Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy
Abstract
:1. Introduction
- Be accessible to all users within the urban context;
- Improve the health and well-being of the same users;
- Conserve and enhance both biological diversity and direct and sustained enjoyment of natural resources;
- Contribute to the aesthetics of the city and improve the quality of life in urban settings and, especially, in densely urbanized ones;
- Preserve and increase the supply of ESs by users of the urban environment, whether they are residents, commuting workers, occasional visitors, tourists, or out-of-town students.
- Adapt the usability of available urban ESs according to the needs of users through measures that involve, in a strategic manner, the definition and implementation of urban planning;
- Promote the multipurpose use and multifunctionality of UGIs;
- Make sure that the use of ESs is continuous and effective and make maintenance operations, which limit, often problematically, these uses, as efficient as possible;
- Integrate UGIs into the parts of the urban context where soils are largely sealed through partial permeabilization of the soils, as part of the implementation of nature-based solutions;
- Define and implement urban planning policies aimed at increasing the effectiveness of UGIs, which are characterized by inclusiveness and participation of local societies, with special reference to private entrepreneurship of the for-profit and nonprofit sectors, citizens’ committees, voluntary associations, especially those working in the field of environmental protection, trade union representatives, and all public administrations responsible for the management of the urban environment.
- Improvement of air quality and progressive adaptation to climate change;
- Effective recharge of underground aquifers;
- Flood prevention and runoff control;
- Increasing areas available for outdoor recreation;
- Protection and improvement of habitat quality for flora and fauna, as well as functioning and adequate usability and walkability, of corridors connecting hubs of concentration of urban ESc provision;
- Protection and improvement of the aesthetic quality of the urban built and natural environment.
2. Methods and Materials
2.1. Study Area: The FUA of Cagliari
2.2. The Spatial Taxonomy of the UGI
2.2.1. Nature-Based Recreation Opportunities
2.2.2. Water Runoff Retention
2.2.3. Carbon Sequestration and Storage
2.2.4. Habitat Quality
2.2.5. Land Surface Temperature
2.3. The Identification of the Urban Ecological Corridors
- Step 1: land naturalness mosaic map.
- Step 2: ecological integrity map.
- Step 3: resistance map.
- Step 4: map of cost-weighted distance (CWD) and map of ecological corridors.
- Conversion of the two vector maps (land naturalness mosaic and ecological integrity) into raster maps;
- Elaboration of two new raster maps by computing the inverse of the naturalness degree index and the ecological integrity index;
- Scaling the newly-identified raster maps on an ordinal scale from 1 to 100 based on guidelines from the European Environment Agency [6] where 1 is the lowest resistance and 100 is the highest level of resistance;
- Summing the values of the two rescaled raster maps on a patch-by-patch basis. The resulting map represents the resistance map. The resistance map provides a spatial taxonomy that identifies varying levels of resistance across the landscape, which can be crucial for ecological planning and management.
2.4. The Spatial Relations between Ecosystem Service Supply and Ecological Corridors
+ β6ALT_ELEV.
- CO_W_DIS is cost-weighted distance (CWD);
- RECR_OUT is the percentage share of the area available for outdoor recreational activities times the resident population in a buffer of 500 m;
- FLD_CNTR is the volume of water runoff, which is prevented to flow away;
- CA_CP_ST is the amount of organic carbon that can be sequestered and stored;
- HAB_QUAL is habitat quality;
- L_S_TEMP is land surface temperature (LST) as the urban heat measure and reference for its mitigation;
- ALT_ELEV is a control variable related to average elevation.
3. Results
3.1. The Spatial Taxonomy of the UGI
3.2. The Identification of the Urban Ecological Corridors
3.3. The Spatial Relations between Ecosystem Service Supply and Ecological Corridors
4. Discussion
4.1. The Spatial Taxonomy of the UGI
4.2. The Identification of the Urban Ecological Corridors
4.3. The Spatial Relations between Ecosystem Service Supply and Urban Ecological Corridors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- −
- NDiAB represents the normalized distance between core areas A and B measured along a path that passes through patch i;
- −
- CWDiA e CWDiB are the CWDs between patch i and core areas A and B, respectively;
- −
- LCWDAB is the minimum CWD that is the CWD calculated along the LCP that connects A and B [152].
References
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure—Enhancing Europe’s Natural Capital. SWD (2013) 155 Final. 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 5 June 2024).
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan–European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Dover, J.W. Green infrastructure. In Incorporating Plants and Enhancing Biodiversity in Buildings and Urban Environments; Earthscan/Routledge: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Naumann, S.; Davis, M.; Kaphengst, T.; Pieterse, M.; Rayment, M. Design, Implementation and Cost Elements of Green Infrastructure Projects; Final Report to the European Commission, DG Environment, contract no. 070307/2010/577182/ETU/F.1; Ecologic institute and GHK Consulting: Brussels, Belgium, 2011; Available online: https://www.ecologic.eu/11382 (accessed on 5 June 2024).
- Directorate—General Environment, European Commission. The Multifunctionality of Green Infrastructure, Science for Environment Policy, DG News Alert Service, In-Depth Report. 2012. Available online: https://www.europarc.org/wp-content/uploads/2017/02/Green_Infrastructure.pdf (accessed on 5 June 2024).
