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Abstract: Comprehensively clarifying the influencing factors of carbon emissions is crucial to realizing
carbon emission reduction targets in China. To address this issue, this paper develops a four-level
carbon emission influencing factor system from six perspectives: population, economy, energy,
water resources, main pollutants, and afforestation. To analyze how these factors affect carbon
emissions, we propose an improved partial least squares structural equation model (PLS-SEM) based
on a random forest (RF), named RF-PLS-SEM. In addition, the entropy weight method (EWM) is
employed to evaluate the low-carbon development level according to the results of the RF-PLS-SEM.
This paper takes Shandong Province as an example for empirical analysis. The results demonstrate
that the improved model significantly improves accuracy from 0.8141 to 0.9220. Moreover, water
resources and afforestation have relatively small impacts on carbon emissions. Primary and tertiary
industries are negative influencing factors that inhibit the growth of carbon emissions, whereas total
energy consumption, the volume of wastewater discharged and of common industrial solid waste
are positive and direct influencing factors, and population density is indirect. In particular, this paper
explores the important role of fisheries in reducing carbon emissions and discusses the relationship
between population aging and carbon emissions. In terms of the level of low-carbon development,
the assessment system of carbon emission is constructed from four dimensions, namely, population,
economy, energy, and main pollutants, showing weak, basic, and sustainable stages of low-carbon
development during the 1997–2012, 2013–2020, and 2021–2022 periods, respectively.

Keywords: carbon emission; influencing factors; RF-PLS-SEM; EWM; low-carbon development level

1. Introduction

According to the United Nations Intergovernmental Panel on Climate Change (IPCC),
human social and economic activities have accelerated global warming, resulting in higher
temperatures, rising sea levels, reduced biodiversity, and more frequent extreme climate
events [1,2]. As a major contributor to global warming, CO2 accounts for approximately
two-thirds of global greenhouse gas (GHG) emissions [3]. The concentration of carbon
dioxide in the atmosphere has increased from approximately 280 ppm in preindustrial times
to 407.8 ppm in 2018 [4], and reached 420 ppm in 2021 [5]. Without adopting any effective
action, the world’s average temperature could rise by 1.4–5.8 degrees centigrade over the
next 100 years, posing a major threat to global sustainable development [6]. Therefore, the
continued increase in carbon emissions has become a global concern. Many countries have
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adopted mitigation strategies to reduce carbon emissions, including financial incentives
or tax subsidies, support funds, insurance premiums, and noneconomic incentives such
as regulations, standards, and bans [7]. It is essential for developing countries to improve
their carbon reduction efficiency, which was proposed by the Paris Agreement [8].

China is the largest carbon emitter in the world, accounting for nearly 30% of global
carbon emissions; thus, China has an obligation to play the leading role in reducing carbon
emissions [9]. Moreover, China has pledged to peak its carbon dioxide emissions by approxi-
mately 2030 and is striving to achieve carbon neutrality by 2060. Hence, exploring scientific
and comprehensive carbon reduction mechanism measures is urgently needed in China.

Since China’s provinces differ greatly in terms of population, economy, industry, etc., it
is important to study carbon emission reduction according to the actual situation of China’s
regions [10]. The carbon emissions of 34 provinces in China in 2021 are shown in Figure 1.

Figure 1. Carbon emissions of 34 provinces in China in 2021. Source of data: the carbon emission data
for 30 provinces in China (excluding Hong Kong, Macao, Taiwan, and Tibet Autonomous Region) in
2021 were obtained from the China Emission Accounts and Datasets (CEADs), and the data for Hong
Kong, Macao, Taiwan, and the Tibet Autonomous Region were obtained from the Environment and
Ecology Bureau, the Environmental Protection Bureau of the Macao Special Administrative Region,
the BIOSIS Previews database and the China Tibet News Network, respectively. The green line in the
figure represents the Qinling-Huaihe River demarcation line, and the blue line, and the blue lines on
the map represent islands or coastlines.

Figure 1 shows that the Shandong, Hebei, and Jiangsu Provinces and the Inner Mongolia
Autonomous Region have the highest carbon emissions among all provinces and regions.
Moreover, the Shandong and Jiangsu Provinces are the main sources of carbon emissions in
eastern China, and Shandong Province ranks first in China, far exceeding other provinces and
regions. In particular, Shandong is a developing province with high energy consumption and
rapid urbanization. Owing to its heavy industry, the energy structure is biased toward coal,
and many industries have high energy consumption and emissions; hence, research on the
carbon peak and carbon neutrality in Shandong Province has attracted much attention. More-
over, establishing an influencing factor system for carbon emissions is crucial to investigate
the development of low carbon emissions in Shandong Province.

2. Literature Review

Systematically identifying the influencing factors of carbon emissions and formulating
effective strategies are critical to achieving the “30–60” dual-carbon target and realizing the
goal of low-carbon sustainable development, such as economic growth, energy structure,
and population distribution [11–13]. Considering the importance of ecological factors in
influencing carbon emissions, He et al. [14] analyzed the relationship between water and
energy from a life cycle perspective. In addition, Xian et al. [15] investigated the emissions of
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SO2, NOX, CO, PM2.5, and other pollutants via the multiresolution emission inventory model
for climate (MEIC), concluding that the pollution abatement policy had a greater inhibitory
effect on controlling air pollution and carbon emissions. In addition, trees absorb carbon
dioxide through photosynthesis, and forests soak up carbon dioxide in the form of biomass
and soil carbon. Teng et al. [16] introduced carbon sequestration by afforestation based on
the relaxation measures to study the change in carbon emission efficiency in China. Their
findings about utilizing natural ecosystems to sequester carbon and combat climate change
are important. Cabon et al. [17] highlighted the importance of considering processes other
than photosynthesis to estimate how much carbon trees can sequester, and their findings are
important for utilizing natural ecosystems to sequester carbon and combating climate change.

