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Abstract: In recent decades, the sustainable development of the planet has been negatively affected
by a number of factors, including the construction industry. The construction industry includes,
among other things, the highly topical energy reconstruction of existing prefabricated residential
housing, which is implemented to improve their condition from a thermal engineering and energy
perspective. Composite materials, known as external thermal insulation composite systems (ETICSs),
have come to the fore, bringing a number of undeniable benefits to society. After more than 20 years
of experience, it turns out that in addition to the benefits, ETICSs also bring new research challenges
to the discussion, which are related to the issue of the biocorrosion of the external envelope of ETICSs,
and also to the issue of the indoor microclimate. Based on the literature review and case studies, we
aim to show that ecologically friendly building materials require a multidisciplinary approach. At
the same time, we want to contribute to the discussion of whether the diversity of microorganisms on
ETICS composites is a potential source of health risks and whether the transport of microorganisms to
the indoor environment can be ruled out through natural ventilation from the outdoor environment
to the interior.

Keywords: urban environment; residential housing; external wall; composite materials; biodegradation;
microorganism; sustainability; quality of indoor microclimate

1. Introduction

In recent decades, we have seen increased demands for energy savings. The European
Union’s strategic goals for 2030 and 2050 imply that energy measures, CO2 reduction,
climate neutrality and emphasis on the Green Deal [1] strongly accentuate the construction
industry, in addition to new construction and renovations of panel residential housing,
which are implemented using prefabricated technologies [2–7]. Increasing the energy
efficiency of buildings, which started in the European Union countries at the end of the
second half of the last century, has gradually led to the mass application of composites,
known as ETICSs (external thermal insulation composite systems) [8,9], especially for
existing residential housing, including apartment buildings built using panel (prefabricated)
technology. The EU considers the application of ETICSs as a technology that brings positive
benefits to society. As the author [10] states, the EU understands the ETICS as a composite
material and technology that is environmentally friendly, is part of the circular economy
and, last but not least, as a structural and architectural measure that leads to the aesthetic
improvement of prefab residential housing estates and to the improvement of the quality
of prefabricated residential housing.

Set and in reality, systematized energy measures in the form of ETICSs in the recon-
struction of residential housing from the second half of the last century lead, on the one
hand, to energy savings, while on the other hand, we encounter negative impacts in the
form of modern defects [11–13]. This includes in particular, the biodegradation of the
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external envelopes of residential housing with ETICSs and the deterioration of indoor air
quality [14–18].

In the case of the biodegradation of ETICS envelopes in panel residential housing,
it appears that these undesirable manifestations started to increase with the gradual in-
crease in the composite thickness, in accordance with the increasingly stringent energy
requirements defined by the EU and their implementation in the legislation of EU member
states. The secondary impact was the already mentioned deterioration of air quality in the
EU internal environment (legislation: legal harmonization of the 2010/31/EU Directive;
Energy Efficiency, Council Directive of the European Parliament, 2012/27/EU; Directive
No. 78/2013 Energy Performance of Buildings, Directive 2018/844/EU; EPBD I., II., III., Inc.
Recast; Code 73 0540-2, 2011/CZ (the physical connections of “biodegradation x increasing”
the thickness of the composite are presented in Appendix A).

The issue of biocorrosive facades with ETICSs has led to calls for building microbiology
to be more widely integrated into interdisciplinary research and standards legislation
relating to the quality of the external envelope and the quality of the indoor microclimate
of existing buildings. These challenges lead, in principle, to fulfilling the environmental
building requirements for buildings to be healthy, not showing the so-called “Sick Building
Syndrome” (SBS). At the same time, these challenges make it so that the implemented
energy renovations are effective, ecological and extend the life of residential housing by at
least 25–30 years, assuming systematic maintenance [19–23].

The issue of modern defects and failures in the context of building microbiology,
biocorrosion of the facades of residential housing, deterioration of indoor microclimate
quality and environmental contexts is currently not clearly demonstrated and the opinions
on this issue are varied [24–28].