- European Environment Agency. Spatial Analysis of Green Infrastructure in Europe, EEA Technical Report No. 2/2014; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Sandström, U.F. Green infrastructure planning in urban Sweden. Plann. Pract. Res. 2002, 17, 373–385. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelikonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Breuste, J.H. The Green City: From a vision to a concept from national to European perspectives. In Ecosystem Services and Green Infrastructure—Perspectives from Spatial Planning in Italy; Arcidiacono, A., Ronchi, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 29–43. [Google Scholar]
- Echevarria Icaza, L.; van der Hoeven, F.; van den Dobbelsteen, A. Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves. TeMA J. Land Use Mobil. Environ. 2016, 9, 63–87. [Google Scholar] [CrossRef]
- Salata, K.D.; Yiannakou, A. Green Infrastructure and climate change adaptation. TeMA J. Land Use Mobil. Environ. 2016, 9, 7–24. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature–based solutions: New influence for environmental management and research in Europe. GAIA J. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Zoppi, C. Valutazione come sostegno all’efficacia del piano [Assessment process as support to planning effectiveness]. In Valutazione e Pianificazione Delle Trasformazioni Territoriali nei Processi di Governance ed e-Governance—Sostenibilità ed e-Governance nella Pianificazione del Territorio [Spatial Transformations Assessment and Planning within Governance and E-Governance Processes—Sustainability and E-Governance in Spatial Planning]; Zoppi, C., Ed.; FrancoAngeli: Milan, Italy, 2012; pp. 13–33. [Google Scholar]
- Walmsley, A. Greenways: Multiplying and diversifying in the 21st century. Landsc. Urban Plan. 2006, 76, 252–290. [Google Scholar] [CrossRef]
- Schrijnen, P.M. Infrastructure networks and red-green patterns in city regions. Landsc. Urban Plan. 2000, 48, 191–204. [Google Scholar] [CrossRef]
- van der Ryn, S.; Cowan, S. Ecological Design; Island Press: Washington, DC, USA, 1996. [Google Scholar]
- Buijs, A.; Hansen, R.; van der Jagt, S.; Ambrose-Oji, B.; Elands, B.; Lorance Rall, E.; Mattijssen, T.; Pauleit, S.; Runhaar, H.; Stahl Olafsson, A.; et al. Mosaic governance for urban green infrastructure: Upscaling active citizenship from a local government perspective. Urban For. Urban Green. 2019, 40, 53–62. [Google Scholar] [CrossRef]
- Fors, H.; Frøik Molin, J.; Murphy, M.A.; Konijnendijk van den Bosch, C. User participation in urban green spaces—For the people or the parks? Urban For. Urban Green. 2015, 14, 722–734. [Google Scholar] [CrossRef]
- Bettencourt, L.M.A.; Lobo, J. Urban scaling in Europe. J. R. Soc. Interface 2019, 13, 20160005. [Google Scholar] [CrossRef] [PubMed]
- OECD. Redefining “Urban”: A New Way to Measure Metropolitan Areas; OECD Publishing: Paris, France, 2012. [Google Scholar] [CrossRef]
- Dijkstra, L.; Poelman, H.; Veneri, P. The EU-OECD definition of a functional urban area. In OECD Regional Development Working Papers No. 2019/11; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- EUROSTAT. Cities Database. Available online: https://ec.europa.eu/eurostat/databrowser/view/urb_lpop1/default/table?lang=en&category=urb.urb_luz (accessed on 5 June 2024).
- McDonald, R.I.; Aronson, M.F.J.; Beatley, T.; Beller, E.; Bazo, M.; Grossinger, R.; Jessup, K.; Mansur, A.V.; Puppim de Oliveira, J.A.; Panlasigui, S.; et al. Denser and greener cities: Green interventions to achieve both urban density and nature. People Nat. 2023, 5, 84–102. [Google Scholar] [CrossRef]
- Copernicus Europe’s Eyes on Earth. Land Monitoring Service. Urban Atlas. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/fb4dffa1-6ceb-4cc0-8372-1ed354c285e6?language=all (accessed on 5 June 2024).
- Copernicus Europe’s Eyes on Earth. Land Monitoring Service. CORINE Land Cover. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/71c95a07-e296-44fc-b22b-415f42acfdf0?language=all (accessed on 5 June 2024).
- Hale, R.L.; Cook, E.M.; Beltrán, B.J. Cultural ecosystem services provided by rivers across diverse social-ecological landscapes: A social media analysis. Ecol. Indic. 2019, 107, 105580. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, B.; Wang, Y.; Xu, P.; Liu, Q. Identifying spatial mismatches between the supply and demand of recreation services for sustainable urban river management: A case study of Jinjiang River in Chengdu, China. Sustain. Cities Soc. 2022, 77, 103547. [Google Scholar] [CrossRef]
- Ebner, M.; Schirpke, U.; Tappeiner, U. Combining multiple socio-cultural approaches. Deeper insights into cultural ecosystem services of mountain lakes? Landsc. Urban Plan. 2022, 228, 104549. [Google Scholar] [CrossRef]
- ISTAT. Dati per Sezione di Censimento [National Statistics Institute. Data by Census Tract]. Available online: https://www.istat.it/it/archivio/285267 (accessed on 5 June 2024).
- Giles-Corti, B.; Broomhall, M.H.; Knuiman, M.; Collins, C.; Douglas, K.; Ng, K.; Lange, A.; Donovan, R.J. Increasing walking: How important is distance to, attractiveness, and size of public open space? Am. J. Prev. Med. 2005, 28, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- De Sousa Silva, C.; Viegas, I.; Panagopoulos, Τ.; Bell, S. Environmental justice in accessibility to green infrastructure in two European cities. Land 2018, 7, 134. [Google Scholar] [CrossRef]
- Wysmułek, J.; Hełdak, M.; Kucher, A. The analysis of green areas’ accessibility in comparison with statistical data in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4492. [Google Scholar] [CrossRef]
- Kabisch, N.; Strohbach, M.; Haase, D.; Kronenberg, J. Urban green space availability in European cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- van Herzele, A.; Wiedemann, T. A monitoring tool for the provision of accessible and attractive urban green spaces. Landsc. Urban Plan. 2003, 63, 109–126. [Google Scholar] [CrossRef]
- Natural Capital Project Stanford University. What is InVEST? Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 5 June 2024).
