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Abstract: Desert grasslands are a crucial component of terrestrial ecosystems that play vital roles in
regional and global hydrological cycling, climate change, and ecosystem balance through variations
in their soil moisture content (SMC). Despite this, current research on the SMC of desert grasslands
remains insufficient, with many areas remaining underexplored. In this study, we focused on a typical
desert grassland located in the northern foothills of the Yinshan Mountains. Ground-penetrating
radar (GPR) exploration and soil sampling were used to test existing mixed-media models, and a
new mixed-media model was calibrated using cross-validation methods. Among the three general
mixed-media models, the Topp and Roth models yielded more accurate SMC estimates for the
study area, with root mean square errors of 0.0091 g/cm3 and 0.0054 g/cm3, respectively, and mean
absolute percentage errors of 25.86% and 19.01%, respectively, demonstrating their high precision. A
comparison of the calibrated and original mixed-media models revealed that the estimation accuracy
was significantly improved after parameter calibration. After parameter calibration, the Ferre model
achieved an accuracy comparable to that of the Topp model. Parameter-calibrated models can be
used to estimate the SMC using GPR data, offering a higher precision than general models and
possessing greater suitability for the study area. The soil in the study area is primarily composed of
sand particles and is therefore more compatible with the parameters of the Topp model, whereas the
Ferre model requires further parameter calibration to achieve effective application.

Keywords: ground-penetrating radar; soil moisture content; prediction model; parameter calibration

1. Introduction

Studying the soil moisture content (SMC) is of great importance on a global scale. Un-
derstanding the SMC helps to optimize agricultural production, manage water resources,
cope with climate change, and protect ecosystems, thereby also promoting sustainable de-
velopment and environmental adaptability [1–3]. As an important component of terrestrial
ecosystems, changes in the SMC of desert steppe ecosystems are crucial to regional and
global hydrological cycling, climate change, and ecosystem balance [4,5]. In central and
western Inner Mongolia, both typical and desert grasslands are sensitive to global changes
due to the fragility and volatility of their climatic conditions and the impact of complex
social factors related to human activities [6,7]. However, the vegetation productivity, soil
fertility, and ecosystem stability of desert steppe ecosystems are generally lower than
those of other semi-arid grasslands. Therefore, desert steppes are considered to be fragile
grassland ecosystems that are highly sensitive to grazing disturbance [8,9]. The SMC is a
key indicator that can be used to measure the stability and health status of desert steppes.

Studying the SMC contributes to improving the understanding of water cycling pro-
cesses within desert grassland ecosystems and supplies critical parameters for climate
models, thereby augmenting their predictive capacity for future climate scenarios [10]. The
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advancement of agriculture and livestock farming in desert grassland areas is constrained
by their soil moisture conditions; as a result, gaining insights into the distribution and
variability of the SMC can inform adjustments to agricultural planting strategies, pasture
management, and grassland conservation, thereby promoting the sustainable development
of the agricultural and livestock industries [11]. Using the findings of research on SMC,
governments and policymakers can formulate more scientific water resource management
policies, land use plans, and ecological compensation mechanisms, ensuring ecological
security and socioeconomic sustainability in desert grassland areas [12,13]. Altogether,
studying the SMC in desert grasslands holds significant academic and practical importance
for maintaining ecosystem stability, promoting the development of the agricultural and live-
stock industries, addressing climate change, preventing natural disasters, and formulating
scientific policy and resource management strategies [14].

Traditional methods for detecting the SMC include drying methods, nuclear tech-
niques, time-domain reflectometry, and remote sensing measurements. Among these
methods, the first three are suitable for small-scale assessments, are capable of determining
the volumetric moisture content only at individual points, and are invasive to the soil pro-
file. Although remote sensing measurements are applicable to large-scale measurements,
this method suffers from a low resolution and requires minimal vegetation cover [15–19].
In contrast to these conventional approaches, ground-penetrating radar (GPR) has emerged
as a method for obtaining the SMC at the mesoscale, and it has the advantages of in situ
measurement precision, the convenient acquisition of soil moisture data, and enhanced
measurement efficiency [20–25].