The aim of this article is to draw attention to the persistent problems of the biodegra-
dation of the facades of residential housing, which are equipped with external ETICS
composites, and the issue of the quality of the internal microclimate.

We aim to compare the results of our research work with findings from abroad. Using
the example of a case study and their selected locations and other findings from the litera-
ture, we aim to verify the diversity of microorganisms in a biologically degraded facade. At
the same time, we aim to verify whether the biologically degraded external shell with ET-
ICSs can have an impact on the quality of the internal microclimate of residential housing.

2. Materials and Methods

Our research was divided into two parts:

• Study of literature and established scientific knowledge. The aim of the research was
to achieve an overview of the literature related to the issue of the biodegradation
of ETICSs. Articles were evaluated according to keywords, as shown in Figure 1.
Studying the articles allowed us to understand the issue in a wider range of presented
findings from research. At the same time, it was possible to confront the issue with the
results of our research work (Appendices A and B).

• The comparison of results from conducted research (according to the results of case
studies, see Appendix A, selected locations CS 2 and CS 3, and in the text Appendix A)
with the results determined according to points outlined above results in the following
objectives, namely:

(a) Comparison of results from conducted research include determination of the
diversity of microorganisms on the example of 2 selected locations from the
case study (a selection of locations with a label CS 2 and CS 3);

(b) To document whether the increasing thicknesses of the ETICS composite, as a
result of standard regulations, can have a negative impact on the quality of the
internal microclimate;

(c) To document whether the migration of microorganisms from the surface of
ETICS towards the internal environment of apartment buildings can be harmful
to health or not.
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2.1. Study of Literature

We were inspired to prepare the overview failures of composite ETICSs and their
biodeterioration by research articles. The review allows us to familiarize ourselves with
the results obtained from the articles and allows us to gain an understanding and to find
out what direction to evaluate composite ETICSs. The survey of articles was focused on
examining the Web of Science (WoS) by keywords, as shown in Figure 1. According to
keywords, 176 articles in the WoS database were found. The articles were represented by
authors from the USA, China, Poland, Portugal, Italy and Czech Republic. It is clear from
the timeline of the period 1995 to 2022 that the reconstruction, housing construction and
energy reconstruction is gaining in importance over time and that the focus of the research
activity is on ETICS composites, as shown in Table 1.

Table 1. Overview of articles (by keywords) and overview by country.

Year and Country
1995 to 2022

Environment and
ETICS

ETICS and
Biodegradation

ETICS and Indoor
Microclimate

Environment and
Panel Residential

Housing

ETICS and Indoor
Microclimate of

Panel Residential
Housing

Poland 10
Portugal 10

Czech Republic 5 2 2 8 2
Estonia 4

USA 29
China 4 16
Italy 7

South Korea 7
Other countries 8 62

41 2 2 129 2

Note: The numbers in the column indicate the most represented keywords for the articles.

The literature review confirms that the issue of energy rehabilitation of panel residen-
tial housing needs to be given continued attention. This is also confirmed by the presented
results. It is confirmed that around the 1980s, ETICS composites started to be applied in
Europe to the envelope of panel residential housing, and after a lifetime of about 25 years,
there is an opportunity to evaluate them, both in terms of positives and negatives. A certain
parallel can be found in the development of energy legislation and the ever-increasing
requirements for energy savings, as shown in Table 2. It can also be seen that around the
year 2000, more emphasis is placed on the quality of the indoor microclimate of panel
residential housing, which is, among other things, related to the issue of ETICS composites
and increasing their thickness due to increasingly stringent energy legislation.
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Table 2. Development of thermal technical requirements and EU Green Deal strategy until 2050.
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The issue of composite ETICS and the stressing of these composite ETICSs by climatic
influences is the subject of the article on the topic “resilience of biocide free ETICS to
microbiological growth in an accelerated weathering test”. The main objectives of the study
were to evaluate whether biocide-free ETICSs have adequate resistance to biocolonization of
facades, whether the resistance behaviour of ETICSs can be predicted based on the physical
properties of the products or whether the behaviour needs to be verified by laboratory
testing. An accelerated weathering test in a laboratory environment was developed for the
purposes of the research. At the same time, the physical context was considered, which
shows that moisture condensation when the dew point drops at night and wind driven
rain are among the main factors known to promote algae growth on insulated facades. The
results present that biocide-free external plaster ETICSs and ETICS coatings, for example on
the German market, can show good resistance to microbiological growth. Of the 15 sample
combinations tested, only 2 samples showed low to moderate resistance [29].