Currently, the main models for studying the factors affecting carbon emissions include
the input–output [18,19], Durbin [20–23], index decomposition analysis [24–26], panel
threshold [27–29], and dynamic spatial econometric models [30]. However, these models
do not systematically consider the influencing factors, and lack internal feedback.

The structural equation method (SEM), a popular method for exploring causal rela-
tionships, is applied to address barriers [31,32]. The SEM can extract all of the features of
hidden information from the observed data while considering the structure and influence
within the indicators, and can directly analyze the unmeasured attributes. In recent years,
the SEM has played an important role in low-carbon research, such as low-carbon agricul-
ture [33], travel [34], and building industries [35]. These studies are based on questionnaires
or visiting survey methods. However, for the issue of carbon emissions, panel data have
the advantage of the time dimension, which better reveals the changing patterns between
carbon emissions and their influencing factors and avoids subjective judgments. For the
first time, Wei et al. [36] utilized panel data and partial least squares structural equation
modeling (PLS-SEM) to construct the path relationship between carbon emissions and their
multiple influencing factors, assessing the degree of influence of each factor on different
regions in China. They considered a two-level indicator system for carbon emission in-
fluencing factors and adopted traditional methods to eliminate observable variables with
load values less than 0.7, achieving a goodness-of-fit (GOF) of 0.862 for the model. To com-
prehensively establish a carbon emission influencing factor indicator system and improve
model fit, this paper constructs a four-level carbon emission influencing factor indicator
system encompassing population, economy, energy, major pollutants, water resources, and
afforestation. The random forest (RF) model is utilized to select variables highly correlated
with carbon emissions, which are then combined with PLS-SEM, referred to as RF-PLS-SEM.
The empirical analysis is conducted in Shandong Province, with the results indicating a
significant improvement in the GOF of the refined model.

The innovations of this paper are as follows:

(a) This paper presents a four-level carbon emission influencing factor system, including
six qualitative indicators, such as population, economy, energy, main pollutants,
water resources, and afforestation, and 40 quantitative indicators, which is more
comprehensive and systematic.

(b) Compared with traditional PLS-SEM, the improved RF-PLS-SEM substantially en-
hances the GOF from 0.8141 to 0.9220, and the loading exceeds 0.8. To reveal concealed
information within the data, we investigate the mediating variables for the indirect
influencing factors via RF-PLS-SEM. In particular, as a negative primary factor, the
economic variable is quadratically decomposed via RF-PLS-SEM to explore which
factors are important in inhibiting carbon emissions.

(c) Combining RF-PLS-SEM with the EWM, the carbon emission indicator system is
used to calculate the low-carbon development score in Shandong Province. After
feature selection and causal analysis by RF-PLS-SEM, the influencing factors are highly
coupled in the low-carbon development evaluation model, and the direction of the
indicators is determined according to the relationships between the data, to ensure
high credibility of the evaluation results.
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3. Data and Research Method
3.1. Data Source and Processing

In this study, we initially select the influencing factors that are highly related to carbon
emissions from the six dimensions of economy, population, energy, water resources, major
pollutants, and afforestation, which include six qualitative indicators and 40 quantitative
indicators. The panel data are selected from Shandong Province from 1997 to 2022, and the
information and sources of the variables are shown in Table 1.

Table 1. Basic data information.

Indicator (Variable Name) Unit Source Literature

Carbon emissions (CE) Mt CO2 CEADs [3,37–39]

Population (POP)

total population (TP) 10,000 persons Shandong Statistical
Yearbook

[40]

density of population (DP) person/sq·cm Shandong Statistical
Yearbook

[41]

Economic (ECO)

per capita GDP (PCG) yuan Shandong Statistical
Yearbook

[3]

gross domestic product (GDP)
primary industry (PI)
secondary industry (SI)
tertiary industry (TI)

100 million
yuan

Shandong Statistical
Yearbook

[40,42]

agriculture, forestry, animal husbandry and fishery (AFAHF)
industry (IND)
construction (CON)
wholesale and retail trade (WRT)
hotels and catering services (HCS)
transport storage and postal services (TSPS)
financial intermediation (FI)
real estate (RE)

100 million
yuan

National Bureau of
Statistics

[43]

Energy (ENE)

total energy production (TEP)
total consumption production (TCP)

10,000 tons of
SCE

Shandong Statistical
Yearbook; China Energy
Statistical Yearbook

[44]
[42]

fuel oil consumption (FOC)
coal consumption (COAC)
coke consumption (COKC)
crude oil consumption (COC)
kerosene consumption (KC)
diesel oil consumption (DOC)
gasoline consumption (GC)

10,000 tons Shandong Statistical
Yearbook; China Energy
Statistical Yearbook

[42]

natural gas consumption (NGC) 10,000 million cu·m Shandong Statistical
Yearbook; China Energy
Statistical Yearbook

[45]

electricity consumption (EC) 10,000 million
kW·h

Shandong Statistical
Yearbook; China Energy
Statistical Yearbook

[46]

water resources (WR)

water supply (WS)
surface water resources (SWR)
ground water resources (GWR)