Numerous studies have shown that GPR can be used to estimate the soil moisture
content. In a previous study, Eppstein and Dougherty conducted three-dimensional vi-
sualization analysis of the soil moisture content using borehole radar at a test site in
Vermont [26]. Zou et al. applied a combination of electrical resistivity tomography and
GPR profiles to monitor the spatiotemporal dynamics and hydrological processes of the soil
moisture during the wetting and drying phases [27]. Cheng et al. used an unmanned-aerial-
vehicle-supported GPR system to conduct spatial scanning surveys at varying elevations
along the Yangtze River’s riparian zones and mid-channel islands. Their field study demon-
strated that the obtained soil moisture measurements were comparable to those acquired
using invasive time domain reflectometry (TDR) methods [28]. Grote et al. used GPR to
ascertain the SMC of the uppermost 10 cm layer in a vineyard in California. Their find-
ings revealed that the root mean square error (RMSE) of the volumetric moisture content
estimated via GPR was 1%, underscoring GPR’s capability for rapid, non-invasive, and
spatially dense estimation of the shallow soil moisture over extensive areas [29]. Liu et al.
used GPR to conduct a non-invasive assessment of the root zone soil moisture, successfully
visualizing it in three dimensions and illustrating the spatial variability of the SMC. This
method facilitates a deeper understanding of the local-scale variability of subsoil moisture
and the ecohydrological processes within the soil–plant–atmosphere continuum [30].

The Tabu River Basin is a typical arid to semi-arid desert grassland. The basin exhibits
uneven spatiotemporal distributions of moisture, heat, and complex surface types, and it
is considered to be a data-scarce region. To develop a fast non-invasive SMC estimation
method suitable for desert steppes and to enrich the dielectric constant–SMC estimation
model in such areas, in this study, we focused on the desert grassland at the northern
foothills of the Yinshan Mountains in the Tabu River Basin. GPR was used to measure
the soil dielectric constants, which were then used in conjunction with existing dielectric
constant–SMC mixed-media models to estimate the SMC. These estimates were compared
with actual SMC measurements to verify the accuracy of the different empirical models
and to assess the applicability of the existing models to the study area. To obtain the
optimal model for this region, cross-validation methods were further used to calibrate the
parameters of the mixed-media models using the measured soil dielectric constants and
moisture content data. The findings of this study provide a reference and scientific basis
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for future hydrodynamic research using GPR in typical desert grassland agro-pastoral
transitional zones.

2. Materials and Methods
Overview of Study Area and Data Acquisition

The study area is located in the upper reaches of the Tabu River Basin in Baotou,
Inner Mongolia, China (111◦12′52.645′′ E, 41◦21′18.54′′ N), and is characterized by a typical
desert steppe environment (Figure 1a,b). This region has a continental monsoon climate,
with an annual average temperature of 3.36 ◦C. The annual precipitation is 311.2 mm and
approximately 80% of the precipitation occurs during the summer months, from July to
September. The annual average evaporation rate is 1365.2 mm, with the highest evaporation
occurring during the summer [31]. The grassland within the radar detection area is covered
with dead grass, and the terrain is flat, open, and devoid of dense structures (Figure 1d).

Figure 1. Locations of the (a) study area, (b) Tabu Basin, and (c) soil sampling points and GPR profile.
(d) CMP working photos and (e) schematic diagram of the CMP (GPR: ground-penetrating radar;
CMP: common midpoint).



Sustainability 2024, 16, 8558 4 of 14

In our investigation, we used the pulseEKKO transceiver-separated digital GPR system
(Sensors & Software, Mississauga, ON, Canada), and the common midpoint (CMP) method
was used for detection in early October 2023. The CMP survey line is depicted in Figure 1c.
We used 100 MHz frequency antennas equipped with a U-shaped handle for the point
measurements for the CMP method. The minimum offset was 0.6 m, the maximum offset
was 10 m, the offset increment was 0.2 m (0.1 m increments for both Tx and Rx, with each
CMP collecting 48 traces in total), and the survey point spacing was 5 m. A schematic
diagram of the CMP operation is shown in Figure 1e. A total of 2208 CMP survey points
were completed, covering a radar detection profile length of 120 m. Subsequently, soil core
sampling was conducted on the radar test profile. Soil samples were collected from the
upper 2 m in eight boreholes, and the sampling interval was 10 cm. Laboratory experiments
were conducted to determine the SMC and particle size distribution of the samples at the
Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources.

