The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bourgogne-Franche-Comté Region
- The Hercynian massifs: These are made up of metamorphic and crystalline rocks (schists, gneiss, granites) that form the bedrock of the entire Bourgogne, the Morvan, and the southern Vosges. The erosion of these massifs provided the materials accumulated in the lower areas.
- The Mesozoic Domain: Primarily composed of sedimentary rocks (limestone, chalk, marl) formed in shallow seas over the flattened Hercynian bedrock. These sedimentary deposits are observed on the plateaus of Bourgogne, Haute-Saône, Auxois, Bazois, and the Jura massif, the latter of which was formed 35 million years ago by compression exerted from the Alps towards the west.
- The Cenozoic Domain: Formed after the retreat of the sea and the creation of the Saône graben, this domain consists of materials carried by rivers descending from the emerging areas and is covered by glacial deposits that were laid down during major glaciations in the region.
2.2. The Sise-Eaux Database
2.3. Data Treatment
- By using the entire dataset, thereby preserving both spatial and temporal variability (referred to as VarTot).
- By averaging the values of each parameter at each sampling point (referred to as VarMean). This method helps to minimize the temporal variance component. However, the variability studied in this manner is not exclusively spatial, as the sampling dates were not synchronized across all catchments during the extraction period.
3. Results
3.1. Maps and Variograms
3.2. Principal Component Analysis
4. Discussion
4.1. Diversity of Natural Environments
4.2. Local or Regional Determinants of Water Quality
4.3. Spatial vs. Temporal Variability
- Different soil types, including the presence of flocculating ions that limit water turbidity and bacterial transport, or different textures that provide more (fine texture) or less (coarse texture) protection to the sampling points from contaminated surface water intrusions.
- Unevenly distributed contamination pressure across the territory. Livestock farming, a major contributor to contamination, is particularly concentrated in mountainous areas and on high ground and is much less present in the plains.
4.4. Consequences for Sustainable Management
- Developing parameter maps, a procedure traditionally followed until now.
- Performing dimensional reduction and tracking the principal components, which provides a synthetic view of the independent sources of quality variation. In the case discussed here, the synthetic approach to fecal contamination through PCA shows that the two main contamination mechanisms are linked to the inflow of surface water, particularly during rainy episodes that generate runoff, in two different lithological zones (PCs 1 and 2). The two mechanisms represented by the subsequent PCs (3 and 4) are related to the regional contrast between two distinct lithological areas. The comprehensive information enables targeting areas for protection with mechanisms specific to each.
- After dimensional reduction and grouping parameters according to their behavior, selecting a representative from each group to monitor—a procedure that is more familiar to the agents responsible for monitoring.