10,000 million
cu·m

Shandong Statistical
Yearbook

[47,48]

total amount of water resources (TAWR) 10,000 million
cu·m

China Water Resources
Bulletin; Shandong
Water Resources Bullet

[49]

Main pollutants (MP)

volume of waste water discharged (VWW) 10,000 tons Shandong Statistical
Yearbook

[50]

volume of common industrial solid waste generated (VCISWG)
volume of common industrial solid waste utilized (VCISWU)
volume of sulfur dioxide discharged (VSDD)
volume of particulate emissions (VPE)

10,000 tons Shandong Statistical
Yearbook

[15,51]

Afforestation (AFF)

total area of afforestation (TAA)
protection forests (PF)
by-product forests (BF)
fuel forests (FF)
forests for special purpose (FSP)

hectare China Forestry Statistical
Yearbook

[52]

Note:The primary industry includes AFAHF; the secondary industry includes IND, CON; the tertiary industry
includes WRT, HCS, TSPS, FI, RE.
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3.2. Method
3.2.1. Random Forest (RF)

Feature selection by RF is important in building a classification system; it not only
filters out important indicators but also reduces the dimensionality of the data [53]. Accord-
ing to the idea of integrated learning, the RF collects multiple decision trees and averages
the output of each decision tree to obtain the final output result, which measures the relative
importance of each feature for feature selection. The GINI index is taken as a measure of
feature importance in the model, and the following formula calculates the GINI index of
node m:

GINIm = 1 −
|K|

∑
k=1

p2
mk, (1)

where K represents the number of categories and pmk denotes the proportion of category k
in node m. The GINI index is the purity of the node; the larger the GINI index, the lower
the purity of the node, and the average change in the GINI index serves as the level of
importance of the feature.

The RF is adopted to select a subset of features retained in light of a preset feature
threshold after the important features are obtained [54]. The following methods are com-
monly used for the selection of thresholds:

(1) Retention of feature indicators with importance scores greater than 0;
(2) Preservation of the first K feature indicators according to demand;
(3) Screening out feature indicators with less than 10% feature significance.

3.2.2. Partial Least Squares Structural Equation Modeling (PLS-SEM)

PLS-SEM is a composite-based approach to SEM that uses linear combinations of
variables to explain the variance of the target constructs in the structural model [55]. It
is one of the most powerful techniques for accounting for the correlation between many
measurable and nonmeasurable factors. Suppose that there are J groups of observable vari-
ables, and that each group contains pj variables. Thus, each group of observable variables
can be expressed as Xj = (xj1, xj2, · · · , xjpj), (j = 1, 2, · · · , J). Each group corresponds
to a latent variable ξ j, which is assumed to be normalized, i.e., the mean value is 0, and
the variance is 1. Hence, each group of observable variables Xj and the corresponding
latent variables ξ j constitute a measurement model, also known as an external model.
The structure model is a description of the different latent variables of causality, usually
expressed as Formula (2) [36]

ξ j = ∑
i ̸=j

βijξi + ζ j, (2)

where ζ j is the random error term, and its mean value of the residuals is 0, which is uncorre-
lated with ξ j, and where βij is the coefficient. Formula (2) shows that the interdependence
among the latent variables can be considered a causal association model, which is a causal
chain with no loops. The causal association model can be represented as a correlation
matrix whose dimension is the number of latent variables. If latent variable j explains
latent variable i, the element in the matrix takes a value of 1; otherwise, it takes a value of 0;
thus, the matrix is also called the internal design matrix.

PLS regression can estimate latent variables in two ways. The first is to calculate latent
variables based on the correlation between observable and latent variables, also known as
an external estimation. The second way is to evaluate a specific latent variable using other
latent variables [32], which is an internal estimation; the result is denoted as Zj, which is
shown in Formula (3):

Zj =

∑
i,βij

eijYi

∗

, (3)
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where “∗” denotes the standardization of the estimate, Yi is the external estimate of the
other potential variables, and eij is the internal weight, which is calculated by the following
Formula (4):

eij = sign(r(Yi, Yj)) =


1 (r(Yi, Yj) > 0)
0 (r(Yi, Yj) = 0)
−1 (r(Yi, Yj) < 0)

, (4)

where “Sign” refers to the sign function, and r(Yi, Yj) denotes the correlation coefficient
between the external weight estimates Yi and Yj. The weights for the internal estimates are
calculated as follows:

Wj =
(

XT
j Xj

)−1
XT

j Zj, (5)

where Wj is the coefficient after the normal least squares regression of Zj.
The bootstrap method is used for statistical significance testing, but PLS-SEM has no

underlying assumption that the data should be normally distributed, meaning parametric
significance tests are not applicable for testing whether the coefficients are significant.
Instead, the nonparametric bootstrap procedure is applied to PLS-SEM to test the statistical
significance of the results, and parameter estimates (e.g., external weights, loadings, and
path coefficients) are used to derive standard errors of the estimates. The GOF index can
explain the model quality of the measurements and structural models, which are calculated
as the geometric mean of the average communality and average R2. The GOF is used to
evaluate the quality of the model, and a GOF value greater than 0.7 indicates that the model
performs well. Loadings reflect the correlation between latent and observed variables, and
the observed variables with loadings below 0.7 should be deleted [56].