3. Methods
3.1. Ground Radar Observations and Data Interpretation

Based on its operating frequency, GPR can be used to detect sediment features at
depths ranging from a few meters to several tens of meters underground. In addition, GPR
can differentiate sediments based on their orientation, grain size, compaction, and sorting,
making it the most effective tool currently available for shallow subsurface physical prop-
erty identification [20,32]. Water molecules are polar and possess a relatively high dielectric
constant, significantly affecting the propagation characteristics of high-frequency electro-
magnetic wave signals. This provides a solid geophysical basis for using GPR technology
to detect the moisture content of media. The non-contact nature, continuous measurement,
and high efficiency of GPR technology make it well-suited for large-scale moisture content
detection, and thus it was chosen as the method for use in this study [33,34].

Van Overmeeren et al. conducted 10 GPR surveys over 13 months at two test sites in
the Netherlands and demonstrated that the SMC of the sandy unsaturated zone could be
measured from the surface using GPR, and the velocity of the GPR electromagnetic waves
could be estimated from the slope of the hyperbolic events [35]. Boll et al. used the CMP
method to detect layered structures in sandy field soils and estimated the SMC at depths
ranging from 1.5 to 2 m [36]. Greaves et al. used a more complex amplitude spectrum
analysis method to derive stacking velocities from CMP radar data, demonstrating that
the velocity information of GPR electromagnetic waves can be used to determine the
moisture content of subsurface media [36]. Figure 2 shows the data processing workflow
for estimating the SMC using the GPR CMP method. After obtaining the original CMP
profile through forward modeling or actual measurements, linear gain processing was
applied to enhance the prominence of the effective waves. Velocity analysis was then
conducted, a reasonable time window for scanning the hyperbolic trajectories was selected
based on the actual data, and the stacking velocities were extracted using the average
amplitude energy criterion and the average amplitude criterion. The stacking velocities
were then converted into interval velocities and layer thicknesses using the Dix equation,
and the relative dielectric constants of the respective layers were obtained based on the
relationship between the velocity of the radar waves and the relative dielectric constants.
The calculation method used can be expressed as follows [27,37]:

V =
c√
εr

(1)

where V is the velocity of the electromagnetic waves in the soil (m/ns), c is the velocity of the
electromagnetic waves in vacuum (m/ns), and εr is the relative dielectric constant. Finally,
the SMC was calculated based on the theory of mixed-media dielectric models [38–40].
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Figure 2. Analysis scheme for CMP profile data processing (GPR: ground-penetrating radar; CMP:
common midpoint).

3.2. Mixed-Media Model

Extensive research has been conducted on the determination of the SMC based on
dielectric constants [41,42]. The mixed-media dielectric model can effectively characterize
the correlation between the SMC and the dielectric constant. The soil volumetric water
content can be derived using empirical or semi-theoretical models that relate the soil
volumetric water content θc to the dielectric constant εr. Prominent among these models
are the Topp, Roth, and Ferre models [43–45], which are presented below:

Topp model: θc = −0.053 + 0.0293ε − 0.00055εr
2 + 0.0000043εr

3, (2)

Roth model: θc = −0.078 + 0.0448εr − 0.00195εr
2 + 0.0000361εr

3, (3)

Ferre model : θc = −0.1841 + 0.1181
√
εr. (4)

Of these models, the Topp model is currently the most widely applied, and it is
particularly suitable for fitting the relationship between the SMC and the soil dielectric
constant in light-textured soils [43].