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Elshall, A.S.; Arik, A.D.; El-Kadi, A.I.; Pierce, S.; Ye, M.; Burnett, K.M.; Wada, C.A.; Bremer, L.L.; Chun, G. Groundwater sustainability: A review of the interactions between science and policy. Environ. Res. Lett. 2020, 15, 93004. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, Q.; Zhang, J.; Feng, Q.; Niu, Z.; Zhu, G.; Jin, X.; Chen, M.; Chen, H. A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China. Sustainability 2023, 15, 16079. [Google Scholar] [CrossRef]
- Pandey, V.P.; Shrestha, S.; Chapagain, S.K.; Kazama, F. A framework for measuring groundwater sustainability. Environ. Sci. Policy 2011, 14, 396–407. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Lai, C.; Lin, G. Quantitative assessment of the relative impacts of climate change and human activity on flood susceptibility based on a cloud model. J. Hydrol. 2020, 588, 125051. [Google Scholar] [CrossRef]
- Ahmed, W.; Ahmed, S.; Punthakey, J.F.; Dars, G.H.; Ejaz, M.S.; Qureshi, A.L.; Mitchell, M. Statistical Analysis of Climate Trends and Impacts on Groundwater Sustainability in the Lower Indus Basin. Sustainability 2024, 16, 441. [Google Scholar] [CrossRef]
- Chen, P.; Ma, R.; Shi, J.; Si, L.; Zhao, L.; Wu, J. Ecological Risks Arising in the Regional Water Resources in Inner Mongolia Due to a Large-Scale Afforestation Project. Sustainability 2023, 15, 16091. [Google Scholar] [CrossRef]
- Beaudeau, P.; Pascal, M.; Mouly, D.; Galey, C.; Thomas, O. Health risks associated with drinking water in a context of climate change in France: A review of surveillance requirements. J. Water Clim. Chang. 2011, 2, 230–246. [Google Scholar] [CrossRef]
- Mays, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27, 4409–4424. [Google Scholar] [CrossRef]
- Kemper, K.E. Groundwater—From development to management. Hydrogeol. J. 2004, 12, 3–5. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, S.; Wang, B. Hydrochemistry characteristics of groundwater with the influence of spatial variability and water flow in Hetao Irrigation District, China. Environ. Sci. Pollut. Res. 2022, 29, 71150–71164. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, J.; Qian, H.; Wang, H.; Ren, W.; Qu, W. Hydrogeochemical characteristics and processes of groundwater in an over 2260 year irrigation district: A comparison between irrigated and nonirrigated areas. J. Hydrol. 2022, 606, 127437. [Google Scholar] [CrossRef]
- Greene, R.; Timms, W.; Rengasamy, P.; Arshad, M.; Cresswell, R. Soil and Aquifer Salinization: Toward an Integrated Approach for Salinity Management of Groundwater. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 377–412. ISBN 978-3-319-23576-9. [Google Scholar]
- Quevauviller, P.; Batelaan, O.; Hunt, R.J. Groundwater Regulation and Integrated Water Planning. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 197–227. ISBN 978-3-319-23576-9. [Google Scholar]
- Eamus, D.; Fu, B.; Springer, A.E.; Stevens, L.E. Groundwater Dependent Ecosystems: Classification, Identification Techniques and Threats. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 313–346. ISBN 978-3-319-23576-9. [Google Scholar]
- Gran-Aymeric, L. Un portail national sur la qualite des eaux destinees a la consommation humaine. Tech. Sci. Méthodes 2010, 12, 45–48. [Google Scholar] [CrossRef]
- Gallay, A.; De Valk, H.; Cournot, M.; Ladeuil, B.; Hemery, C.; Castor, C.; Bon, F.; Mégraud, F.; Le Cann, P.; Desenclos, J.C. A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 2006, 12, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Chery, L.; Laurent, A.; Vincent, B.; Tracol, R. Echanges SISE-Eaux/ADES: Identification des Protocoles Compatibles Avec les Scénarios D’échange SANDRE; Onema: Vincennes, France; BRGM: Orléans, France, 2011. [Google Scholar]