Other articles dealt with surface temperature and pigmentation of ETICSs and subse-
quent degradation of the composite surface (for documentation: Bishara, A. et al. 2017 [22]).
The authors state that more intense colour shades are used for external thermal insulation
composite systems than ETICSs on energy efficient facades. However, the surfaces become
extremely hot and cause damage to the ETICS. By using suitable pigments with optimized
near-infrared (NIR) reflection, surface temperatures and degradation processes can be
reduced. Nevertheless, temperatures above 70 ◦C are still unavoidable in practice.
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Other articles focused on the necessary maintenance of ETICSs over time [30]. For
example, ref. [31] states that the removal of biocorrosion coatings from ETICS structures
using chemicals and preservatives (biocides) is currently the only effective and also most
widely used technology. However, the uncontrolled leaching of used biocides is unaccept-
able for the environment. Current scientific knowledge points towards the replacement of
biocides currently used in facade treatments with environmentally friendly biocides that
have no negative effects on people or the environment.

A number of articles have emphasized the characteristics of microorganism habitats,
diagnostics and environmental contexts in research. In principle, the information was
based on the fact that microorganisms are highly viable and are able to survive in extreme
conditions [32,33]. This is confirmed by a number of other professional publications [29–33].

The other studies compare different types of buildings with different thicknesses of
additional insulation in combination with ventilation. The results state that the technical
specification of ventilation rates for energy efficient buildings are given as 0.20–0.35 h−1,
which is completely contrary to the codification that states that the minimum ventilation
rate should be 0.50 h−1. This means that energy savings are already more of a concern
when designing reconstruction work than the quality of the indoor environment and
other contexts (for documentation: Asere, L. et al. 2016 [27]), such as the biodegradation
manifestations of the ETICS composite. Our results show that the quality of the indoor
microclimate in residential housing, without controlled ventilation, is insufficient, and
there is an increase in the concentration of CO2 (Appendix B).

Based on analyses of articles that looked at the impact of energy efficiency measures in
buildings on human health and well-being, some authors concluded that energy efficiency
measures have a small but demonstrably positive impact on health. On the other hand, the
authors state that indoor environmental quality in highly energy efficient buildings is still
an under researched topic. We see that the current opinions in research are not the same.

Other studies present the view that insulation measures, apart from the biocorrosion of
ETICSs, have a rather negative impact on human health and well-being, mainly due to the
deterioration of indoor air quality. Energy measures usually reduce the natural infiltration
of air into buildings, resulting in insufficient fresh air supply to indoor spaces. Poor indoor
microclimate quality is often associated with the development or worsening of respiratory
problems (e.g., asthma), headaches, impaired concentration, etc., and we consider indoor
microclimate quality to be of great importance for public health. Some authors claim in
their studies that people living in buildings after energy saving reconstruction are more
likely to suffer from asthma or other respiratory problems. According to them, the reason
for this is the limited ventilation of the building, which often creates suitable conditions for
mould growth (especially due to increased humidity) and thus the risk of allergic diseases
and asthma caused by moulds (e.g., Aspergillus, Penicillium, Alternaria or Cladosphorium)
increases. This highlights the need to reflect on the impact of building insulation, with
its negative impact on the increase in indoor humidity and the associated occurrence of
mould inside buildings [34]; in connection with the natural ventilation of the window, it is
necessary to solve the infiltration of microorganisms in the internal environment.