- Unites States Department of Agriculture, Natural Resources Conservation Service. National Engineering Handbook. Part 630–Hydrology. Chapter 10 Estimation of Direct Runoff from Storm Rainfall. 2004. Available online: https://damtoolbox.org/wiki/National_Engineering_Handbook:_Chapter_10_-_Estimation_of_Direct_Runoff_from_Storm_Rainfall (accessed on 5 June 2024).
- Unites States Department of Agriculture, Natural Resources Conservation Service. National Engineering Handbook: Chapter 7—Hydrologic Soil Groups. 2009. Available online: https://damtoolbox.org/wiki/National_Engineering_Handbook:_Chapter_7_-_Hydrologic_Soil_Groups (accessed on 5 June 2024).
- Sardegna Geoportale. Carta Della Permeabilità dei Substrati Della Sardegna [Sardinian Geoportal. Permeability Map of the Sardinian Substrates]. Available online: https://www.sardegnageoportale.it/index.php?xsl=2420&s=40&v=9&c=94083&es=6603&na=1&n=100&esp=1&tb=14401 (accessed on 5 June 2024).
- Sardegna Geoportale. Carta Dell’uso del Suolo [Sardinian Geoportal. Land Use Map]. Available online: https://www.sardegnageoportale.it/index.php?xsl=2420&s=40&v=9&c=14480&es=6603&na=1&n=100&esp=1&tb=14401 (accessed on 5 June 2024).
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines. 2019. Available online: https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf (accessed on 5 June 2024).
- Agenzia Regionale per la Protezione Dell’ambiente Della Sardegna. Carta del Curve Number Regionale [Sardinian Regional Agency for Environmental Protection. Regional Curve Number Map]. 2019. Available online: https://www.sardegnageoportale.it/documenti/40_615_20190329081206.pdf (accessed on 5 June 2024).
- Quagliolo, C.; Comino, E.; Pezzoli, A. Experimental flash floods assessment through urban flood risk mitigation (UFRM) model: The case study of Ligurian coastal cities. Front. Water 2021, 3, 663378. [Google Scholar] [CrossRef]
- Idrologia e Idrometria [Hydrology and Hydrometry]. Available online: https://www.sardegnaambiente.it/index.php?xsl=611&s=21&v=9&c=93749&na=1&n=10 (accessed on 5 June 2024).
- Sardegna Geoportale. Modelli Digitali del Terreno e Delle Superfici [Sardinian Geoportal. Digital Terrain and Surface Models]. Available online: https://www.sardegnageoportale.it/areetematiche/modellidigitalidielevazione/ (accessed on 5 June 2024).
- Floris, M.; Zoppi, C. Ecosystem services and spatial planning: A study on the relationship between carbon sequestration and land-taking processes. Arch. Studi Urbani Reg. 2020, 51 (Suppl. S127), 11–33. [Google Scholar] [CrossRef]
- Commission Implementing Decision of 11 July 2011 Concerning a Site Information Format for Natura 2000 Sites. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011D0484 (accessed on 5 June 2024).
- Sardegna Mappe Aree Tutelate. [Sardinian Geoportal. Protected Areas]. Available online: https://www.sardegnageoportale.it/webgis2/sardegnamappe/?map=aree_tutelate (accessed on 5 June 2024).
- USGS Science for a Changing World. Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 5 June 2024).
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Ferretti, V.; Pomarico, S. An integrated approach for studying the land suitability for ecological corridors through spatial multicriteria evaluations. Environ. Dev. Sustain. 2013, 15, 859–885. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Wu, M.; Zhou, K.; Zhang, X.; Liu, Z. A Dynamic Evaluation Method of Urban Ecological Networks Combining Graphab and the FLUS Model. Land 2022, 11, 2297. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Masoudi, H.; Jafari, F.; Khorshiddoost, A.M.; Abedini, A.; Mosavi, A. Ecological networks and corridors development in urban areas: An example of Tabriz, Iran. Front. Environ. Sci. 2022, 10, 969266. [Google Scholar] [CrossRef]
- McRae, B.H.; Kavanagh, D.M. Linkage Mapper Connectivity Analysis Software. Seattle: Nat. Conserv. Seattle WA. 2011. Available online: https://linkagemapper.org/ (accessed on 5 June 2024).