3.3. Soil Sample Analysis
3.3.1. Soil Particle Size and Mass Moisture Content

Disturbed and undisturbed soil samples were collected from two stratigraphic lay-
ers at shallow depths across four distinct profiles within the research area using a soil
coring device. Stones and organic materials were carefully removed from the disturbed
soil samples, followed by natural air-drying for 2 days. Subsequently, the sand fraction
was sieved through a 5 mm mesh, and the clay fraction was passed through a 2 mm
mesh for preparation. Particle size analysis of the two types of disturbed soil samples
was conducted in the laboratory using a Malvern laser particle size analyzer (Malvern
Instruments, Malvern, UK). This apparatus can determine the volumetric percentages of
particles of varying sizes within the soil, with a measurable size range of 0.01–2000 µm and
a repeat measurement error of less than 2%. The soil particles were then classified into one
of the following three categories according to the international particle size grading texture
classification system: sand (>20 µm), silt (2–20 µm), or clay (<2 µm).
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3.3.2. SMC of Soil Samples

A stratified random sampling approach was used during the sampling. Six soil profiles
were sampled at each point from depths of 0–2 m. Samples were collected at 10 cm intervals,
specifically at depths of 20, 40, 60, 80, and 100 cm. After sampling, the samples were dried
in an oven at 105 ◦C until a constant weight was achieved. The wet soil weight (Ww), dry
soil weight (Wd), and aluminum box weight were recorded. Finally, the SMC θm for each
sample was calculated using the following equation:

θm = (Ww − Wd)/Wd. (5)

Considering the uniform soil texture and minimal spatial variability observed in the
soil profile obtained via radar detection, undisturbed soil samples were collected at 10 cm
intervals within a 0–100 cm depth range near the midpoint of the profile using a core cutter.
The same technique was used to determine the dry bulk density (γ) of the soil within the
study area. The results indicate that the variation in γ within the 0–100 cm depth range
was minimal, with an average value of 1.38 g/cm3. This closely aligns with the findings of
Yang et al. [46], who measured the dry bulk density of soils in a study area that was not
affected by grazing. Consequently, a uniform soil dry bulk density (γ) of 1.38 g/cm3 was
adopted in our study.

The soil volumetric water content was calculated using the following equation:

θc = γ × θm. (6)

3.4. Cross-Validation and Error Analysis
3.4.1. Cross-Validation

To evaluate the predictive performances of various mixed-media models, the model
parameters were calibrated based on the measured SMC and dielectric constant (εr) data
from five boreholes. The data for the remaining three boreholes were used to validate
the models. Cross-validation was conducted for four data combination scenarios, namely,
C1, C2, C3, and C4, and the model parameters were calibrated using multiple regression
analysis. The specific grouping details are presented in Table 1.

Table 1. Groups of boreholes used to conduct cross-validation.

Category Boreholes Used for Calibration Boreholes Used for Verification

C1 Z1/Z2/Z3/Z4/Z5 Z6/Z7/Z8
C2 Z4/Z5/Z6/Z7/Z8 Z1/Z2/Z3
C3 Z3/Z4/Z5/Z6/Z7 Z1/Z2/Z8
C4 Z2/Z3/Z4/Z5/Z6/Z7 Z1/Z7/Z8

3.4.2. Error Analysis

The RMSE and mean absolute percentage error (MAPE) are two commonly used
indicators for measuring the prediction accuracy. These indicators can help assess the per-
formances of predictive models. In this study, the RMSE and MAPE were used to evaluate
the performances of the mixed-media dielectric models. The RMSE can be calculated using
the following equation:

RMSE =

√
1
n ∑n

i=1(θm − θc)
2. (7)

The MAPE can be calculated using the following equation:

MAPE =

∣∣∣∣ θm − θc

θm

∣∣∣∣× 100%. (8)

In these equations, θm is the measured SMC obtained via the stratified pumping test
in the ith test section, θc is the SMC calculated using the model, and n is the total number
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of data points. The RMSE reflects the overall deviation between the model estimates and
measured data. A smaller RMSE value indicates that the model has better estimation
results for θ.

In this study, we also used the Akaike information criterion (AIC) [47] and the Bayesian
information criterion (BIC) [48] to compare the effectiveness of the various mixed-media
dielectric models in terms of the parameter estimation. Not only do both the AIC and
BIC measure the deviation between measured data and model-predicted data, but they
also reflect the instability caused by different numbers of model parameters [49]. Smaller
AIC and BIC values indicate better parameter estimation models. The equations used to
calculate the AIC and BIC are as follows:

AIC = n ln(ESS/n) + 2p, (9)

BIC = n ln(ESS/n) + p ln n, (10)

where ESS is the sum of the squared residuals between θc; it was calculated for the various
mixed-media dielectric models and the measured θm. n is the total number of samples, and
p is the number of model parameters.