2.2. Comparison of Results from Conducted Research

In the second half of the last century, residential housing in the Czech Republic was
mainly characterized by prefabricated technologies. Around 1998, reconstruction works
were started in order to improve the thermal technical and energy properties of the panel
(also called prefab) residential housing. Current knowledge and practice show that panel
residential housing, which has been provided with ETICS composites, in many cases, shows
signs of biodegradation, which negatively affect not only the appearance of the facade
but can also have an impact on the quality of the indoor microclimate, as the diversity of
microorganisms can have pathogenic character. The distribution of microorganisms from
the external surface of ETICSs towards the internal environment, for example during direct
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window ventilation or air conditioning, is very likely (no article was found to confirm
this hypothesis).

Microorganisms colonize the external surfaces of buildings most often in the following
order: bacteria, algae and fungi—with the fact that it is impossible to clearly determine
their biodegradation and health hazards without knowing the concentration and species
representation [35,36].

The issue of biodegradation of ETICS composites can be documented in case studies
(Appendix A, Section 2.3). For comparing the diversity of microorganisms, localities are
selected that are within a radius of approximately 15 km, with a label CS 2 and CS 3
(Appendix A, Table 4). In these locations, monitoring and sampling took place in order to
determine the diversity of microorganisms [37,38].

The following parameters are monitored for basic comparison:

• Orientation of the residential housing towards the world parties,
• Facade shading;
• Proximity to greenery and water bodies;
• The thickness of the ETICS composite (the thickness of the ETICS composite was

determined according to the overview in Table 2 and Figures 2 and 3 in accordance
with the development of requirements according to standards (code) and legislation
(for CZ and the development of requirements according to EU legislation);

• Architectural design of the apartment building, division of the facade and solution of
details in the perimeter shell;

• Laboratory diagnostics.
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2.2.1. Selection of Locality CS 2 for Defining Species Diversity of Microorganisms for the
Area 90 ha

CS 2: The area of the investigated site was approximately 90 ha (Appendix A, Figure
3, Table 4). Sampling for laboratory testing took place in the autumn months, according to
the parameters for monitoring.

It follows from monitoring and testing (see Tables 3 and 4, and see Figure 4a,b) that in
the given locality, algae predominated in approx. 80% and fungi in approx. 20%. Figure 4a
shows the state of the biodegraded area before sampling.

Table 3. Information about monitored parameters.

Parameters and Comparison
of Selected Locations

CS 2 and CS 3

Location CS 2 with an Area
of 90 ha

Location CS 3 with an Area
of 50 ha

Orientation of the residential
housing to the cardinal points. mainly the north mainly the north

Facade shading. Yes Yes
ETICS composite thickness
[mm]. 120–150 120–150

The architectural solution of
the residential housing, the
division of the facade and the
solution of details in the
perimeter shell.

partially (loggias, balconies),
strip architecture

partially (loggias, balconies),
strip architecture

Laboratory diagnostics, in situ
diagnostics. Yes Yes

Table 4. Diversity of microorganisms and results from selected locations CS 2 and CS 3.

Parameters and Comparison of Selected
Locations with Area
CS 2 and Area CS 3

CS 2 with an Area of
90 ha

CS 3 with an Area of
50 ha

Chlorophycae (algae) [39] Figure 4b 80% 90%
Dothideomycetes (fungus) [39] Figure 4b 20% 10%
Other (see Appendix A, Table 3) - -
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2.2.2. Selection of Locality CS 3 for Defining Species Diversity of Microorganisms for the
Area 50 ha

CS 3: The area of the investigated site was approximately 50 ha (Appendix A, Figure 3,
Table 4). Sampling for laboratory testing took place in the autumn months, according to the
parameters for monitoring.

It follows from monitoring and testing (see Tables 3 and 4, and see Figure 4a,b) that in
the given locality, algae prevailed in approx. 90% and fungi in approx. 10%.

2.2.3. Overview of Monitored Parameters for Selected Locations CS 2 and CS 3

Tables 3 and 4 present the comparative results for locations CS 2 and CS 3.