- Cannas, I.; Zoppi, C. Ecosystem services and the Natura 2000 Network: A study concerning a green infrastructure based on ecological corridors in the metropolitan City of Cagliari. In 17th International Conference on Computational Science and Its Applications (ICCSA 2017), Lecture Notes in Computer Sciences Series; Gervasi, O., Murgante, B., Misra, S., Borruso, G., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Stankova, E., Cuzzocrea, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 10409, pp. 379–400. [Google Scholar] [CrossRef]
- Cannas, I.; Zoppi, C. Un’infrastruttura verde nell’area metropolitana di Cagliari: Corridoi ecologici come connessioni tra i Siti della Rete Natura 2000 [A green infrastructure in the metropolitan area of Cagliari: Ecological corridors as connections between the sites of the Natura 2000 Network]. In Atti Della XX Conferenza Nazionale SIU. Urbanistica E/È azione Pubblica [Proceedings of the 20th National Conference of SIU. Spatial Planning And/Is Public Action]; Aa.Vv. [Multiple Authors]; Planum Publisher: Rome/Milan, Italy, 2017; pp. 1373–1386. [Google Scholar]
- Cannas, I.; Lai, S.; Leone, F.; Zoppi, C. Green infrastructure and ecological corridors: A regional study concerning Sardinia. Sustainability 2018, 10, 1265. [Google Scholar] [CrossRef]
- Cannas, I.; Lai, S.; Leone, F.; Zoppi, C. Integrating green infrastructure and ecological corridors: A study concerning the metropolitan area of Cagliari (Italy). In Smart Planning: Sustainability and Mobility in the Age of Change; Papa, R., Fistola, R., Gargiulo, C., Eds.; Springer International Publishing: Basel, Switzerland, 2018; pp. 127–145. [Google Scholar] [CrossRef]
- Isola, F.; Lai, S.; Leone, F.; Zoppi, C. Strengthening a regional green infrastructure through improved multifunctionality and connectedness: Policy suggestions from Sardinia, Italy. Sustainability 2022, 14, 9788. [Google Scholar] [CrossRef]
- Isola, F.; Leone, F.; Zoppi, C. Mapping of ecological corridors as connections between protected areas: A study concerning Sardinia, Italy. Sustainability 2022, 14, 6588. [Google Scholar] [CrossRef]
- Isola, F.; Lai, S.; Leone, F.; Zoppi, C. Green Infrastructure and Regional Planning—An Operational Framework; FrancoAngeli: Milan, Italy, 2022; ISBN 9788835141402. [Google Scholar]
- Maes, J.; Zulian, G.; Günther, S.; Thijssen, M.; Raynal, J. Enhancing Resilience of Urban Ecosystems through Green Infrastructure. Final Report, EUR 29630 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- European Commission, Directorate-General, Joint Research Centre. The Landscape Mosaic, 2023. Available online: https://ies-ows.jrc.ec.europa.eu/gtb/GTB/psheets/GTB-Pattern-LM.pdf (accessed on 5 June 2024).
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services. A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 2, 7–29. [Google Scholar] [CrossRef]
- LaRue, M.A.; Nielsen, C.K. Modelling potential dispersal corridors for cougars in Midwestern North America using least-cost path methods. Ecol. Model. 2008, 212, 372–381. [Google Scholar] [CrossRef]
- Vogt, P. User Guide of GuidosToolbox (GTB). 2024. Available online: https://ies-ows.jrc.ec.europa.eu/gtb/GTB/GuidosToolbox_Manual.pdf (accessed on 5 June 2024).
- Sardegna Geoportale. Parchi e le Riserve Nazionali o Regionali, Nonché i Territori di Protezione Esterna dei Parchi [National or Regional Parks and Reserves, as Well as the External Protection Territories of Parks]. Available online: https://webgis2.regione.sardegna.it/geonetwork/srv/ita/catalog.search#/metadata/R_SARDEG:585dc615-71d2-4318-ade6-6b3341781987 (accessed on 5 June 2024).
- Sardegna Geoportale. Zone Umide Incluse Nell’elenco Previsto dal D.P.R. 448/76 (Dati Indicativi) [Wetlands Included in the List Provided by Presidential Decree 448/76]. Available online: https://webgis2.regione.sardegna.it/geonetwork/srv/ita/catalog.search#/metadata/R_SARDEG:f52f111d-2a2e-4870-a623-6d6f11dc4f1d (accessed on 5 June 2024).
- European Environment Agency Dataset. Natura 2000—Spatial Data. Available online: https://www.eea.europa.eu/data-and-maps/data/natura-14/natura-2000-spatial-data (accessed on 5 June 2024).
- Zoppi, C.; Argiolas, M.; Lai, S. Factors influencing the value of houses: Estimates for the City of Cagliari, Italy. Land Use Policy 2015, 42, 367–380. [Google Scholar] [CrossRef]
- Sklenicka, P.; Molnarova, K.; Pixova, K.C.; Salek, M.E. Factors affecting farmlands in the Czech Republic. Land Use Policy 2013, 30, 130–136. [Google Scholar] [CrossRef]
- Stewart, P.A.; Libby, L.W. Determinants of farmland value: The case of DeKalb County, Illinois. Rev. Agric. Econ. 1998, 20, 80–95. Available online: https://www.jstor.org/stable/1349535 (accessed on 5 June 2024). [CrossRef]
- Cheshire, P.; Sheppard, S. On the price of land and the value of amenities. Econ. New Ser. 1995, 62, 247–267. [Google Scholar] [CrossRef]
- Wolman, A.L.; Couper, E.A. Potential Consequences of Linear Approximation in Economics. Fed. Reserve Bank Econ. Q. 2003, 11, 51–67. Available online: https://www.richmondfed.org/-/media/RichmondFedOrg/publications/research/economic_quarterly/2003/winter/pdf/wolman.pdf (accessed on 5 June 2024).