- Tiouiouine, A.; Yameogo, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Moulin, M.; Bouramtane, T.; Bahaj, T.; Morarech, M.; Kacimi, I. Dimension reduction and analysis of a 10-year physicochemical and biological water database applied to water resources intended for human consumption in the provence-alpes-cote d’azur region, France. Water 2020, 12, 525. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Abraham, S.; Valles, V.; Barbiero, L.; Dassonville, F.; Bahaj, T.; Kassou, N.; Touiouine, A.; Jabrane, M.; et al. Exploring Multiscale Variability in Groundwater Quality: A Comparative Analysis of Spatial and Temporal Patterns via Clustering. Water 2023, 15, 1603. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Valles, V.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; El Jarjini, Y.; Morarech, M.; Duran, Y.; Barbiero, L. Search for a Relevant Scale to Optimize the Quality Monitoring of Groundwater Bodies in the Occitanie Region (France). Hydrology 2023, 10, 89. [Google Scholar] [CrossRef]
- Ayach, M.; Lazar, H.; Bousouis, A.; Touiouine, A.; Kacimi, I.; Valles, V.; Barbiero, L. Multi-Parameter Analysis of Groundwater Resources Quality in the Auvergne-Rhône-Alpes Region (France) Using a Large Database. Resources 2023, 12, 143. [Google Scholar] [CrossRef]
- Lazar, H.; Ayach, M.; Barry, A.; Mohsine, I.; Touiouine, A.; Huneau, F.; Mori, C.; Garel, E.; Kacimi, I.; Valles, V.; et al. Groundwater bodies in Corsica: A critical approach to GWBs subdivision based on multivariate water quality criteria. Hydrology 2023, 10, 213. [Google Scholar] [CrossRef]
- Jabrane, M.; Touiouine, A.; Bouabdli, A.; Chakiri, S.; Mohsine, I.; Valles, V.; Barbiero, L. Data Conditioning Modes for the Study of Groundwater Resource Quality Using a Large Physico-Chemical and Bacteriological Database, Occitanie Region, France. Water 2023, 15, 84. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Cressie, N. The origins of kriging. Math. Geosci. 1990, 22, 239–252. [Google Scholar] [CrossRef]
- Day, W.H.E.; Edelsbrunner, H. Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1984, 1, 7–24. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Yu, Q.; Liu, X.; Zhou, X.; Song, A. Efficient agglomerative hierarchical clustering. Expert Syst. Appl. 2015, 42, 2785–2797. [Google Scholar] [CrossRef]
- Ayach, M.; Lazar, H.; Lamat, C.; Bousouis, A.; Touzani, M.; El Jarjini, Y.; Kacimi, I.; Valles, V.; Barbiero, L.; Morarech, M. Groundwaters in the Auvergne-Rhône-Alpes Region, France: Grouping Homogeneous Groundwater Bodies for Optimized Monitoring and Protection. Water 2024, 16, 869. [Google Scholar] [CrossRef]
- Boithias, L.; Choisy, M.; Souliyaseng, N.; Jourdren, M.; Quet, F.; Buisson, Y.; Thammahacksa, C.; Silvera, N.; Latsachack, K.; Sengtaheuanghoung, O.; et al. Hydrological Regime and Water Shortage as Drivers of the Seasonal Incidence of Diarrheal Diseases in a Tropical Montane Environment. PLoS Neglected Trop. Dis. 2016, 10, e0005195. [Google Scholar] [CrossRef]
- Abbas, A.; Baek, S.; Silvera, N.; Soulileuth, B.; Pachepsky, Y.; Ribolzi, O.; Boithias, L.; Cho, K.H. In-stream Escherichia coli modeling using high-temporal-resolution data with deep learning and process-based models. Hydrol. Earth Syst. Sci. 2021, 25, 6185–6202. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Shelton, D.R. Escherichia Coli and Fecal Coliforms in Freshwater and Estuarine Sediments. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1067–1110. [Google Scholar] [CrossRef]