4. Results
4.1. Soil Particle Size Analysis

The analysis results for the soil samples are presented in Table 2. The mean sand, silt,
and clay contents of the soil borehole samples were 71.3%, 25.61%, and 3.09%, respectively.
The mean sand content was the highest, indicating that the soil samples were predomi-
nantly sandy with a relatively stable composition, and the soil particle size decreased with
increasing depth. Overall, the soil lithology along the radar profile was characterized by a
predominance of sand and a minimal amount of clay, resulting in a relatively homogeneous
texture. Based on this analysis, the sand and silt contents, which together accounted for
96.91% of the soil composition, were the primary factors influencing the variability of the
soil texture (Figure 3).

Figure 3. Sectional hydrogeological map.

Table 2. Physical characteristics of the soil.

Depth (cm)
Silty Soil Silt Sand Grains

Lithology
0.01–2 µm (%) 2–20 µm (%) 20–200 µm (%) 200–2000 µm (%)

0–20 2.13 19.77 72.85 5.26 Fine sand
20–40 2.65 22.13 70.21 5.01 Fine sand
40–60 3.19 22.5 64.12 10.19 Fine sand
60–80 3.41 24.02 57.44 15.13 Fine sand
80–100 3.3 23.54 44.83 28.33 Fine sand

100–120 3.45 26.61 46.66 23.28 Fine sand
120–140 2.95 27.43 45.67 23.95 Fine sand
140–160 2.72 26.51 55.9 14.87 Fine sand
160–180 3.4 28.71 49.06 18.83 Fine sand
180–200 3.71 34.85 47.8 13.64 Fine sand
Mean 3.09 25.607 55.454 15.849 Fine sand
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4.2. Prediction of the SMC Using Existing Mixed-Media Models

The SMC predictions obtained using three commonly used mixed-media models are
depicted in Figure 4, and their prediction accuracies are presented in Table 3. Overall, the
SMCs predicted using the models tended to be lower than the measured values. Notably,
the Ferre model exhibited significant errors between the predicted and measured values,
with an R2 value that became negative, indicating a substantial deviation between the
estimated and predicted values. In contrast, both the Topp and Ferre models had R2 values
of 0.5659, suggesting that the predictions obtained using these models can reflect the actual
SMC reasonably well. The predictive capabilities of the models are thus acceptable, even
when using general parameters applicable to most regions worldwide; this may be related
to the uniform soil texture, higher content of fine particles, and high sand content in the
study area [27,50]. The RMSE and MAPE values of the three models indicate that the
predictive capability of the Roth model was comparable, but slightly superior, to that of
the Topp model. A comparison of the AIC and BIC values of the models revealed that the
four-parameter Topp and Roth models significantly outperformed the two-parameter Ferre
model in terms of the predictive ability. Overall, the Roth model was found to be the most
suitable mixed-media model for the study area.

Figure 4. Comparison of the predicted SMC and measured SMC.

Table 3. Accuracy of existing mixed-media models when used to predict the soil moisture content.

Model R2 RMSE (g/cm3) MAPE (%) AIC BIC

Topp 0.566 0.0091 25.86 −246.004 −240.821
Roth 0.566 0.0054 19.01 −274.411 −269.227
Ferre −1.981 0.0208 76.24 −205.248 −202.657
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4.3. Cross-Validation Calibration of Mixed-Media Model Parameters