- Byron, R.P.; Bera, A.K. Linearised estimation of nonlinear single equation functions. Int. Econ. Rev. 1983, 24, 237–248. [Google Scholar] [CrossRef]
- Feng, H.; Li, Y.; Li, Y.Y.; Li, N.; Li, Y.; Hu, Y.; Yu, J.; Luo, H. Identifying and evaluating the ecological network of Siberian roe deer (Capreolus pygargus) in Tieli Forestry Bureau, northeast China. Glob. Ecol. Conserv. 2021, 26, e01477. [Google Scholar] [CrossRef]
- Dutta, T.; Sharma, S.; McRae, B.H.; Roy, P.S.; DeFries, R. Connecting the dots: Mapping habitat connectivity for tigers in central India. Reg. Environ. Chang. 2016, 16, 53–67. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, J.; Bryan, B.A.; Gao, L.; Qin, Z.; Chen, L.; Yang, J. Impacts of rapid urbanization on ecosystem services along urban-rural gradients: A case study of the Guangzhou-Foshan Metropolitan Area, South China. Écoscience 2018, 25, 235–247. [Google Scholar] [CrossRef]
- Liu, S.; Shen, P.; Huang, Y.; Jiang, L.; Feng, Y. Spatial distribution changes in nature-based recreation service supply from 2008 to 2018 in Shanghai, China. Land 2022, 11, 1862. [Google Scholar] [CrossRef]
- Suárez, M.; Barton, D.N.; Cimburova, Z.; Rusch, G.M.; Gómez-Baggethun, E.; Onaindia, M. Environmental justice and outdoor recreation opportunities: A spatially explicit assessment in Oslo metropolitan area, Norway. Environ. Sci. Policy 2020, 108, 133–143. [Google Scholar] [CrossRef]
- Benati, G.; Calcagni, F.; Martellozzo, F.; Ghermandi, A.; Langemeyer, J. Unequal access to cultural ecosystem services of green spaces within the city of Rome. A spatial social media-based analysis. Ecosyst. Serv. 2024, 66, 101594. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Sohn, J.; Choi, S.; Lewis, R.; Knaap, G. Characterising urban sprawl on a local scale with accessibility measures. Geogr. J. 2012, 178, 230–241. [Google Scholar] [CrossRef]
- Concepción, E.D. Urban sprawl into Natura 2000 network over Europe. Conserv. Biol. 2021, 35, 1063–1072. [Google Scholar] [CrossRef]
- Kirby, M.G.; Scott, A.J.; Walsh, C.L. Translating policy to place: Exploring cultural ecosystem services in areas of Green Belt through participatory mapping. Ecosyst. People 2023, 19, 2276752. [Google Scholar] [CrossRef]
- Cozzi, M.; Prete, C.; Viccaro, M.; Sijtsma, F.; Veneri, P.; Romano, S. Understanding the role of nature in urban-rural linkages: Identifying the potential role of rural nature-based attractive clusters that serve human well-being. Sustainability 2022, 14, 11856. [Google Scholar] [CrossRef]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romanguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2012, 34, 3177–3192. [Google Scholar] [CrossRef]
- Lai, S.; Leone, F.; Zoppi, C. Spatial distribution of surface temperature and land cover: A study concerning Sardinia, Italy. Sustainability 2020, 12, 3186. [Google Scholar] [CrossRef]
- Lai, S.; Leone, F.; Zoppi, C. Land surface temperature and land cover dynamics. A study related to Sardinia, Italy. TeMA J. Land Use Mobil. Environ. 2020, 3, 329–351. [Google Scholar] [CrossRef]
- Li, T.; Cao, J.; Xu, M.; Wu, Q.; Yao, L. The influence of urban spatial pattern on land surface temperature for different functional zones. Landsc. Ecol. Eng. 2020, 16, 249–262. [Google Scholar] [CrossRef]
- Yin, S.; Liu, J.; Han, Z. Relationship between urban morphology and land surface temperature. A case study of Nanjing City. PLoS ONE 2022, 17, e0260205. [Google Scholar] [CrossRef]
- García, D.H.; Riza, M.; Díaz, J.A. Land surface temperature relationship with the land use/land cover indices leading to thermal field variation in the Turkish Republic of Northern Cyprus. Earth. Syst. Environ. 2023, 7, 561–580. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, G.; Jiang, Y.; Wang, J. Effective range and driving factors of the urban ventilation corridor effect on urban thermal comfort at unified scale with multisource data. Remote Sens. 2021, 13, 1783. [Google Scholar] [CrossRef]
- Yan, J.; Yin, C.; An, Z.; Mu, B.; Wen, Q.; Li, Y.; Zhang, Y.; Chen, W.; Wang, L.; Song, Y. The influence of urban form on land surface temperature: A comprehensive investigation from 2D urban land use and 3D buildings. Land 2023, 12, 1802. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Sebastiani, A.; Fares, S. Spatial prioritization of ecosystem services for land conservation: The case study of central Italy. Forests 2023, 14, 145. [Google Scholar] [CrossRef]
- Buechel, M.; Slater, L.; Dadson, S. Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain. Hydrol. Earth Syst. Sci. 2024, 28, 2081–2105. [Google Scholar] [CrossRef]
- Ogden, F.L.; Pradan, N.R.; Downer, C.W.; Zahner, J.A. Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef]
- Kourdounouli, C.; Jönsson, A.M. Urban ecosystem conditions and ecosystem services. A comparison between large urban zones and city cores in the EU. J. Environ. Plann. Man. 2020, 63, 798–817. [Google Scholar] [CrossRef]