Cronbach’s alpha (C. alpha) is the coefficient of reliability. When the data have a
multidimensional structure, C. alpha is usually low. Dillon-Goldstein’s rho (DG. rho) is used
to evaluate the measurement effectiveness of the set of indicators for their corresponding
underlying construct. Acceptable values above 0.7 for C. alpha and DG. rho indicate high
reliability in the block of interest. Furthermore, the average variance extracted (AVE) is
used to assess the convergent validity of the latent variables. The AVE values of all the
constructs are greater than 0.5, confirming significant reliability and validity [57].

3.2.3. Entropy Weight Method (EWM)

The EWM is an unbiased weighting method that determines the weights of indicators
according to the information provided by the indicators themselves, avoiding the negative
impact of subjective factors and making the results more credible [58]. The entropy weight
is the parameter that describes the differences in the evaluation objectives. The lower the
entropy value, the more information is provided, and the higher the weight.

The first step is data normalization, as follows:

rij =
xij − min{xij}

max{xij} − min{xij}
, (6)

rij =
max{xij} − xij

max{xij} − min{xij}
, (7)

where Formula (6) is used to normalize the positive index. The larger the values, the better
the model’s efficacy. In contrast, Formula (7) is applied to the negative indicators, and
smaller values are more desirable. In addition, rij is the normalized value, xij is the original
value, and max{xij} and min{xij} represent the maximum and the minimum values in
the dataset, respectively. The weight of each indicator Hi is determined via the entropy
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method [59], which is defined in Formula (8), and the coefficients fij and k are calculated
by Formulas (9) and (10):

Hi = −k
n

∑
j=1

fij ln fij, (8)

fij = rij/
n

∑
j=1

rij, (9)

k = 1/ ln n, (10)

where n is the number of evaluated objects. When fij = 0, we suppose that fij ln fij is also
equal to 0.

The entropy weight [60] of each indicator wi is then calculated using Formula (11):

wi = (1 − Hi)/(m −
m

∑
i=1

Hi), (11)

where m is the total number of indicators. The carbon emissions score effectively measures
low-carbon development by multiplying the entropy weight wi by the dimensionless value
rij. The indicators are summarized by the category layer, obtaining the score Sc for each, as
shown in Formula (12):

Sc =
k

∑
i=1

(wi × rij), (12)

where Sc is the low-carbon development level score of the c-th category, and k is the number
of the outermost indicators included in class c.

4. Results and Discussion
4.1. ARIMA Projection of Carbon Emissions in 2022

Because the carbon emission data of Shandong Province in 2022 have not yet been pub-
lished, this study employs an autoregressive integrated moving average model (ARIMA)
to forecast the value based on the time series data in Shandong Province, which shares the
national carbon emissions from 1997 to 2021. This approach enhances accuracy compared
with directly extrapolating the 2022 data from the historical carbon emissions of Shandong
Province. Moreover, this paper applies the grid search method to find the optimal param-
eters, which are p = 1, q = 0 and d = 0, determined as ARIMA (1, 0, 0) with a prediction
value of 0.0819, which is multiplied by the actual national carbon emission data from
2022; thus, we obtain the carbon emission data of Shandong Province in 2022, which are
939.5187 MtCO2.

4.2. Analytical Results of PLS-SEM

This paper presents a four-level initial empirical indicator system of carbon emission
influencing factors, which is shown in Figure 2.

The indicator system in Figure 2 includes 6 primary indicators of carbon emissions
(CE), labeled in orange; 14 secondary indicators, labeled in yellow; 18 tertiary indicators, la-
beled in green; and 8 quadruple indicators, labeled in blue. The population (POP), economy
(ECO), energy (ENE), main pollutants (MP), water resources (WR), and afforestation (AFF)
are selected as latent variables for the CE. Initially, it is essential to ascertain the intrinsic
relationships between the CE and the six latent variables. In addition, constructing paths
between every two variables is crucial, where the path coefficients are calculated according
to causality and correlation matrices. The literature shows that the POP influences the
ECO [41,61], ENE [62], MP [63,64], WR [65] and AFF [66], and the ENE influences the
ECO [67] and MP [68,69]. A PLS-SEM is constructed using the relationship between these
latent and observable variables, the loadings of which are shown in Table 2.
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Figure 2. Carbon emission empirical indicator system.

Table 2. The external loadings between latent and observable variables in the PLS-SEM .

Variable Relation Loading Variable Relation Loading

POP-TP 0.9980 MP-VCISWU 0.9830
POP-DP 0.9980 MP-VPE −0.4780
ENE-TCP 0.6210 MP-VSDD −0.8710
ENE-TEC 0.9690 MP-VWW 0.6870
ECO-GDP 1.0000 WR-TAWR 0.7230
ECO-PCG 1.0000 WR-WS −0.8790
MP-VCISWG 0.9830 AFF-TAA 1.0000

Table 2 shows certain instances where the factor loadings between observable variables
and their associated latent variables are less than 0.7, for which observable variables should
be removed and the model rebuilt. After adjusting for variables, the GOF value is 0.8141,
indicating that the indicators selected effectively construct the PLS-SEM, but the model
precision can be further optimized.

4.3. Screening Results for RF

To further increase the GOF value and optimize its pathways, this study proposes
an improved model named RF-PLS-SEM. First, the RF is used to select indicators in the
carbon emission indicator system, where we set the screening threshold at 0.1, meaning
indicators with feature importance less than 0.1 are excluded; otherwise, they are retained.
The screening results at all levels are shown in Figure 3.
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Figure 3. Feature screening results for RF.