- Mohsine, I.; Kacimi, I.; Valles, V.; Leblanc, M.; El Mahrad, B.; Dassonville, F.; Kassou, N.; Bouramtane, T.; Abraham, S.; Touiouine, A.; et al. Differentiation of multi-parametric groups of groundwater bodies through Discriminant Analysis and Machine Learning. Hydrology 2023, 10, 230. [Google Scholar] [CrossRef]
Parameter * (3569 Data) | Unit | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|---|
EC | mS cm−1 | 1.279 | 3.447 | 2.593 | 0.290 |
E. coli | n/100 mL | 0.000 | 4.398 | 0.701 | 0.748 |
Enter. | n/100 mL | 0.000 | 4.540 | 0.582 | 0.616 |
NH4 | mg L−1 | −1.699 | 0.072 | −1.392 | 0.281 |
As | µg L−1 | 0.000 | 1.699 | 0.481 | 0.239 |
Na | mg L−1 | −0.503 | 2.617 | 0.609 | 0.351 |
Ca | mg L−1 | 0.004 | 2.285 | 1.811 | 0.418 |
Mg | mg L−1 | −0.959 | 1.732 | 0.471 | 0.311 |
Cl | mg L−1 | −0.387 | 2.857 | 0.856 | 0.357 |
SO4 | mg L−1 | −0.398 | 2.205 | 0.961 | 0.369 |
HCO3 | mg L−1 | 0.176 | 2.729 | 2.291 | 0.400 |
NO3 | mg L−1 | −2.000 | 1.979 | 0.921 | 0.543 |
Fe | µg L−1 | 0.301 | 3.776 | 1.104 | 0.449 |
Mn | µg L−1 | 0.000 | 3.020 | 0.926 | 0.536 |
B | mg L−1 | −3.222 | 1.206 | −1.905 | 0.324 |
F | mg L−1 | −1.959 | 0.628 | −1.120 | 0.256 |
NO2 | mg L−1 | −3.000 | −0.107 | −1.831 | 0.404 |
TOC | mg L−1 | −1.222 | 2.301 | −0.064 | 0.355 |
Turbidity | NFU | −1.523 | 2.041 | −0.215 | 0.575 |
Se | µg L−1 | 0.000 | 0.903 | 0.431 | 0.217 |
Cd | µg L−1 | 0.000 | 1.041 | 0.212 | 0.139 |
Ni | µg L−1 | 0.000 | 2.196 | 0.565 | 0.278 |
Log-Transformed Parameter | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
EC | 0.500 | 0.712 | 0.288 | 0.302 |
E. coli | −0.314 | −0.366 | 0.556 | 0.370 |
Enter. | −0.368 | −0.352 | 0.585 | 0.334 |
NH4 | 0.261 | −0.558 | 0.124 | −0.311 |
As | 0.536 | −0.381 | −0.246 | 0.370 |
Na | 0.645 | −0.152 | 0.257 | −0.342 |
Ca | 0.402 | 0.730 | 0.267 | 0.367 |
Mg | 0.404 | 0.284 | 0.493 | −0.088 |
Cl | 0.703 | 0.041 | 0.229 | −0.252 |
SO4 | 0.747 | 0.224 | 0.311 | −0.102 |
HCO3 | 0.385 | 0.721 | 0.296 | 0.360 |
NO3 | 0.456 | 0.294 | −0.236 | 0.138 |
Fe | 0.127 | −0.659 | 0.195 | 0.275 |
Mn | 0.241 | −0.619 | 0.331 | −0.293 |
B | 0.402 | −0.069 | 0.388 | −0.317 |
F | 0.412 | −0.260 | 0.403 | −0.307 |
NO2 | 0.579 | −0.518 | −0.146 | 0.102 |
TOC | −0.301 | −0.299 | 0.484 | 0.392 |
Turb. | −0.205 | −0.483 | 0.493 | 0.301 |
Se | 0.622 | −0.306 | −0.377 | 0.478 |
Cd | 0.580 | −0.425 | −0.416 | 0.294 |
Ni | 0.511 | −0.496 | −0.285 | 0.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bousouis, A.; Bouabdli, A.; Ayach, M.; Ravung, L.; Valles, V.; Barbiero, L. The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management. Sustainability 2024, 16, 8503. https://doi.org/10.3390/su16198503
Bousouis A, Bouabdli A, Ayach M, Ravung L, Valles V, Barbiero L. The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management. Sustainability. 2024; 16(19):8503. https://doi.org/10.3390/su16198503
Chicago/Turabian StyleBousouis, Abderrahim, Abdelhak Bouabdli, Meryem Ayach, Laurence Ravung, Vincent Valles, and Laurent Barbiero. 2024. "The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management" Sustainability 16, no. 19: 8503. https://doi.org/10.3390/su16198503
APA StyleBousouis, A., Bouabdli, A., Ayach, M., Ravung, L., Valles, V., & Barbiero, L. (2024). The Multi-Parameter Mapping of Groundwater Quality in the Bourgogne-Franche-Comté Region (France) for Spatially Based Monitoring Management. Sustainability, 16(19), 8503. https://doi.org/10.3390/su16198503