- LaPoint, S.; Balkenhol, N.; Hale, J.; Sadler, J.; van der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 2015, 29, 868–878. [Google Scholar] [CrossRef]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Cohen, D.A.; McKenzie, T.L.; Sehgal, A.; Williamson, S.; Golinelli, D.; Lurie, N. Contribution of public parks to physical activity. Am. J. Public Health 2007, 97, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Plieninger, T.; Primdahl, J. A systematic comparison of cultural and ecological landscape corridors in Europe. Land 2019, 8, 41. [Google Scholar] [CrossRef]
- Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Gonzalez, A.; Girard, M.; Tello, E. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 2016, 58, 61–73. [Google Scholar] [CrossRef]
- Balbi, M.; Petit, E.J.; Croci, S.; Nabucet, J.; Georges, R.; Madec, L.; Ernoult, A. Ecological relevance of least cost path analysis: An easy implementation method for landscape urban planning. J. Environ. Manag. 2019, 244, 61–68. [Google Scholar] [CrossRef]
- Teng, M.; Wu, C.; Zhou, Z.; Lord, E.; Zheng, Z. Multipurpose greenway planning for changing cities: A framework integrating priorities and a least-cost path model. Landsc. Urban Plan. 2011, 103, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, China. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhang, L.; Zhong, Q. Impact of spatial structure on the functional connectivity of urban ecological corridors based on quantitative analysis. Urban For. Urban Green. 2023, 89, 128121. [Google Scholar] [CrossRef]
- Krosby, M.; Breckheimer, I.; John Pierce, D.; Singleton, P.H.; Hall, S.A.; Halupka, K.C.; Gaines, W.L.; Long, R.A.; McRae, B.H.; Cosentino, B.L.; et al. Focal species and landscape “naturalness” corridor models offer complementary approaches for connectivity conservation planning. Landsc. Ecol. 2015, 30, 2121–2132. [Google Scholar] [CrossRef]
- O’Brien, P.; Gunn, J.S.; Clark, A.; Gleeson, J.; Pither, R.; Bowman, J. Integrating carbon stocks and landscape connectivity for nature-based climate solutions. Ecol. Evol. 2023, 13, e9725. [Google Scholar] [CrossRef] [PubMed]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Practice Protected Area. In Guidelines Series no. 30; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Wei, L.; Zhou, L.; Sun, D.; Yuan, B.; Hu, F. Evaluating the impact of urban expansion on the habitat quality and constructing ecological security patterns: A case study of Jiziwan in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109544. [Google Scholar] [CrossRef]
- Vasiljević, N.; Radić, B.; Gavrilovic, S.; Šljukić, B.; Medarević, M.; Ristić, R. The concept of green infrastructure and urban landscape planning: A challenge for urban forestry planning in Belgrade, Serbia. Iforest Biogeosci. For. 2018, 11, 491–498. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Yang, J.; Li, J.; Li, S. Measuring Spatial Connectivity between patches of the heat source and sink (SCSS): A new index to quantify the heterogeneity impacts of landscape patterns on land surface temperature. Landsc. Urban Plan. 2022, 217, 104260. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Xu, L.; Lu, Z.; Feng, M. An investigation on the impact of blue and green spatial pattern alterations on the urban thermal environment: A case study of Shanghai. Ecol. Indic. 2024, 158, 111244. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N.; Yang, X. Assessing the contributions of urban green space indices and spatial structure in mitigating urban thermal environment. Remote Sens. 2023, 15, 2414. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Liu, H.; Zhang, B.; An, W.; Zhu, C. Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustain. Cities Soc. 2023, 91, 104438. [Google Scholar] [CrossRef]
- Valente, D.; Marinelli, M.V.; Lovello, E.M.; Giannuzzi, C.G.; Petrosillo, I. Fostering the resiliency of urban landscape through the sustainable spatial planning of green spaces. Land 2022, 11, 367. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, L.; Li, P.; He, H.; Ren, X.; Zhang, M. Ecological restoration projects enhanced terrestrial carbon sequestration in the karst region of Southwest China. Front. Ecol. Evol. 2023, 11, 1179608. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Liu, H.; Zhang, C.; Wang, J.; Yue, Y.; Qi, X. How ecological restoration alters ecosystem services: An analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China. Environ Earth Sci. 2015, 74, 5307–5317. [Google Scholar] [CrossRef]
- Stachura, J.; Chuman, T.; Šefrna, L. Development of soil consumption driven by urbanization and pattern of built-up areas in Prague periphery since the 19th century. Soil Water Res. 2015, 10, 252–261. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.M.; Ruiz-Benito, P.; Zavala, M.A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62–75. [Google Scholar] [CrossRef]
- Mücher, C.A.; Hazeu, G.W.; Swetnam, R.; Gerard, F.; Luque, S.; Pino, J.; Halada, L. Historic land cover changes at Natura 2000 sites and their associated landscapes across Europe. In Remote Sensing for a Changing Europe—Proceedings of the 28th Symposium of the European Association of Remote Sensing Laboratories; Maktav, D., Ed.; IOS Press: Istanbul, Turkey; Amsterdam, The Netherlands, 2009; pp. 226–231. [Google Scholar] [CrossRef]