In Figure 3, the horizontal axis represents feature importance, and the vertical axis
represents the screened variable. Since the primary indicators are qualitative and feature
screening requires actual data, thus CE is directly used to screen the secondary indicators.
As illustrated in Figure 3a, the feature importance thresholds of the secondary indicators
associated with the AFF and WR do not exceed 0.1. Consequently, the AFF and WR are
excluded as primary indicators. In the existing literature, most studies were focused on
cumulative afforestation area, which plays a significant role in carbon absorption. However,
in this paper, we mainly consider the newly added afforestation area for the current year,
which is sourced from the Shandong Statistical Yearbook. Since the photosynthetic capacity
of new saplings is relatively low, their carbon sink effect is not significant in the initial stages.
Therefore, the annual increase in afforestation area has a relatively low impact on carbon
emissions. Furthermore, the rapid urbanization in Shandong Province has led to a decrease
in afforestation areas. In a word, afforestation has a minimal impact on carbon emissions in
Shandong Province. Moreover, the secondary indicators corresponding to the POP, ECO,
ENE, and MP have not been completely eliminated; thus, these four primary indicators are
retained. Similarly, the secondary indicators are utilized to screen the tertiary indicators,
which are adopted to screen the quadruple indicators. Figure 3b,c show the screening
results of the tertiary indicators. Specifically, Figure 3b show that the primary, secondary
and primary industries (PI, SI, TI) are retained, and Figure 3c shows that coal (COAC), coke
(COKC), crude oil (COC), natural gas (NGC), and electricity consumption (EC) are obtained,
whereas diesel oil (DC), gasoline (GC), fuel oil (FC) and kerosene consumption (KC) are
rejected. Figure 3d,e show the screening of the indicators at the fourth level, demonstrating
the industry screening results for the secondary and tertiary industries, respectively, and
none of the variables are excluded. The final indicator system is reconstructed per the
above results as shown in Figure 4.
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Figure 4. The system of terminal indicators.

Figure 4 shows that the main factors influencing carbon emission in Shandong Province
can be categorized into four aspects: population, energy, economy and main pollutants.
After screening, the analysis includes four primary indicators, six secondary indicators,
seven tertiary indicators, and eight quaternary indicators.

This paper adopts the explained variance score (EVS), mean squared error (MSE),
mean absolute error (MAE) and root mean square error (RMSE) to compare the accuracy of
the initial indicator system with that of the renewable system based on the RF. A comparison
of the model accuracy is shown in Table 3.

Table 3. Error comparison between the original and the reconstructed indicator system.

EVS MSE MAE RMSE

ENE-original 0.9411 0.0101 0.0774 0.1003
ENE-reconstructed 0.9891 0.0007 0.0233 0.0257
total-original 0.8645 0.0099 0.0565 0.0997
total-reconstructed 0.9902 0.0018 0.0379 0.0424

EVS is the number of [0, 1] values; the larger the value, the better its prediction effect.
The MSE, MAE, and RMSE are applied to calculate the prediction error. The smaller the
value, the better the prediction will be. As shown in Table 3, the accuracy of both the energy
and the total indicator systems are improved significantly compared with those of the
prescreening indicators.
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4.4. Analytical Results of the RF-PLS-SEM

After the variables are screened according to the RF, the GOF value of the model is
significantly improved to 0.9220. The structural equation path diagram between the CE
and each latent variable constructed is shown in Figure 5.

Figure 5. Latent variables path analysis of carbon emissions. Note: the paths representing positive
influencing factors are depicted as solid black lines, whereas the paths for negative influencing factors
are shown as red dashed lines.

As shown in Figure 5, POP, ENE, and MP positively impact CE, and the ECO negatively
impacts CE. The POP, whose influence coefficient is 0.3712, has some influence on CE,
suggesting that the density of population (DP) somewhat contributes to CE. The path
coefficient between the ECO and CE indicators is −0.7647, meaning that carbon emissions
decrease as the economy grows. The following study addresses the inhibitory effect of the
ECO indicator on CE by decomposing the ECO indicator and constructing a new structural
equation model in detail.

The ENE, measured by total consumption production (TCP), has the highest positive
impact on CE, and the path coefficient is 0.9987, meaning that Shandong is the province
that consumes the most energy in China, and high energy consumption is associated with
its rapid economic development. In addition, in 2020, coal consumption accounted for 64%
of Shandong Province’s energy consumption structure, whereas clean energy consumption
accounted for only 7.4%; thus, the issue of carbon emissions caused by energy consumption
must be taken seriously.

In addition, the path coefficient of the MP and CE is 0.3666, indicating that the main
pollutants have a positive influence on carbon emissions and that the volume of wastewater
discharged (VWW) and of common industrial solid waste generated (VCISWG) have
positive effects on the CE. The Ministry of Ecology and Environment noted that, in the
context of “double carbon”, water environmental management has once again become a
key area for reducing carbon emissions [70]. Most recent estimates have shown that global
WWTPs directly emit approximately 650 Gg CO2e annually [14]. Moreover, owing to rapid
industrialization, large amounts of industrial solid waste have been generated, resulting
in different degrees of environmental pollution, such as carbon emissions. Shandong
Province is a major industrial and chemical province, with more than 7200 enterprises
producing chemical substances, making pollutant management more burdensome. The
rational utilization of industrial solid waste can reduce carbon emissions during industrial



Sustainability 2024, 16, 8488 12 of 21

production. Therefore, the resource utilization of industrial solid waste, such as fly ash,
should receive increased attention from government departments [71].

Latent variables are linear combinations of observable variables. The 95% confidence
interval is employed to determine whether the path coefficients are significant, and the test
results are shown in Table 4.