2.3. Diagnostic Options

Diagnostics of the biodegradation of the residential housing envelope included pa-
rameters (see Section 2.2). To determine the genus of microorganisms, we collaborated
with the Department of Nanotechnology [39]. The collected samples were analyzed micro-
scopically, using a light transmission microscope at a magnification of 400×. The aim was
to determine the genus of microorganisms [40]. The samples were always demonstrably
inhabited by autotrophic organisms that could participate in the biodeterioration of the
ETICS composite.

In some cases, thermal analysis can be used [41]. The goal of this diagnostic is to
compare the composition of the external plaster of the ETICS composite with a reference
sample. This method is usually used in cases where we have doubts about the quality of
the ETICS material.

A suitable non-destructive diagnostic method can be considered as thermographic
targeting of the perimeter casing with the ETICS composite. This method can be used
especially after the completion of the composite, because it reveals to us “weak spots” in
the envelope that predict moisture (Appendix C). It is true for all microorganisms that
they need moisture to live and colonize the composite facade. Such a weak point can be
considered, for example, thermal bridges and thermal bonds in the envelope, technological
indiscipline, etc. [42].

It should not be forgotten that the diagnostic procedures can include the use of software
supports, with which we can model weak spots in the envelope and determine areas that
predict the start of the biodegradation process.
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Both thermographic orientation and software support will allow us to start the con-
trolled treatment of the facade with protective coatings ahead of time. In general, failure
prediction eliminates defects and damage, as reported by [43].

The diagnostic procedure can be documented using the example of Figure A1:

• Thermal imaging targeting of the external wall and detection of weak points in the
external wall;

• Verification of the thermal insulation thickness of the ETICS composite and comparison
with the legislation, whether the thickness is satisfactory or not;

• Software modelling of the external wall and comparison of models with the results of
thermal imaging;

• Taking samples from the surface of the external wall in the place of significant biodegra-
dation and in the place of windowsills;

• Laboratory diagnostics and determination of the type of microorganism.

The results of the diagnostics will eventually lead to the proposal of remedial measures.
The procedure can be documented in Figure 5, where the outer external wall is significantly
affected by biodegradation.
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Figure 5. Significantly degraded facade of the residential housing due to biodegradation (photo:
D.K.). Note: biodegradation—a consequence of the inhomogeneity of the original external wall based
on lightweight based on slag concrete, construction and physical connections (on the external wall,
there is no surface biodegradation, and under the windows, there is a radiator for heating in the
interior, see Appendix D).

3. Results and Discussion

The results of the literature review show that further research is needed to focus on
the issue of testing the biological sensitivity of microorganism in ETICSs.

How far certain species of microorganisms or microbial phototrophs react to the
colour and structure of ETICS and how they react to biocidal or photocatalytic coatings,
etc., are discussed. For example, the research results to date confirm the importance
of the microorganisms Chroococcidiopsis and the green microalgae Chlorophyta were
standard phototrophic microorganisms when testing bioreceptivity and biodeterioration in
ETICSs [44–49]. These microorganisms have the potential for widespread colonization of
ETICSs, which has a very negative impact on the residential development.

In summary, we make the following conclusions:

• The results showed that the vegetation near the housing development is affected by
the same types of microorganisms as the outer surface of the ETICS composite. Green
terrestrial algae Chlorophycae, which are predominant in the case study overview,
live locally, in colonies and on other surfaces, such as palisades, gutter walkways,
among others. It turned out that the area of greenery or water bodies (forests, parks,
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rivers) does not have a major influence on the overall extent of colonization of the
facade by microorganisms. An important factor for the initiation of biodegradation
is the time exposure of the ETICS composite to moisture loading, the orientation of
the panel residential housing with respect to the cardinal points and, most likely, the
direction of the prevailing winds, which helps the natural transport and migration of
microorganisms to other apartment buildings. The adherence to strict technological
discipline is also an important factor. The exposure to moisture is documented in
Figure A1 (Appendix C).

• The transport of microorganisms into the interior during window ventilation is highly
probable. This transport phenomenon can have a negative impact on the health of the
population, and a negative impact on human health cannot be ruled out, especially on
children or the elderly population, who are more prone to developing health problems.
While studying the literature, we did not come across a study that conducted research
for ETICS composites in an interdisciplinary manner [50–55].