The model parameters calibrated via the cross-validation technique, juxtaposed with
the comparative analysis of their predicted and actual values, are shown in Table 4 and
Figure 5. The findings reveal that the Topp model, which performed best with cohort C3,
had the highest coefficient of determination (R2 value of 0.9028) between the predicted and
actual values. Conversely, the Ferre model, which performed the best for cohort C1, yielded
the highest R2 value between the predicted and actual values (R2 value of 0.5874). The Topp
model, when applied to cohort C1, yielded a negative R2 value, whereas the predictive
outcomes for cohorts C2, C3, and C4 were predominantly favorable. In contrast, the Ferre
model demonstrated superior performance for cohort C1, and cohorts C2, C3, and C4 all
exhibited negative R2 values, signifying considerable divergence between the predicted
and actual values under these data configurations. This implies that the Ferre model is
ill-suited for the prediction of the SMC within the study area. In contrast, the Topp model
only yielded a significant deviation between the predicted and actual values in one instance
(cohort C1) across the four data configurations, which underscores the superior predictive
stability and enhanced applicability of the Topp model for the soil conditions in the study
area compared with the Ferre model.

Table 4. Fitting models obtained via cross-validation and their estimation accuracy.

Category
Topp Model Ferre Model

Fitting Model R2 Fitting Model R2

C1 θc = −0.8549 + 0.1789εr + 0.2097εr
2 − 0.057εr

3 −2.4 θc = −0.1419 + 0.1053
√

εr 0.5874
C2 θc = 3.2608 − 3.9103εr + 1.5519εr

2 − 0.02056εr
3 0.8381 θc = −0.0458 + 0.039

√
εr −0.346

C3 θc = −0.4696 + 0.131εr + 0.0976εr
2 − 0.0287εr

3 0.9028 θc = 0.0313 − 0.0076
√

εr −0.065
C4 θc = −0.7187 + 0.1746εr + 0.1646εr

2 − 0.0467εr
3 0.5285 θc = 0.1523 − 0.0812

√
εr −1.435

 

Figure 5. Mixed-media Topp (a) and Ferre (b) model for predicting the SMC.
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Consequently, in this study, we used the Topp model parameters calibrated from the
C3 cohort and the Ferre model parameters calibrated from the C1 cohort in conjunction
with the dielectric constants associated with all of the borehole data to estimate the SMC.
The results are provided in Figure 6, and the precision of the predictions is presented
in Table 5.

Figure 6. Prediction of the soil volumetric water content obtained using Topp (a) and Ferre (b) model
after parameter calibration.

Table 5. Optimization models obtained via cross-validation and their estimation accuracy.

Model Fitting Model R2 RMSE (g/cm3) MAPE (%) AIC BIC

Topp θc = −0.4696 + 0.131εr + 0.0976εr
2 − 0.0287εr

3 0.6527 0.005 14.34 −279.30 −274.12
Ferre θc = −0.1419 + 0.1053

√
εr 0.5449 0.006 20.56 −275.43 −272.83

The results show that the R2 values of the predicted and measured values following
parameter calibration of the Topp and Ferre models were 0.6527 and 0.5449, respectively.
Both values were high, and significant improvements were achieved compared with the
uncalibrated results. Specifically, the R2 value of the Topp model increased by 0.0868 from
the previous value of 0.5659, and the Ferre model’s R2 value increased by 2.5259 from the
previous value of −1.981, demonstrating substantial improvement. This suggests that the
Topp model possesses greater applicability and can effectively predict the SMC in the study
area, even without parameter calibration. Meanwhile, the Ferre model’s applicability is
lower, and it requires parameter calibration to achieve satisfactory predictive outcomes.
The RMSE values of the Topp and Ferre models were 0.5% and 0.6%, respectively, and their
MAPE values were 14.34% and 20.56%, respectively, indicating that the estimated values
were close to the true values and that the estimation results were reliable. The AIC and
BIC values of the two models were relatively close, suggesting that the estimation results
obtained using the four-parameter Topp model and the two-parameter Ferre model were
similar and not significantly influenced by the number of model parameters.
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5. Discussion

GPR was used to estimate the shallow soil moisture content of typical desert grasslands
in the northern foothills of the Yinshan Mountains using three universal dielectric constant
soil moisture models. The results show that the accuracy of the SMC estimated using
the existing models is still acceptable. The new model with parameter calibration has
a higher accuracy, and it can estimate the shallow soil moisture content and its spatial
distribution more accurately in similar areas. Our results contribute to the understanding
of soil moisture estimation methods for desert grassland areas, which is instrumental for
evaluating the carrying capacity and resilience of ecosystems, as well as their responses to
climate change, thereby providing a scientific foundation for ecological conservation and
restoration [51,52].