Table 4. Statistical significance test for latent variables.

Variable Estimate Std. Error T-Value p-Value

Population 0.3710 0.2370 1.5700 0.1325
Energy 0.9990 0.2310 4.3300 0.0003
Economy −0.7650 0.1670 −4.5800 0.0002
Main pollutants 0.3670 0.1000 3.6700 0.0014

As shown in Table 4, the P value between POP and CE is 0.1325, indicating that it fails
to meet the threshold for statistical significance. However, this means that, as an indirect
influencing factor, POP affects carbon emissions through the mediating variables. The rest
of the variables pass the significance test, showing that the ENE measured by the TCP, the
ECO by the GDP and the per capita GDP (PCG), and the MP measured by the VWW and the
VCISWG are direct influencing factors. The loadings between the observed variables and
their latent variables are shown in Table 5. The path loadings of the observable variables
and their corresponding latent variables are all greater than 0.7, indicating that the model
is effective.

Table 5. The external loadings between latent and observable variables in the RF-PLS-SEM.

Variable Relation Loading Variable Relation Loading

POP-DP 1.0000 ECO-GDP 1.0000
ENE-COEC 0.9640 ECO-PCG 1.0000
ENE-COAEC 0.9240 MP-VCISW 0.9260
ENE-COKEC 0.9630 MP-VWW 0.8770
ENE-NGEC 0.9130

Moreover, the model effectiveness test results are displayed in Table 6, showing that
C.alpha and DG.rho are greater than 0.7, and that the AVE is greater than 0.5, indicating
that the model has better reliability and validity. To summarize, the improved model shows
a significant increase in the accuracy with the GOF value from 0.8141 to 0.9220 compared
to the traditional PLS-SEM model. At the same time, some of the variable loadings in the
original model are below 0.7 in Table 2, whereas all the loadings in the newly established
model have been increased to above 0.7 in Table 5.

Table 6. Reliability and validity test of the RF-PLS-SEM model for latent variables.

Variable C. alpha DG. rho AVE

POP 1.0000 1.0000 1.0000
ENE 0.9570 0.9690 0.8860
ECO 1.0000 1.0000 1.0000
MP 0.7730 0.8980 0.8130
CE 1.0000 1.0000 1.0000

4.5. Analytical Results of the RF-PLS-SEM after Decomposing Economic Indicators

The ECO is the negative indicator of CE, and the observed variables of the ECO
are divided into PCG and GDP, while GDP includes primary industry (PI), secondary
industry (SI), and tertiary industry (TI). To study which economic indicators hinder carbon
emissions, this paper further analyses the pathways of carbon emission influencing factors,
including decomposed economic variables. The RF-PLS-SEM model, which includes
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detailed economic variables and other influencing factors, has a GOF value of 0.9392, with
all the variable loadings surpassing 0.8. The model demonstrates strong reliability and
validity, as evidenced in Table 7. The results of the optimized path adjustment model are
depicted in Figure 6. In addition, the PI and TI are negative indicators of CE, and both ENE
and POP slightly hinder the TI.

Table 7. Effectiveness testing of the RF-PLS-SEM model for segmented variables.

Variable C. alpha DG. rho AVE

DP 1.0000 1.0000 1.0000
TEC 0.9570 0.9690 0.8860
PCG 1.0000 1.0000 1.0000
SI 0.9810 0.9910 0.9810
PI 1.0000 1.0000 1.0000
TI 0.9940 0.9970 0.9950
POI 0.7730 0.8980 0.8120
CE 1.0000 1.0000 1.0000

Figure 6. Path analysis of disaggregated economic indicators and carbon emissions and their influ-
encing factors. Note: the paths representing positive influencing factors are depicted as solid black
lines, whereas those for negative influencing factors are shown as red dashed lines.

The path coefficient of the PI and CE is −0.4603, indicating that primary industry
inhibits the growth of carbon emissions. In China, the value added of primary industry
mainly comes from agriculture, forestry, fishery, and animal husbandry. Urbanization has
reduced the number of fishing grounds, thereby increasing CO2 emissions [72], and long-
term empirical statistics show that for every 1% increase in the negative impact of fishing
vessels on aquatic organisms, the carbon intensity increases by 0.55%. The latest data prove
that fishery factors play a role in reducing carbon emissions. Because fisheries not only
emit fewer carbon emissions than animal husbandry, but also reduce carbon intensity by
farming seaweed [73], they play an important role in reducing carbon emissions. Shandong
Province is also very rich in fishery resources, with more than 2300 km of coastline and a
sea area of over 500,000 square kilometers, and the marine fishery industry is one of the
traditionally advantageous industries. Marine pasture is an important factor in absorbing
carbon dioxide from the atmosphere [74] and has successfully addressed carbon emissions
in China. Shandong Province is rich in various marine biological resources, such as seaweed
and marine microorganisms, which can absorb and fix carbon dioxide. Shandong Province
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has been pushing forward the construction of modern marine ranches and currently has
67 national marine ranching demonstration zones, the most in the country.

The path coefficient of TI and CE is −0.8281, indicating that tertiary industries sup-
press the growth of carbon emissions. With the rapid development of e-commerce, the
technological innovation capacity of modern service industries, such as information tech-
nology, has also significantly increased. Improvements to energy efficiency and innovation
levels are the main driving force for upgrading production technology [75]. Tertiary in-
dustry gradually eliminates the excess production capacity of secondary industries, which
helps reduce unnecessary industrial pollution emissions and has a significant inhibitory
effect on carbon emission intensity. Research results show that tertiary industries, especially
those that involve technological innovation activities, can stimulate more low-carbon and
clean technology innovations [76].

