 2024, 16, 8329. https://doi.org/10.3390/su16198329
Tufekcioglu M, Zaimes GN, Kahriman A, Schultz RC. The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA. Sustainability. 2024; 16(19):8329. https://doi.org/10.3390/su16198329
Chicago/Turabian StyleTufekcioglu, Mustafa, George N. Zaimes, Aydın Kahriman, and Richard C. Schultz. 2024. "The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA" Sustainability 16, no. 19: 8329. https://doi.org/10.3390/su16198329
APA StyleTufekcioglu, M., Zaimes, G. N., Kahriman, A., & Schultz, R. C. (2024). The Relationship between Erosion and Precipitation and the Effects of Different Riparian Practices on Soil and Total-P Losses via Streambank Erosion in Small Streams in Iowa, USA. Sustainability, 16(19), 8329. https://doi.org/10.3390/su16198329