- Lai, S.; Leone, F.; Zoppi, C. Implementing green infrastructures beyond protected areas. Sustainability 2018, 10, 3544. [Google Scholar] [CrossRef]
- Vassilev, K.; Pedashenko, H.; Nikolov, S.C.; Apostolova, I.; Dengler, J. Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst. 2011, 145, 654–665. [Google Scholar] [CrossRef]
- Ruiz Benito, P.; Cuevas, J.A.; Bravo de la Parra, R.; Prieto, F.; García del Barrio, J.M.; Zavala, M.A. Land use change in a Mediterranean metropolitan region and its periphery: Assessment of conservation policies through CORINE Land Cover data and Markov models. Forest Syst. 2010, 19, 315–328. [Google Scholar] [CrossRef]
- He, J.; Huanga, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W. Changes in the attraction area and network structure of recreation flows in urban green, blue and grey spaces under the impact of the COVID-19 pandemic. Cities 2024, 146, 104744. [Google Scholar] [CrossRef]
- Park, S. A preliminary study on connectivity and perceived values of community green spaces. Sustainability 2017, 9, 692. [Google Scholar] [CrossRef]
- Richards, D.; Etherington, T.R.; Herzig, A.; Lavorel, S. The importance of spatial configuration when restoring intensive production landscapes for biodiversity and ecosystem service multifunctionality. Land 2024, 13, 460. [Google Scholar] [CrossRef]
- Lim, K.J.; Engel, B.A.; Muthukrishnan, S.; Harbor, J. Effects of initial abstraction and urbanization on estimated runoff using CN technology. J. Am. Water Resour. As. 2006, 42, 629–643. [Google Scholar] [CrossRef]
- Jordán, A.; Martínez-Zavala, L.; Bellinfante, N. Heterogeneity in soil hydrological response from different land cover types in southern Spain. Catena 2008, 74, 137–143. [Google Scholar] [CrossRef]
- Stewart, D.; Canfield, E.; Hawkins, R. Curve Number determination methods and uncertainty in hydrologic soil groups from semiarid watershed data. J. Hydrol. Eng. 2012, 17, 1180–1187. [Google Scholar] [CrossRef]
- Lee, J.A.; Chon, J.; Ahn, C. Planning landscape corridors in ecological infrastructure using least-cost path methods based on the value of ecosystem services. Sustainability 2014, 6, 7564–7585. [Google Scholar] [CrossRef]
- Samways, M.J.; Bazelet, C.S.; Pryke, J.S. Provision of ecosystem services by large scale corridors and ecological networks. Biodivers. Conserv. 2010, 19, 2949–2962. [Google Scholar] [CrossRef]
- Wickham, J.D.; Norton, D.J. Mapping and analyzing landscape patterns. Landsc. Ecol. 1994, 9, 7–23. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D.; Vogelmann, J.E.; Jones, K.B. National land-cover pattern data. Ecology 2000, 81, 604. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D.; Wade, T.G. An indicator of forest dynamics using a shifting landscape mosaic. Ecol. Indic. 2009, 9, 107–117. [Google Scholar] [CrossRef]
- Riitters, K.H. Spatial Patterns of Land Cover in the United States. A Technical Document Supporting the Forest Service 2010 RPA Assessment. Gen. Tech. Rep. SRS-136. Asheville, NC: Department of Agriculture Forest Service, Southern Research Station, 2011. Available online: https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs136.pdf (accessed on 5 June 2024).
- GuidosToolbox (GTB). Available online: https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/#Productsheets (accessed on 5 June 2024).
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Shirabe, T. Buffered or bundled, least-cost paths are not least-cost corridors: Computational experiments on path-based and wide-path-based models to conservation corridor design and effective distance estimation. Ecol. Inform. 2018, 44, 109–116. [Google Scholar] [CrossRef]
- McRae, B.H.; Kavanagh, D.M. User Guide: Linkage Pathways Tool of the Linkage Mapper Toolbox—Version 2.0—Updated October 2017. Available online: https://github.com/linkagescape/linkage-mapper/files/2204107/Linkage_Mapper_2_0_0.zip (accessed on 5 June 2024).
Label | Input Data | Data Sources |
---|---|---|
RECR_OUT | Land cover map | Copernicus land monitoring service |
Population data (census tract level) Census tracts | National census | |
FLD_CNTR | Land cover map Soil permeability map Curve number values Areas of interest | Regional geoportal |
Precipitation (rainfall depth) | Regional hydrologic annals | |
CA_CP_ST | Land cover map | Regional geoportal |
Carbon pools (above ground, below ground, dead organic matter, organic carbon) | Regional pilot project on land units and soil capacity in Sardinia National inventory of forests and carbon pools | |
HAB_QUAL | Land cover map | Copernicus land monitoring service |
Protected areas | Regional geoportal | |
Threats on habitats | Natura 2000 standard data forms Regional geoportal | |
Threats’ weights and distance decay Habitats’ sensitivity to threats | Expert survey | |
L_S_TEMP | Landsat Collection 2, level 2 imagery | Landsat Collection 2 surface temperature |
Phase | Input Data | Source | Output Data | Tool/Model |
---|---|---|---|---|
Step 1: land naturalness mosaic map. | Land cover map | Copernicus land monitoring service | Land naturalness mosaic map | Guido Toolbox [68] |