The path coefficient of the POP and TI is −0.1629, meaning that when the population
increases, the tertiary value added also decreases. Moreover, the tertiary industry has a
negative effect on carbon emissions, while population has an indirect effect on carbon
emissions, confirming that the population in Shandong Province slightly hinders the
development of the tertiary industry, thereby indirectly affecting carbon emissions through
the technological innovation capacity of the TI. According to the data obtained from the
seventh population census in 2020, 11 provinces in China had an elderly population of
10 million, while Shandong’s exceeded 20 million, making its elderly population the largest
in the country, and indicating aging will continue to accelerate. The population of older
adults in Shandong Province is growing rapidly, while the proportion of young and middle-
aged people is declining annually, which poses challenges to traditional service industries
that rely heavily on labor. Many emerging sectors within the tertiary industry require
continuous technological innovation, but the population aging trend somewhat restricts
enhancing innovation capabilities. This study revealed that the increase in population
density in Shandong Province has a slight inhibitory effect on the development of tertiary
industries. Therefore, actively developing the “silver economy” and establishing a sound
elderly care service system (including health care, tourism, education, etc.) are crucial for
promoting economic development within the tertiary industry. This approach transforms
the adverse aspects of the increasing elderly population density into a favorable factor that
drives economic growth. Furthermore, reducing talent loss in Shandong Province is crucial
for achieving the optimal labor allocation in an aging society.

The path coefficient between ENE and TI is −0.1277, indicating that energy consump-
tion not only directly affects carbon emissions, but also slightly inhibits the development
of tertiary industries, which is unfavorable for innovating low-carbon clean technologies.
The path coefficient between SI and CE is 0.9109, indicating it has a significant effect on CE.
China’s economy has long been overly dependent on secondary industries, which have
become the economy’s leading industrial sector. The development of secondary indus-
tries, especially the manufacturing industry, tends to consume more resources and emit
more carbon dioxide than tertiary industries. Therefore, to achieve sustainable economic
development, Shandong Province must change its economic development mode as soon as
possible and increase the proportion of tertiary industries.

4.6. Low-Carbon Development Level Score

Low-carbon development is a multiobjective issue that seeks not only to reduce green-
house gas emissions but also to ensure economic growth. Low-carbon development is a
complex dynamic system, and the subsystems are interconnected, interact, and constrain
one another [77]. The carbon emission indicator system covers the population, economy,
energy, and ecology, is comprehensive and systematic, and can be used to evaluate the
current status of the low-carbon development level in Shandong Province. The indicators
screened are of greater fitness by quantitative analysis, and they are positive or negative in-
dicators according to the path coefficients; thus, the evaluation results are highly convincing.
Moreover, there is an inverse relationship between the level of low-carbon development
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and carbon emissions; that is, if a factor has a positive effect on carbon emissions, it will
have a negative effect on the sustainable development score, and vice versa. Influential
factors obtained using the RF-PLS-SEM are applied to the EWM to calculate the low-carbon
development score in Shandong Province; the results are shown in Table 8.

Table 8. Weights and directions of subsystem indicators.

Subsystems Indicator Weight Direction

POP DP 0.0498 −
PCG 0.0759 +

ECO AFAHF 0.0749 +
CON 0.0056 −
IND 0.0593 −
WRT 0.0978 +
TSPS 0.0774 +
HCS 0.0799 +
FI 0.1280 +
RE 0.0913 +

ENE COAC 0.0867 −
COKC 0.0361 −
COC 0.0324 −
NGC 0.0210 −
EC 0.0367 −

MP VWW 0.0199 −
VCISWG 0.0274 −

The weights of the indicators in Table 8 are used to calculate the low-carbon devel-
opment level score. The plus and minus signs represent the direction of the effect of each
indicator on low-carbon development based on the quantitative analysis of the RF-PLS-
SEM, respectively. The higher the score, the greater the effect of a low-carbon development
level from 1997 to 2021; the results are shown in Figure 7.

Figure 7. Low-carbon development level score by subsystem.

In Figure 7, the POP_score, ECO_score, ENE_score, and MP_score represent the scores
for population, economy, energy, and main pollutants, respectively; the larger the area of
the bar, the higher the indicator score for that year. The ENE_score in Shandong Province
was higher and more stable from 1997 to 2000, with a decline to approximately 2001 and a
significant drop after 2005. The proportion of POP_score and MP_score of the total score
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gradually decrease for the low-carbon development level. The ECO_score also shows
the opposite state of change compared with the ENE_score. In addition, the level of
economic development barely increased before 2005 and then slowly increased. After
2011, the growth rate increased dramatically, and the economy reached the level of low-
carbon development in Shandong Province. To adapt to the new development situation in
recent years, Shandong Province has been promoting industrial upgrading, continuously
eliminating backward production capacity and high energy-consuming production capacity
and promoting the economy to better embrace the new era. The overall score trend of the
low-carbon development level in Shandong Province is shown in Figure 8.

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

Bad Weak Basic Sustainable Strong

Figure 8. Overall score for the level of low-carbon development. Note: The blue line graph represents
the growth rate of the low-carbon development level score.