• The predominant areas of research are those that focus on the issues of building
microbiology inside buildings, such as the effect of moisture on occupant health,
mould formation, etc. The issues of external building microbiology and its link to
building indoor quality, taking into account the environmental setting, are addressed
to a lesser extent. However, it is important to note that a number of authors state that
the issue of building microbiology along with environmental context needs to become
an essential part of the criteria for assessing building quality.

• From the point of view of multidisciplinary research “natural sciences, construction
and architecture, environment”, the scientific discourse refers to the confirmation
or refutation of the fact that the inhalation of undesirable microorganisms from the
ETICS composites migrating into the inner space of residential housing through direct
ventilation is harmful to health.

Energy legislation in EU countries with a link to the ambitious Green Deal sets the
direction for municipalities and cities in member countries. It turns out that the ETICS
composite has al large and positive role in energy reconstruction, especially in panel
housing construction in the second half of the last century. The ETICS composite application
technology supports the goals of sustainable development until 2050 and is in line with the
“Fit for 55” strategy.

4. Conclusions

The issue of reducing the energy consumption in panel residential housing underdoing
renovation, along with improving energy efficiency, leads to a wider open discourse
on whether the implemented measures actually create a healthy or unhealthy indoor
environment and microclimate. Undesirable microbial growth on thermally insulated
facades of residential housing has been documented in a number of European countries,
and biological growth has been identified as one of the main negatives of ETICS composites.

Current trends in construction are mainly oriented towards reducing the energy
demand of the building. On the other hand, it is necessary to take into account all aspects
of the creation of the internal environment and sustainability. Complexity ultimately leads
to the need for a multidisciplinary approach to the interactive links of the entire building.

External thermal insulation composite systems are certainly an interesting technology
for external walls, but despite their thermal and energy benefits, ETICSs face very serious
problems with biodegradation. Currently, no methodical procedure or simple tool for
predicting the risk of damage to ETICSs can be used by designers, architects, engineers and
the construction industry. A specific technical standard ETAG 004 [56] for the technical
approval of external thermal insulation composite systems with plasters is available in the
EU (European Organisation for Technical Approvals, EOTA [57]). DIN series standards are
also available. ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning
Engineers [58]) standards can also be used. The creation of a new tool or methodology
would lead to better sustainability not only for the panel residential housing in the second
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half of the last century, but realistically for all housing and civic buildings. This approach
would eliminate reinvestment in the removal of biocorrosion in the building envelope with
composite ETICSs and support the environmental context in construction projects.
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Appendix C

Thermal imaging diagnostics is a non-destructive diagnostic. It is advantageous for
measuring the external wall of housing construction and the ETICS composite. In real
time, it provides us with enough information about the defects in the cladding and the
composite [61,62].
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Figure A1. A view of part of the apartment building—the area of the expansion joint is quite damp and
creates favourable conditions for the growth of microorganisms and the emergence of biodegradation.
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Appendix D

The construction and physical context in Figure A2 shows the difference in the distri-
bution of the relative humidity on the example of a panel external wall based on lightweight
concrete. As a result of reduced heat transfer, less thermal energy reaches the outer surface
of the composite. This means that the outer perimeter wall heats up less. The surface of the
composite is cooler, and it is loaded with moisture for a longer time. Prerequisites for the
settlement of microorganisms are created.

In Figure 5, a failure caused by the fact that the external wall showed an inhomogeneity
of lightweight concrete and the thickness of the composite not being in accordance with
standard requirements (valid for CZ) is shown. Radiators are installed in the places of the
windowsills, which de facto heat up the wall in the heating season, eliminating the effects
of biodegradation.

One of the reasons why these degradation factors occur in ETICSs is the altered
temperature–humidity regime of the wall coverings and the higher amount of organic
components used in the plasters. Another reason may also be the greater popularity of
using bold colours, on which microorganisms are more visible.
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