The RMSE values of the SMC estimated using the Topp, Roth, and Ferre models
were 0.0091 g/cm3, 0.0054 g/cm3, and 0.0208 g/cm3, and the R2 values were 0.566, 0.566,
and −1.981, respectively. The estimation accuracies of the Topp and Roth models were
acceptable, and the estimation error of the Ferre model was very large. The prediction
ability of the model calibrated using the parameters was significantly improved. The
R2 values of the predicted and measured values for the Topp and Ferre models were
0.6527 and 0.5449, respectively, which reached a high level. These measurement results
are better than the estimation results that Cheng et al. [28] obtained using an unmanned
aerial vehicle–supported GPR system and are lower than the estimation accuracy that
Li et al. [33] achieved using the neural network architecture optimization model. This
indicates that the neural network architecture model could be used to improve estimation
accuracy in the future [53]. The overall high precision of the estimation results attained in
this study may be related to the low SMC in the study area. However, Cao et al. noted
that a high SMC can affect radar wave reflection, and under high-conductivity conditions,
GPR inversion results may be poor [54]. Additionally, as the SMC increases, the RMSE
also increases, leading to poorer inversion effects. This finding aligns with Giroux and
Chouteau’s observations in 2010 [55]. The uniformity of the soil texture and the low spatial
variability in the study area contributed to the relative reliability of the estimation results.
This conclusion is similar to that of Mahmoudzadeh’s field-scale research [50]. In addition,
Ranalli et al. [56–58] found that the radar resolution decreases with increasing penetration
depth and interlayer thickness. The depth range measured in this study was shallow and
stratigraphic stratification was not involved, which also reduced the uncertainty of the radar
testing and water content estimation [27]. It is noteworthy that while the RMSE between
the estimated and measured values was small, the MAPE ranged from 14.34% to 20.56%.
This small RMSE can be attributed to the low SMC in the study area, and for such small
values, the MAPE is a better indicator of the overall error.

In this study, we preliminarily verified the reliability of using GPR to estimate the
soil moisture content in typical desert grassland areas at the northern Yinshan Mountains;
however, the research was conducted in only one place at one time. Long time series obser-
vations should be conducted in the future, and real-time monitoring of the soil moisture
has been achieved using the parameter-calibrated model presented in this paper [4,27,59].
In addition, remote sensing and aerial photogrammetry can be combined to observe and
quickly measure large-scale spatiotemporal variations in the soil moisture content [60,61].
The Topp, Roth, and Ferre models applied in this study are all widely used models, and al-
though we recalibrated the parameters using measured data in the study area and proposed
parameter sets that are more suitable for the study area, these models are all empirical
models. Moreover, GPR, a geophysical method, also has a certain degree of ambiguity and
uncertainty, increasing the uncertainty of soil moisture estimation using GPR.

6. Conclusions

Using the information given, GPR was used to estimate the SMC of the predominantly
fine sand in the desert steppe in the northern Yinshan Mountains. The parameter calibration
and estimation results of the dielectric constant–SMC model were tested using the measured
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SMC data. We confirmed the universality of the Topp and Roth models in a desert steppe
area. We also demonstrated that the model using the new parameter calibration method
has a higher accuracy and is more suitable for estimating the SMC based on GPR data
in desert steppe areas. The verification and optimization of the model not only improve
current methods for determining the local SMC, but also increase the model’s practicability.

Our research only considered a test point in a desert grassland area in autumn, and
the verification and optimization of the dielectric constant–SMC model were completed on
the point scale. The temporal and spatial scales of the research can both be expanded. In
the future, the optimized model will be combined with long-term sequence observations to
realize real-time monitoring of the SMC and to give full play to GPR’s advantages of being
non-destructive and having a high resolution for estimating the SMC. In addition, joint
remote sensing will be used to estimate soil moisture content at the regional scale in a desert
steppe environment to obtain more accurate estimation results, as well as to better optimize
agricultural production, manage water resources, respond to climate change, and protect
ecosystems, thus promoting sustainable development and environmental adaptability in
desertification areas.
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