As shown in the bar chart in Figure 8, the low-carbon development level score of
Shandong Province remained stable in the early stage from 1997 to 2000, then began to
decline in 2001, and reached its lowest value in 2006. However, it began to increase in
2007, and continued increasing until 2022. The line graph represents the growth rate of
the low-carbon development level score, which reveals an initial downward trend, with a
negative growth rate from 2000 to 2006 and a negative peak in 2005. Drawing on previous
research results, the level of low-carbon development is divided into five stages on average:
poor, weak, basic, sustainable and strong, with an overall threshold value of [0, 1] [60].
According to the calculations, the stages of low-carbon development were weak, basic,
and sustainable during the 1997–2012, 2013–2020, and 2021–2022 periods, respectively.
Moreover, 2021 is an important turning point toward sustainable development, which is
the opening year of the “14th Five-Year Plan”. Shandong Province focused on transforming
and upgrading traditional energy to achieve positive results. Specifically, investment in
high-tech industries grew by 11.6%, crude steel production increased by 12.59 million
tonnes, and new and renewable energy generation capacity reached 100.6 billion kilowatt-
hours. The quality development of Shandong Province was on the hoof in 2022, and
innovation-driven results were significant.

5. Conclusions and Policy Implications

This paper presents a four-level indicator system for the influencing factors of carbon
emissions, and proposes an improved RF-PLS-SEM model, combining the EWM to analyze
the influencing factors of carbon emissions in Shandong Province. The results demonstrate
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that population, economy, energy, and main pollutants have greater impacts on carbon
emissions, whereas water resources and afforestation have relatively lower impacts. Fur-
thermore, the improved model shows a significant increase in accuracy, with the GOF
value increasing from 0.8141 to 0.9220 compared with the traditional PLS-SEM. The specific
conclusions and policy recommendations of this paper are as follows:

(1) The primary and tertiary industries in Shandong Province negatively influence carbon
emissions, and the secondary industry significantly contributes to carbon emissions.
As one of the larger marine provinces, Shandong Province has abundant marine and
fishery resources, and has pushed forward the development of modernized marine
pastures, which can help reduce carbon emissions; thus, primary industry plays an
important role in reducing carbon emissions. It is essential to develop its advantages
in marine and fisheries, promote green development and the upgrading of fisheries,
conserve aquatic biological resources, etc., which can also provide some references for
other regions with marine resources in Shandong Province. In addition, tertiary indus-
tries restrict carbon emissions, but secondary industries significantly promote carbon
emissions; thus, accelerating the upgrading of the industrial structure and increas-
ing the proportion of tertiary industries in the national economic system are crucial.
Moreover, expanding fiscal subsidies and investment channels for green finance can
have a positive effect on realizing the “dual carbon” goals in Shandong Province.

(2) The population density in Shandong Province has an indirect influence on carbon
emissions and slightly inhibits the development of tertiary industries. Shandong
Province’s aging population presents both challenges and opportunities for the eco-
nomic development of tertiary industries. By formulating scientific response strategies
and measures, we can fully leverage the market opportunities presented by population
aging and actively develop a “silver economy” tailored to the demand characteristics
of the elderly population, covering multiple sectors, such as pensions, health care,
tourism, and education. By providing diversified products and services to meet
the consumption needs of elderly individuals, we can drive the tertiary industry’s
transformation, upgrading, and high-quality development.

(3) Energy, measured by total consumption production, has the greatest positive impact
on CE; this not only directly accelerates carbon emissions, but also slightly inhibits
the development of tertiary industries, which is adverse for the innovation of low-
carbon clean technologies. Shandong Province has vigorously developed its economy
with increasing energy consumption, which has led to environmental deterioration;
however, this issue has improved with the proposal of sustainable development
policies. Shandong Province can adhere to the concept of green development in
resource recycling. In addition, promoting a cleaner and low-carbon energy transition
and curbing the development of high-energy consumption and high-emission projects
can result in a win–win outcome of reducing energy consumption and developing
the economy.

(4) Of the main pollution-influencing factors in Shandong Province, the volume of dis-
charged wastewater and common industrial solid waste generated has a direct and
positive influence on carbon emissions. The wastewater treatment industry accounts
for the largest share of the environmental protection industry; therefore, policies
should be formulated to promote energy-efficient products and equipment and ac-
celerate eliminating old and inefficient equipment. Moreover, the output and trend
of solid waste must be assessed by local departments, policies related to solid waste
should be formulated, and facilities for solid waste treatment should be constructed
in Shandong Province.

(5) The scores at different stages of low-carbon development in Figure 8 show a trend
of steady progress, decline, and then growth. Specifically, the trend was weak, basic,
and sustainable in the 1997–2012, 2013–2020, and 2021–2022 periods, respectively,
Moreover, the growth rate of the scores from 2000 to 2006 is negative, whereas those of
the other years are positive. According to the results of the low-carbon development
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level assessment, the inhibitory effect of economic factors on carbon emissions must
be enhanced in Shandong Province. Moreover, reducing energy consumption and
pollution, accelerating industrial upgrading, and promoting green technological
innovation are pivotal to achieving the target of reducing carbon emissions as soon
as possible.

This paper mainly focuses on the influencing factors of carbon emission, carbon
emission mechanisms and the low carbon development level in Shandong Province, and
the results will not only provide a scientific basis for Shandong Province to draw up carbon
emission policies, but also help Shandong Province to achieve the peak carbon goal by 2030.
Furthermore, it will provide some references for other provinces and regions. As we know,
the prediction of carbon emission intensity is one of the hottest issues. In the future, we
will focus on the prediction of carbon emission intensity according to the improved neural
network algorithm. Additionally, we will also consider the impact of extreme weather and
policies on carbon reduction strategies.
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