Step 2: ecological integrity map. | Land cover map | Copernicus land monitoring service | Ecological integrity map | Burkhard et al.’s matrix [65] |
Step 3: resistance map. | Land naturalness mosaic map. | Step 1 | Resistance map | Analysis in the GIS environment |
Ecological integrity map. | Step 2 | |||
Step 4: map of cost-weighted distance (CWD) and ecological corridors. | Resistance map | Step 3 | CWD map Spatial identification of UCS | Linkage Pathways Tool from the GIS Linkage Mapper Toolbox. |
Map of core areas | Regional geoportal [69,70] | |||
European Environmental Agency dataset [71] |
UEC Code | Core Area Code | Name of Connected NPA | Typology of NPA | CWD/ED | CWD/LCP |
---|---|---|---|---|---|
1 | 1 | Monte Mannu—Monte Ladu (colline di Monte Mannu e Monte Ladu) | SAC | 4.15 | 3.83 |
3 | Monte Sette Fratelli | SPA | |||
Monte dei Sette Fratelli e Sarrabus | SAC | ||||
Riu S. Barzolu | SAC | ||||
2 | 1 | Monte Mannu—Monte Ladu (colline di Monte Mannu e Monte Ladu) | SAC | 5.40 | 5.06 |
6 | Stagno di Cagliari | Ramsar Site | |||
Stagno di Cagliari | SPA | ||||
Stagno di Cagliari, Saline di Macchiareddu, Laguna di Santa Gilla | SAC | ||||
3 | 1 | Monte Mannu—Monte Ladu (colline di Monte Mannu e Monte Ladu) | SAC | 4.93 | 4.45 |
7 | Foresta di Monte Arcosu | SAC | |||
Foresta di Monte Arcosu | SPA | ||||
Parco naturale regionale di Gutturu Mannu | Natural regional park | ||||
4 | 2 | Bruncu de Su Monte Moru—Geremeas (Mari Pintau) | SAC | 3.87 | 3.56 |
3 | Monte Sette Fratelli | SPA | |||
Monte dei Sette Fratelli e Sarrabus | SAC | ||||
Riu S. Barzolu | SAC | ||||
5 | 2 | Bruncu de Su Monte Moru—Geremeas (Mari Pintau) | SAC | 4.43 | 3.87 |
8 | Costa di Cagliari | SAC | |||
Isola dei Cavoli, Serpentara, Punta Molentis e Campolongu | SAC | ||||
6 | 3 | Monte Sette Fratelli | SPA | 5.49 | 4.83 |
Monte dei Sette Fratelli e Sarrabus | SAC | ||||
Riu S. Barzolu | SAC | ||||
5 | Saline di Molentargius | SAC | |||
Stagno di Molentargius e territori limitrofi | SAC | ||||
Stagno di Molentargius | Ramsar site | ||||
Parco naturale regionale di Molentargius-Saline di Cagliari | Natural regional park | ||||
7 | 3 | Monte Sette Fratelli | SPA | 5.63 | 4.52 |
Monte dei Sette Fratelli e Sarrabus | SAC | ||||
Riu S. Barzolu | SAC | ||||
6 | Stagno di Cagliari | Ramsar Site | |||
Stagno di Cagliari | SPA | ||||
Stagno di Cagliari, Saline di Macchiareddu, Laguna di Santa Gilla | SAC | ||||
8 | 3 | Monte Sette Fratelli | SPA | 3.51 | 3.26 |
Monte dei Sette Fratelli e Sarrabus | SAC | ||||
Riu S. Barzolu | SAC | ||||
8 | Costa di Cagliari | SAC | |||
Isola dei Cavoli, Serpentara, Punta Molentis e Campolongu | SAC | ||||
9 | 4 | Torre del Poetto | SAC | 13.85 | 10.02 |
Monte Sant’Elia, Cala Mosca e Cala Fighera | SAC | ||||
5 | Saline di Molentargius | SPA | |||
Stagno di Molentargius e territori limitrofi | SAC | ||||
Stagno di Molentargius | Ramsar site | ||||
Parco naturale regionale di Molentargius-Saline di Cagliari | Natural regional park | ||||
10 | 5 | Saline di Molentargius | SPA | 20.79 | 5.51 |
Stagno di Molentargius e territori limitrofi | SAC | ||||
Stagno di Molentargius | Ramsar site | ||||
Parco naturale regionale di Molentargius-Saline di Cagliari | Natural regional park | ||||
6 | Stagno di Cagliari | Ramsar Site | |||
Stagno di Cagliari | SPA | ||||
Stagno di Cagliari, Saline di Macchiareddu, Laguna di Santa Gilla | SAC | ||||
11 | 6 | Stagno di Cagliari | Ramsar Site | 5.18 | 4.23 |
Stagno di Cagliari | SPA | ||||
Stagno di Cagliari, Saline di Macchiareddu, Laguna di Santa Gilla | SAC | ||||
7 | Foresta di Monte Arcosu | SAC | |||
Foresta di Monte Arcosu | SPA | ||||
Parco naturale regionale di Gutturu Mannu | Natural regional park |
Explanatory Variable | Coefficient | t-Statistic | p-Value | Mean of the Explanatory Variable | Elasticity at the Mean Values of CWD and Expl. Var’s, Related to a 10% Increase in Expl. Var’s [(∆y/y)/(∆x/x), %] |
---|---|---|---|---|---|
RECR_OUT | −0.019 | −11.183 | 0.000 | 2059.537 | −0.199% |
FLD_CNTR | 1.574 | 7.189 | 0.000 | 614.434 | 4.797% |
CA_CP_ST | −2569.171 | −19.302 | 0.000 | 1.044 | −13.308% |
HAB_QUAL | −4254.389 | −28.333 | 0.000 | 0.466 | −9.835% |
L_S_TEMP | 1728.278 | 237.612 | 0.000 | 46.143 | 395.542% |
ALT_ELEV | −17.013 | −78.048 | 0.000 | 205.219 | −17.317% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isola, F.; Lai, S.; Leone, F.; Zoppi, C. Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy. Sustainability 2024, 16, 8628. https://doi.org/10.3390/su16198628
Isola F, Lai S, Leone F, Zoppi C. Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy. Sustainability. 2024; 16(19):8628. https://doi.org/10.3390/su16198628
Chicago/Turabian StyleIsola, Federica, Sabrina Lai, Federica Leone, and Corrado Zoppi. 2024. "Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy" Sustainability 16, no. 19: 8628. https://doi.org/10.3390/su16198628
APA StyleIsola, F., Lai, S., Leone, F., & Zoppi, C. (2024). Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy. Sustainability, 16(19), 8628. https://doi.org/10.3390/su16198628